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Abstract: Dynamic Optimal Power Flow (DOPF) 1s a typical complex multi-constrained non-convex non-linear
programming problem when considering the valve-pomt effect of conventional generators. Moreover, it 1s mixed
integer when considering the discreteness of reactive compensation devices for power system with Fixed Speed
Wind Generators (FSWGs). DOPF model in FSWGs integrated power system is established in this study and
then a hybrid Taguchi-Particle Swarm Optimization (TPSO) algorithm is proposed for solving the established
DOPF model. This hybnid algorithm combines the well-known Particle Swarm Optimization (PSO) algorithm with
the established Taguchi method which has been a important tool for robust design. This study clearly presents
the improvements obtained despite the simplicity of the hybridization process. The Taguchi method is run only
once in every iteration and therefore does not give significant impact in terms of computational cost. The
method creates a more diversified population, which alse contributes to the success of avoiding premature
convergence. IEEE 39-bus system is used to illustrate the effectiveness of the proposed method compared with
those obtained from PSO algorithm. The test results show that the proposed method is effective and has a
certain practicality.
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reactive compensation

INTRODUCTION

Wind energy is the world’s fastest growing
renewable energy source. With the increasing levels of
wind generator penetration in modern power systems, one
of major challenges in the present and coming years 1s the
optimization control, such as optimal power flow including
wind farms (L1 and Chen, 2008).

The well-known advantages of FSWGs (fixed speed
wind generators) are it 1s robust, easy and relatively cheap
for mass production, there are still widely use in power
system with FSWGs. Since FSWGs always draw reactive
power from the grid, m most cases, capacitors are
comnected in parallel to the generator to compensate for
the reactive power consumption, the P-bus power flow
model of FSWGs bus is proposed in this study.

In this study, the problems of DOPF (Dynamic
Optimal Power Flow) including FSW@Gs are researched.
The expectation model of wind generators' active power
outputs is adopted. DOPF is a method to schedule the
online generator outputs with the predicted load demands
over a certain period of time so as to operate an electric
power system most economically. Normally, it is solved
by dividing the entire dispatch period into a number of
small time intervals, then a static economic dispatch has
been employed to solve the problem m each interval
(Pothiva et al., 2008; Utwrbey and Costa, 2007). In this
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study, DOPF model, which takes all conventional umnits
cost minimum as the objective function and takes the
whole time and the inherent relations of different intervals
into account in FSWGs integrated system, is established.

DOPF 1s a typical complex multi-constrained
non- convex non-linear programming problem when
considering the valve-point effect of conventional
generators. Moreover, 1t 1s mixed integer when
considering the discreteness of FSWGs reactive
compensation devices. However, both lambda-iterative
and gradient technique methods in conventional
approaches the problems
techmques and require a smooth and convex cost

to are calculus-based
function and strict continuity of the search space.

On intelligent algorithms, easy to handle discrete
variables, no special requirements for the objective
function, no problems of dimension disaster, strong
global search capability and the greater probability in
finding out the global optimum solution are the prominent
advantages of these algorithms. However, the
computational accuracy and convergence rate are not
high for most intelligent algorithm.

In current study, we see a myriad of improved
algorithms. Many of these algorithms incorporate some
improvement strategies 1n the algorithms itself while
some mmproved algorithms are the result of hybridizing
two algorithms (He et al., 2008; Yuan et al, 2009). The
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Taguchi method is an established approach for robust
design, applying the idea from statistical experiment
design for evaluating and improvements in products,
processes and equipment (Taguchi et af., 2000, 2005;
Ross, 1989). The key to this concept is to improve the
quality of a product by minimizing the effect of the
causes of variation without the elimination of the
relevant causes. The two major tools used in the Taguchi
method are: (1) Signal-to-Noise Ratio {(SNR) which
measures quality and (2) orthogonal arrays which are
used to study many design parameters simultaneously
(Taguchi et af., 2000, 2005; Ross, 1989). This study adopts
the concept of Taguchi methed into PSO algorithm to
improve its convergence which is so called Taguchi-PSO
(TPSO). By applying the algorithm to dealing with IEEE
39-bus system, compared with PSO algorithm, the
experimental results show that the algorithm is an
effective way to solving DOPF problems in FSWGs
mntegrated power system because of higher computational
accuracy, better robustness and convergence
performance.

