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Abstract: In the process of modeling, users often change parameter values using trial-and error method in some
CAD system. This study aims to present a novel appreach that determines automatically suitable parameter
intervals for semantic feature modeling system. A new algorithm of computing parameter range was proposed
after analyzing geometric constraint graphs in this method, critical parameter value was found by decomposition
for variant parameter and each sub-problem instance was solved in each interval. The results reveal that the
proposed method can efficiently process constramt problem.
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INTRODUCTION

Most of cwrent CAD systems are based on
parameters and semantic features (Bronsvoort et al.,
2006), geometric  constraints  and topological
constramts are two important aspects in valid constraints
(Bouma et al., 1995; Fudos and Hoffmann, 1997). Users
can create efficiently kinds of models by modifying
parameters 1n geometric constramts (Hoffmann and
Peters, 1995, Hoffmann and Joan-Arinyo, 1998) and
topology of model is established in this process
(Van der Meiden and Bronsvoort, 2007; Nyirenda et al.,
2006, Bidarra et al., 2004). Sometimes, users can also
create new models using model exchange featiwe-based
(Wei et al., 2008, Tin et al, 2008). However, it is a
repeating activity that users change parameters of models
and maybe it will result in invalid geometric model
because of unsuitable parameters chosen

There are few studies about computing parameter
intervals in geometric models, Hoftman and Kim presented
a kind of approach of computing parameter mtervals
(Hoffimamn and Kim, 2001), but this method 1s limited in
horizontal and vertical line segments and distance
constraints between them in two dimension space. Few of
researchers do this work by combimng topological
constraint and geometric constraint, so it 1s necessary to
try to find a novel way.

A new approach is presented in this study, that
suitable parameter interval 1s determined automatically for
parameter system at the time of changing single
parameter. Firstly, topological constraint graph need to be

analyzed to find distance constraints and angle

constraints, these constraints are added mto
corresponding  geometric  constraints.  Secondly,
construction graph is analyzed to discover one or more
critical parameter values of degeneration sub-problems,
then each specific value 15 tested in every interval, so
precise parameter mterval can be found. After determining
parameter intervals, user can choose parameters in this

interval to avoid producing unexpected situation.
VALIDITY CONSTRAINT IN FEATURE MODELING

Topological constraint system: Topological constraint is
established by attaching feature to feature in the process
of creating models and system keeps a topological
constraint graph which contains all of feature instances
that preserve comresponding shape information,
parameters and  constraint relations and that is
connected by attaching relations between (features
(Meiden and Bronsvoort, 2010). A topological constraint
graph is a directed graph of all of solid relations in models,
each edge represents a kind of attaching relation, features
attached are called host features, on the other hand, the
ones attaching main features are called guest feature and
direction of a directed graph is from main features to guest
features.

Parameters intervals are solved on the precise that
system should not change model’s topology. Therefore,
this must refer to a question of topology degeneration.

Definition 1: Topology degeneration 1s that system
topology changes when parameter value x<X,, or
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Fig. 1: Topology degeneration. (a) Instance model, (b)
d,=dand(c)d, =0
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Fig. 2: Topological constramt graph. (a) Instancel and
(b) mnstance2
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Fig. 3: Topological attaching graph in Fig. 2

Width of block model 1s d, height 15 h, width of slot
attaching block 1s d;, height 1s h, which 15 shown in
Fig. 1a. Figure 1a will be Fig. 1bwhen d, is equal to d and
that will be Fig. 1¢ when d, is equal to zero, so topology
will be changed m these two cases. However, topology
will not be changes when d, is more than zero and at the
same time, less than d, so these two cases are called two
kinds of topelogy degeneration. The other two cases of
topology degeneration are that it will be change at the
case of h, 1s equal to h and h, 1s equal to zero.

Deep first search algorithm is used to search a
topological directed graph (Van der Meiden and
Bronsvoort, 2006),
attaching relations are analyzed. Firstly, all kinds of
degeneration cases of guest features are solved and then

each two features which have

distance constraints and angle constraints which are
found are added mto corresponding geometric
constraints.