TEEE 39-bus system is used to illustrate the
effectiveness of the proposed method compared with
those obtained from PSO algorithm. The test results show
that the proposed method is effective and has a certain

practicality.

DOPF MODEL IN FSWGS
INTEGRATED POWER SYSTEM

Due to the random variation of the wind velocities
and load demands, 1t 15 difficult to research the DOPF
the power system including wind farms. For simplifying
this problem, the dividing-stage strategy is adopted in
this study. According to the wind velocity forecasting
curves and the load forecasting curves mn the planming
horizon, the expectations of wind generators' outputs and
the load demands at dispatch interval can be calculated.

Constraints: Constraints include equality and inequality
constraints. The equation constraint is the power flow
formulation constraint while inequality constraints
mcluding generator power output, ramp rate and bus
voltage are as in BEq. 1-4. For the FSW@s bus, absorbed
reactive power from the power system is bounded as in
Eq. 4. The constraints of real power generation limit and
the ramp rate are taken into account as in Eq. 1.

max (P, B ~ Dy AT) <P <min(P,_ B~ + Uy AT) (1)
ie N,

' .
QGi,min = Q.:,, k= QGx,max’le Ngm

(2
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Q= Qe )
where, P, ., and P, are the maximum and minimur limits
of the power generation of unit i, P is the real power
output of unit i at the tth interval, P"' is the real power
output of wnit 1 at the t-1th interval, Uy 1s the up-ramp
limit of the ith generator (in units of MW /time-period) and
Dy, is the down-ramp limit of the ith generator (in units of
MW /time-period); AT is time interval, N, 1s the number
of conventional generating umts and N 1s the number of
system buses (excluding slack bus), V| is the voltage
magnitude output of bus i at the tth interval; Q°; is the
reactive power output of conventional generating umt 1 at
the tth interval, Q" 1s the absorbed reactive power of
wind farm bus at the tth interval, max is the maximum
value of the variable, min i1s the minimum value of the
variable.

After calculating the power flow, the state variables,
power loss and real power output of the slack bus
generator  corresponding the
variables are available. The real power output of the
slack bus generator will be set to the limitif it violates
the limit. After handling overlimit of the real power
output of the slack bus generator, the system power
balance constramts as mn Eq. 5 must meet, otherwise
adding Eq. 5 as penalty terms to the objective function to
form a generalized objective function. Details of the
generalized objective function used in this study are
given in Eq. 8.

to current control

(5)

Mgy
AP'= ¥ PP 4P, -PL-PL=0
i=1

where, AP' is the unbalance of the real power at the tth
interval, N, -1 represents the number of conventional
generating units excluding the slack bus, P, is the real
power output of the slack bus generator after handling its
overlimit at the tth interval, P, is the total power loss at
the tth interval, P,/ is the total load expectation at the tth
interval, ' _, is the expectation of wind generators' real
power outputs at the tth interval

Objective function: Due to the fact that wind generation
does not consume the fuel, the utility must purchase all
the energy produced by wind generating urts.
Consequently, the objective 1s to mimimize the following
total incremental fuel cost function F associated to N,
dispatchable units for T intervals in the given time
horizon, subject to the above-mentioned equality and
inequality constraints.
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B

(6)

minF

T pA

The meclusion of valve-point loading effects makes
the modeling of the fuel cost function of the unit more
practical. This increases the non-linearity and local optima
i the solution space. Also, the solution procedure can
easily trap in the local optima m the vicinity of optimal
value. The fuel cost function of the ith unit F (P,") with
valve-point loadings are represented as follows:

F(P')=a,+bP' + " +

e;sin(f (P —P")

1,min

(7)

where g, b, and c are cost coefficients and e, f, are
constants from the valve-point effect of the ith generating
unit.

Evaluation function: We must define the evaluation
function for evaluating the fitness of each mdividual in
the population. In the most of the nonlinear optimization
problems, the constraints are considered by generalizing
the objective function using penalty terms.

FSW@Gs always draw reactive power from the gnid.
According to the principle of the nearest reactive power
compensation, the required reactive power of wind farm
doesn’t absorb from the system as much as possible, but
mainly from the wind farm reactive compensation devices.
Because reactive power compensation devices are group
switched capacitors in wind farms, the maximum of
absorbed reactive power of wind farm from the grid is set
to one set of group switched capacitors which 1s
considered by generalizing the objective function using
penalty terms. Considering efficiency maximization of
wind farm reactive power compensation devices, the
mjected reactive power of wind farm bus 13 not
constrained.

To sum up, the above problems are generalized as
follows:

N

SF()

i

+K, i E (\'rjti\'rjhm)Z +

1=1 ieHmy

min{ i

Y@L - QK X (QL - Q) + K, Y (AP )
ieN t=1 t=1

1 ie

(&)

b=

K,

g

where, Ky, K, K-and K, are variable overlimit penalty
coefficients, V/ is the voltage magnitude of bus i at the tth
interval (excluding the slack bus and PV bus ); Q' is the
reactive power output of generator 1 at the tth interval; Q'
15 the absorbed reactive power of wind farm bus at the tth
interval, V™ and Q"™ denote the violated upper or lower
limits; Q' denotes the violated lower limit that is defined
as:
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gin - {Qi.“b“ Q> Qi (9)

QL Q= Q"

where, Q4™ 1s the upper limit value of the absorbed
reactive power of wind farm bus which 1s set to 1 Mvar in
the study.

In this study, K, K, and K; are set to 1,1,1
respectively. Because the unbalance of the real power AP
18 hard to meet, an adaptive penalty function to handle
penalty coefficient K, is adopted, K, = kvk vp* where, k is
the algorithm’s current iteration number; [ is a relative
violated value of the constraints, v 1s a multi-stage
assignment value, a is the power of the penalty value.

Meanwhile, several experiments have been done 1n
order to obtain the penalty parameters. In this study, if
B<1 then i = 1, otherwise ¢ = 2. Furthermore, if 3<0.001,
then v =1, else, if B<0.01 theny =10, else, if B<0.1 then
v =30, else, if B=1 then vy = 100, otherwise y = 300.

THE CONCEPT OF TAGUCHI METHOD

Taguchi methods were developed by Genichi
Taguchi as an aid to inproving the implementation of
total quality control in Japanese mdustry. He described
his methods as 'quality engineering and, in fact, the
methods take an engineering approach to the
understanding of process information. The methods are
based on the design of experiments to provide near
optimal quality characteristics for a specific objective.
Taguchi defines quality i a negative marmer as the loss
imparted to society from the time the product is shipped
(Taguchi et al., 2000).

The method 1s based on several statistical concepts
which have proven to be valuable tool in the subject of
quality improvement. Many Japanese manufacturers have
applied this approach for improving product and process
quality with unprecedented success. Taguchi essentially
utilizes the conventional statistical tools, which has been
simplified by identifying a set of stringent guidelines for
experiment layout and the analysis of results. Recently
Western industries have begun to recognize Taguchi’s
method as simple but highly effective approach in
improving product and process quality. Taguchi
method has a wide range of applications i other areas
{(Cornejo-Mazon et al., 2008, Nava-Arenas et al., 2008).
Two major tools used in the Taguchi method are the
orthogonal array and the SNR. This study incorporates
the two-level orthogonal arrays (Table 1), whereby the
two levels are denoted by number 1 and 2 in the Table 1.
The basic concept of the structure and usage of two-level
orthogonal arrays are briefly described here. This i1s
adequate in the context of describing the development of
the hybrid TPSO algorithm.
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Table 1: Lg (27) orthogonal array

Factors

A B C D E F G

Cohunn No.
Experiment
No. 1 2 3 4 5 i} 7 Fitness
1 1 1 1 1 1 1 1 fi
2 1 1 1 2 2 2 2 f
3 1 2 2 1 1 2 2 f;
4 1 2 2 2 2 1 1 f,
5 2 1 2 1 2 1 2 f;
6 2 1 2 2 1 2 1 f;
7 2 2 1 1 2 2 1 £
8 2 2 1 2 1 1 2 f;

The general form of two-level standard orthogonal
arrays can be represented by the following mathematical
term:

L, @™ (10)
where, n = 2%, n is the number of experimental runs, k is a
positive integer which is greater than 1, 2 is the number of
levels for each factor and n-11s the number of columns in
the orthogonal array. The size of the orthogonal array to
be used depends on the problem instance. At a time only
two particles (two factors) are executed at two different
levels for n number of experiments. The two-level
standard orthogonal arrays most often used m practice
are 1(2%), Ly(27), L5(27), T;y(2"), Los(2), L ;5(2') and so
on.

Orthogonal arrays are readily composed and are
available from many texts (Ross, 1989). The way that they
are constructed is to have (1) each level of every factor
appear the same mumber of times in every column of the
array and (2) each combination of factors between any
two columns appears the same number of times. For any
given values of (number of levels) and (number of
factors), (mumber of tests) is determined as the smallest
number that satisfies (1) and (2) above.

In this study, a two-level orthogonal array 1s used.
There are m factors, where m is the number of design
factors (variables)and each factor has two levels. If,
m <n-1, only the first columns are used, while the other
n-1- m columns are ignored. For example, there are
6 factors with two levels for each factor. We only need
& columns to allocate these factors and 1,(27) is enough
for this purpose because it has 7 columns. Table 1 shows
an orthogonal array L,(27). The number on the left of each
row is called the mun number or experiment number and
runs from 1 to 8. In fact, each row represents a particle
with only first 6 columns. In our methodology, we
randomly choose two particles in every iteration. For this
example, perform 8 experiments based on Table 1 whereby
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the number (either 1 or 2) of each column is the dimension
from first and second particle, respectively.

Many designed experiments use matrices called
orthogonal arrays for each experimental run and for
analyzing the data. The array is called orthogonal because
all columns can be evaluated independently of one
another, as shown in Table 1. As one column represents
a particle, therefore each column has its own fitness value
(f,, f., ... f;). The primary goal in conducting this matrix
experiment is to determine the best or the optimal level for
each factor. In taguchi based PSO, two tools of taguchi
method 1.e. orthogonal array and SNR are used. The basic
idea is to identify the one best particle in an orthogonal
array experiment, which consists of a set of experiments
conducted at two different levels.

Besides two-level orthogonal arrays, there exists
three-level and four-level orthogonal arrays which can
provide better precision to the specified process. The
detailed description of how these orthogonal arrays are
formed can be found mn the books written by Ross (1989),
Roy (1990) and Taguchi et of. (2000).

OVERVIEW OF PARTICLE SWARM
OPTIMIZATION

Kennedy and Eberhart (1995) first introduced the
Particle Swarm Optimization (PSO) method. It 1s one of the
optimization method categorized m the family of
evolutionary computation. The method has been found to
be robust in solving real-world problems featuring
non-differentiability, ligh dimension, multiple optima
and non-linearity which 1s widely used in various fields
(Heng et al, 2006, Sutha and Kamaraj, 2008; Lai-Tun et al.,
2009, Yang et al., 2009, Zakermoshfegh et al., 2008). PSO
algorithm is a model that mimics the movement of
individuals (fishes, birds, or insects) within a group
(school, flock and swarm). Similar to GA, a PSO consists
of a population refining its knowledge of the given search
space. PSO 1s mspired by particles moving around in the
search space. The individuals in a PSO thus have their
own positions and velocities. Each particle moves in the
search space with velocity which is dynamically adjusted
and balanced based on its own best movement (pBest)
and the best movement of the group (gBest).

Instead of using evolutionary operators such as
selection, mutation and crossover, each particle in the
population moves in the search space with velocity which
1s dynamically adjusted and all particles are assumed to be
of no volume. Each particle keeps track of its coordinates
in the search space, which are associated with the best
solution it has achieved so far. This value i1s known as
pBest. Another best value that is tracked by the global
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version of the particle swarm optimizer is the overall best
value or the best solution m the population 1s called
gBest.

The PSO concept consists of, at each time step,
changing the velocity of each particle toward its pBest
and gBest solutions. The movement is weighted by a
random term, with separate random numbers being
generated toward pBest and gBest values. For example,
the ith particle consisting d dimensions is represented as
X, = (X, Xiz X5 ..., X;3). The same notation applied to
the velocity, V= (V,, Vs, Vi ..., Vig). The best previous
position of the ith particle is recorded and represented as
pBest, = (pBest, |, pBest,,, pBest,,,... pBest;,). In the case
of minimization that we consider in this study, the value
of pBest; with lowest fitness is known as gBest. The
modification of velocity and position can be calculated
using the current velocity and the distance from pBest; to
gBest as shown in the following formulas

Vi = WV‘:I +ar{gbest, , — X:l) +a, (pbest, - X“,’J‘) (1)
X=Xy (12)
1.1 11 1.1

where,1¢1.N,je1..d, te 1. T with N 1s the number of
population size, d 1s the number of dimension and T 1is the
number of maximum generation.

The position, X of each particle 1s updated for every
dimension for all particles in each iteration. This 1s done
by adding the velocity vector to the position vector, as
described in Eq. 12 above. In Eq. 11, w 18 known as the
mertia weight. This parameter was mtroduced by Shi and
Eberhart (1998) to accelerate the convergence of PSO.
Suitable selection of w provides a balance between global
and local explorations, thus requiring less iteration on
average to find sufficiently optimal solution. Low values
result in particles moving in the region far from the
optimum value before being tugged back. On the other
hand, high values result in abrupt movement toward
target regions.

The parameters p, and p, are set to constant values,
which are normally given as 2.0 whereas r, and r, are two
random values, umformly distributed m [0,1]. The
constants, p, and p ,represent the weighting of the
stochastic acceleration terms that pull each particle
toward pBest and gBest positions.

TAGUCHI-PARTICLE SWARM OPTIMIZATION

Here, we illustrate with a simple example the concept
of Taguchi-PSO. The Taguchi method is performed after
the entire population 1s updated via PSO equations.
Followmg this Taguchi method, further elaborations are
given in a list of steps below. All the pseudocodes are

written in programming style for 1,(27),other two-level
standard orthogonal arrays such as L,(2%), L 42", L,(2°),
La(2"yand L,,,(2'%) etc., can be analogized.

»  Step 1: Choose two particles randomly from the
current population, noted as P, and P,

s Step 2: Create 8 new particles; notedas T, T, ... T;
from P, and P, (Each particle represents one
experiment as shown in Table 1)

»  Step 3: Assign all the relevant dimensions (columns
A-G) to the 8 new particles T\, T, ... T; from P, and P,
based on these columns in orthogonal array given
in Table 1. Number 1 means the relevant dimension
of new particle 1s copied from P, whereas number 2
means the relevant dimension is from P,

»  Step 4: Evaluate the fitness of T,, T, ... T; (refer to
last column of Table 1)

» Step 5: Calculate the SNR of various factors
(A, B, ..., G) defined as:

2
Effactor,levely= % £} factore [A,B,.G], levele[1,2],

& (level=1
crllevel=3)

For mstance, for the case of factor = B and level =1,
we have:

EB.Ly= ¥ f7=f+f] +f] +f;

i
i=1,2,5,6

The same calculation is applied to the similar factor
with level = 2

2

EB,2)= Y 1=+ ++f

i
i=3,4,78

s Step 6: Assign the relevant dimension to the optimal
particle P° based on the following rule, taking
factor =A n this case

IIE(A,1) < E(A,2) Then
Px(A)=P.x(A)

Else

Px(A)=P.x(A)

Endil

s+  Step 7: Replace the worse particle among the two
randomly chosen if the optimal particle is better than
both. Also, update the gBest as follows

II P° Fit<P,.Fit And P°Fit<P, Fit Then
II P, Fit=P,.Fit Then P=P

II P,.Fit< gBest.Fit Then gBest =P,
Elself P, Fit>P, Fit Then P=P
1l P, Fit< gRest.Fit Then gBest =T,
EndIr

End IT
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¢« Step 8: Continue with the next iteration until

maximum generation is reached

Step 6 above 1s important as a better dimension value
is assigned to optimal particle P° from two randomly
chosen particles. This technique provides an interesting
philosophy of vertical optimization which 18 very useful
for many real world optimization problems. For better
performance in regards to convergence, the two particles
in step 1 of Taguchi method are randomly chosen from
pBest vector. As of such, the Taguchi method will
therefore mmprove the dimensions value among pBest, an
effective way leading to faster convergence and better
accuracy. We employ the similar methodology in this
work for better performance.

IMPLEMENTS

For DOPF problem including FSWGs, there are T
dispatches by N,,-1 conventional generating umts and
many wind farms (for simplicity, one wind farm is adopted,
many wind farms may be analogized). A particle array of
control variable vectors 1s:

P11 Pl2 P1t PIT

P, P p; Pf
p=| © : : (13)

P P P, P}

Q Q4 - Q@ - Q
P=12..¢ (14)

where, P is particle vector, g is the number of population
particles, P’ is the real power output of nth generating
umit at the tth mterval, Q. is the number of group switched
capacitors in wind farm at the tth interval:

Step 1. Initialization: For the complete g population
particles, the candidate solution of each individual
particle is randomly initialized within the feasible
range in such a way that it should satisfy the
constraint given by Eq. 1

Step 2. Power flow and fitness calculation: Through
the power flow calculation including wind farms, the
state variables, power loss and real power output of
the slack bus generator corresponding to the current
control variables have been able to get. The real
power output of the slack bus generator will be set to
the limit if it violates the limit. After handling overlimit
of the real power output of the slack bus generator,
the system power balance constramnts as in Eq. 5
must meet, otherwise adding Eq. 5 as penalty terms to
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the objective function to form a generalized objective
function. In this study, Hq. 8 is used as the fitness or
evaluation function. This 15 a generalized fitness
function used to evaluate the fitness of the candidate
solution of each particle individual. Also, record the
particle’s position with the global best fitness as
gBest, record the current position of each particle as
its current pBest. Set the iteration count k = 0

Step 3. TPSO method: Sclve DOPF in FSWGs
integrated power system using TPSO method

Step 4. Update velocity and position: If k =k
iteration stop; otherwise, update w* set k= k+1 and
update velocity and position by Eg. 11-12

Step 5. Update pBest and gBest: After power flow
and fitness calculation, update pBest and gBest. Go
tostep 3

NUMERICAL RESULTS

To venfy the effectiveness and efficiency of the
adopted TPSO for DOPF problems including FSWGs,
TEEE 39-bus power system is used as the test systems.
The procedure has been implemented n MATLAB 7.0
programming language and numerical tests are carried
on a Pentium 4 2.4 G computer. The wind farm including
60 wind generators with the same type, the rating power
of which reaches 36 MW, 13 connected to the system at
the bus 14. For the single FSWG, its rating voltage is
690 V, the excitation reactance x,, is 2.20590, the sum of
the stator reactance x, and rotor reactance x, are 0.19980.
For simplifying the analysis, the load size 1s considered
invariable in the plamning horizon. The planning horizon
is divided into 12 intervals and every interval is 0.5 h.
The wind generators' outputs are shown m Table 2.
IEEE 39-bus system data are given by Zimmierman et al.
(2009) and Victoire and Jeyakumar (2005). The parameters
of the conventional generating umts are shown in
Table 3 and 4.

The maximum capacity of the reactive power
compensation is 50 Mvar which constitutes of 50 set of
group switched capacitors with per umt 1 Mvar. So, the
upper limit value of the absorbed reactive power of wind
farm bus 1s set tol Mvar m the study.

To demonstrate the superiority of the proposed
approach for DOPF problems, simulation results have
been compared with PSO method. Owing to the
randomness in intelligent algorithms, two algorithms are
executed 20 times when applied to the test system.

Table 2: The wind fanm data in different periods
Stage 1 2 3 4 5 6 7
Pl (MW) 18 36 0 30 5 15 20

8
0

9
16

10
25

11 12
28 35
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Generator a; (8h) b; (S MWh) ¢ ($/MWh) D, (MW/h) Uy MwW/h) P’ (MW) & (5h) £, (rad’MW)
Gy 0.2 0.3 0.01 80 80 250 450 0.041
Gy 0.2 0.3 0.01 80 80 572.9 600 0.036
Gy 0.2 0.3 0.01 80 80 650 320 0.028
Gz 0.2 0.3 0.01 50 50 032 260 0.025
Gay 0.2 0.3 0.01 50 50 508 280 0.063
Gas 0.2 0.3 0.01 50 50 650 310 0.048
Gy 0.2 0.3 0.01 30 30 560 300 0.086
Gy 0.2 0.3 0.01 30 30 540 340 0.082
Gag 0.2 0.3 0.0006 30 30 830 270 0.098
Grg 0.2 0.3 0.006 30 30 1000 380 0.094
Table 4: The parameters and limits of conventional generating units

Qimeas Qi Vi s Vinin Piras Piran
Generator (MVAD (p.u.) (MW
Gy 9999 -9999 1.06 0.94 350 0
Gy 9999 -9999 1.06 0.94 1145.55 0
Gy 9999 -9999 1.06 0.94 750 0
G 9999 -9999 1.06 0.94 732 0
Gy 9999 -9999 1.06 0.94 608 0
Gas 9999 -9999 1.06 0.94 750 0
Gag 9999 -9999 1.06 0.94 660 0
Gy 9999 -9999 1.06 0.94 640 0
Gag 9999 -9999 1.06 0.94 930 0
Gag 9999 -9999 1.06 0.94 1100 0
Table 5: Best solution obtained using TPSO method
Btage 1 2 3 4 5 [ 7 8 e 10 11 12
Py AW 254.6259 261.3006 2711806 2959102 306.0734 3123818 2969151 2859975 309.4885 296.1915 315.6365 291.3349
Py WD) 559.23865 531.3081 5685249 545.1256 5197483 5302933 515.4133 553.5996 524.6091 532.124¢ 525.8483 520.9931
Py WD) 668.2747 60,1902 669.429 666, 1562 683.0371 674.0885 670.8214 669.3482 64,8019 679.2295 652.4174 6509281
Py AW 6247418 6223442 613.1788 6226472 6126111 598.5672 6158161 628.3665 615.8157 598.8962 608.047 615.0311
Py AW 505.9318 510.1707 4945836 476 6036 493.0992 500.6732 5049776 504.4464 499 6127 501.1885 517.2139 5048214
Py WD é44.5102 39,1326 641.2766 642.7508 6459379 637.7323 651,984 6388936 642.3732 €47.3645 6441022 46,5649
P WD) 552.68 548.3306 551.9813 543.145% 545.1848 543.12 544. 8427 539.1924 544.098 552.2539 549.8075 556.0777
Py AW 5394013 550.0231 5497494 541.4442 547 0807 54977038 551.9638 538.6662 5510466 540.1841 536.2784 5374133
P AW 829.0912 8299197 831.1547 835 6637 837.3789 835.9434 8403376 8434381 8303869 82383651 831.6296 837.282
P (WD) 996.2026 1004.104 996.5893 9926754 992807 994.9221 Q80,6059 991.1308 994,358 991.3215 983.5499 997.3393
Q, (Mvar) 26 31 40 37 28 27 18 37 44 27 30 26
Vi (pul 1.015104 1.016188 1.01671 1.016895 1.015368 1.015533 1.014253 1.016396 1.017697 1.015472 1.016132 1.015654
Total production cost : 4570323513 §h
Table 6: Best solution obtained using PSO method
Stage 1 2 3 4 5 [ 7 8 el 10 11 12
Py AW 2687658 2587243 281.3&49 307.231 2807399 307.6458 308809 3277243 3115705 302.3885 298.0621 321.1744
Py WD) 543.5181 520.3182 501.6371 512.0913 526.223 514.3683 4914921 4924213 471.4391 471.5744 446.4973 453.5774
Py AW 6552717 6554833 &676.057 642 5119 6792872 6465458 642 8666 653.0834 662.003 636.4636 660.7034 6563618
P WD) 6285717 31,9018 631.8742 16,6336 608546 611.5581 610.0922 622.3505 621.5318 598481 612.8068 597.3353
Py AW 5125234 517.1026 502.87113 4952671 5117135 504.3758 523 9461 5225639 5394542 516.5016 539.7707 5465191
Py AW 407321 631.1899 644, 0308 643 3097 645 4117 6552188 649 4062 6341671 642.2616 64377982 646.3999 6243714
P WD) 5589129 569.1066 5841066 574.3%04 582.8516 575.9711 589.8552 577.5405 575.269% 585.2815 586.5097 581.1593
Py WD) 541.345¢ 542.7161 545.3616 5389627 536.5182 536.88%4 536.254 5362534 541.7313 541.5959 544 8671 537.4367
P AW 833.1345 8337514 83173 8328218 820.6794 835.6794 8353575 833.5808 8295042 81877918 8337918 8293838
Pegs AW 9924712 9972836 9950622 992 6591 9954322 990.0726 9859602 994.0155 9383.1012 993.1012 997.2805 1010.924
Q. (Mvar) 31 28 24 2% 24 26 25 19 38 24 33 29
Vy; (pud 1.015872 1.015701 1.014582 1.015632 1.014675 1.015392 1.015248 1.014384 1.016675 1.014988 1.016178 1.016173

Total production cost: 458852.7267 &h

For DOPF problem including FSWGs, Table 5 and 6
list the best control variables found by TPSO and PSO
algorithm for TEEE 39-bus system, respectively. Tt is
clearly shown that, by wusing TPSO, the total
production cost savings of 1812.8654%/h is obtained
compared with PSO algorithm. Hence, 1t 1s justified that
TPSO approach gives the exact minimum dispatch
solution. From Table 7, the best, worst and average cost
values are 457039.8613 $/h, 458177.5291 §$/h,
4575185863 $/h and 458852.7267 $/h, 460137.6551 $/h,
4593942806 $/h, respectively with TPSO and PSO after

20 independent trials. From the results, the superiority
of TPSO strategies over PSO can be noticed. The
difference between the best and worst solutions are
1137.6678 $/h with TPSO. At the same time, the difference
between the best and worst solutions is 1284.9284%/h
with PSO. Moreover, the best and worst solutions
obtained by TPSO are very close to the average value,
which proves that TPSO is more robust and consistent.

In conclusion, it is clearly shown that TPSO is the most
accurate and gives the exact mimmum dispatch
solution.
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Table 7: Comparison of best, worst and average cost values in the TEEE

39-bus system
Best Worst Average
Algorithms (3h)
TPSO 457039.8613 458177.5291 457518.5863
PSO 458852.7267 460137.6551 459394.2806

Table 8: Average execution time comparison in the IEEE 39-bus system
Average execution time (sec)

Methods Ts T
TPSO 4235.83
PSSO 4317.79 2140.45

The average execution time taken to complete the
fixed mumber of iterations (T;,) and the average execution
time taken to converge mto the lower solution range
(T for 20 trials are shown in Table & for IEEE 39-bus
systerm.

For TEEE 39-bus system, PSO takes an average
execution time of 4235.83 sec to complete 150 iterations.
PSO converges faster than TPSO by reason of the small
sub-memeplex generation number of TPSO. In comparison
to P3O, TPSO has additional components, ie., the
Taguchi method. This extra burdens increase the
execution time of TPSO. TPSO takes 4317.79 sec more
than PSO to complete 150 iterations. Nevertheless, TPSO
takes only 2140.45 sec to converge into the lower
solution range (457039-457107 $/h), PSO are not able to
converge into the lower solution range.

CONCLUSION

Considering the valve-pomnt effect and ramp rate
limits of conventional generators, as well as the
discreteness of the reactive compensation devices
including FSWGs, DOPF model, which takes the all
conventional units cost mimmum as the objective
function and takes the whole time and the inherent
relations of different stages into account in wind power
mtegrated system, 1s established. The P-bus model of
FSWG@G bus 13 adopted in power flow calculation in this
study. A novel TPSO is proposed for solving the
established DOPF model and the detailed methods of
the algorithm are given. For DOPF problem including
FSWGs, according to the principle of the nearest reactive
power compensation, the required reactive power of wind
farm doesn’t absorb from the system as much as possible,
but mainly from the wind farm reactive compensation
devices. IEEE 39-bus system 1s used to illustrate the
effectiveness of the proposed method compared with
those obtained from PSO algorithm. The test results show
that TPSO gives the exacter minimum dispatch solution

and achieves better economic efficiency compared with
PSO algorithm.
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