Two model instances are shown in Fig. 2 and their
topological attaching graphs are shown in Fig. 3. We can
get that block feature 1s attached by slot feature and slot
feature 18 attached by rib feature mn Fig. 3, so slot feature
is guest feature relative to block feature and rib feature
is guest feature relative to slot feature. By analyzing
these two guest features, we can get that slotl feature in

Fig. 2a has four types of topology degeneration, namely

403

:402-408, 2011

@ 2
pl & p3
| | |
o as YR
p4
® >
pl p3

Fig. 4. FFDPs configuration prototype. (a) configuration
prototype of ribl and (b) configuration prototype
of rib2

hy =h h =0,d =dand d, =0, so its topological
constraints are O<h,<h and 0<d<d, then this constraints
will be applied in corresponding geometric
constramts. Freeform feature rbl in Fig. 2a was
constructed as a configuration prototype shown in
Fig. 4a by uwsing FFDPs algorithm (Nyirenda et al.,
2007). Geometric between d,, and d,,
originally 1s d,, = d,, but after analyzing slotl feature
attached that 1its width 18 d;, we can get two
degenerations, namely d,, =d., =0Oand d,, = d,, = d/2
, 50 1ts topological constraint 1s 0<d,, = d;, < d/2 , at last,
this constraint is added into original geometric constraint
between d,, and d,,.

As shown in Fig. 2b, slot2 feature has four
degeneration situations, they are h, = h,h,=0,d,=d
and d, = 0, angle « has also two degeneration situations,
viz., ¢ = 0 and & = 7, so we can get some topological
constraints from them, viz., O<h,<h, 0<d,<d and O<g<m
the three are  added into
corresponding geometric constramts. Slot2 feature 1s
attached by b2 feature in Fig. 2b, angle of slot2 feature
is ¢ and configuration prototype of rib2 feature is shown
in Fig. 4b, from the two Fig., we can get two topology
degenerations, viz., p = 0 and P = «, so its topological
constraint is O0<P<a and at last this constraint 1s added
into original geometric constraint of angle PB. After
analyzing these topological constraint graphs, it will
reduce lots of unnecessary compute in the process of

constraint

and constraints

geometric constraint solving and will avoid generating
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invalid constraint graph and more importantly, it will help
users maintain topological constraint relations of system.
Geometric constramt system: some special geometric
constramt solving algorithms are used in a geometric
constraint system (Hoffmann et al., 2001), these algorithm
can find effective solutions by using knowledge in a
specific area. Most of geometric constraint solving
system work by constructing constramt solving which
creates a DR-plan graph that recognizes some sub-
problems independently or combines
problems’ solutions into some solution of whole system
for system.

The algorithm built in our system has three steps,
firstly, a problem is decomposed into some sub-problems
which are also called cluster by a DR-plan graph,
secondly, solving some sub-problems by determimate
schemes and lastly, determining one or more whole
solutions by combining sub-problems” solutions.

The core content of this paper and the mechamsm of
selecting sub-problems are not relevant, but it 1s
supposed that a individual solution can be selected from
each sub-problem in the DR-plan graph and the solution
selected can be used in the process of computing
parameter ranges.

solved sub-

PARAMETER RANGE COMPUTATION

Purpose of computing parameter range is to find
parameter value ranges for geometric constraint system
and one or more solutions exist in this range, but the other
parameters should be constant when the parameter 1s
being computed.

Principle of parameter range computation: the basic
approach 1s as follows: first find the critical values for the
variant parameter, i.e., the parameter values for which the
solvability of the system might change. Next, m each
interval between two subsequent critical values, pick a
value for the parameter and determine whether the system
can be solved for this value. The parameter’s range 1s the
union of the intervals for which this 1s the case.

Because there is only one variant parameter, the
system has degrees of freedom only in the sub-problems
that depend on this parameter. These sub-problems are
effectively under-constrained, because the parameter can
vary, i.e., they have infinitely many solutions. Some of
these are degenerate solutions, i.e., solutions that are on
the boundary of the seolution space. These degenerate
solutions correspond to the critical values of the
parameter. To determine all critical values, we must
determine all parameter values corresponding to a
degenerate solution of a sub-problem that depends on the
variant parameter, either directly or indirectly.
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Fig. 6: Degenerate cases for a triangular sub-problem with
a single variant parameter. (a) A triangular problem,
(b) the first degeneration and (c) the second
degeneration
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A sub-problem depends directly on the vamant
parameter if it can be solved without using the solutions
of other sub-problems. If other sub-problems must be
solved first, then it depends indirectly on the parameter.
Consider, for example, the constraint system in Fig. 5a and
the DR-plan for this system in Fig. 5b. From the DR-plan,
we can infer that to solve this system, first the sub-
problem ABC i1s solved, then sub-problem ACD. The
results are then merged into cluster ABCD, from which
3(B,D) can be determined and subsequently sub-problem
BDE can be solved. Thus only after solving the first two
sub-problems, can BDE be solved and merged with
ABCD. If we consider the distance to be the variant
parameter, then sub-problem ABC depends directly on
this parameter and sub-problem BDE mdirectly. For these
two sub-problems, we must determine the degenerate
cases and the corresponding critical values of the
parameter.

For a sub-problem that depends directly on the
variant parameter, it 1s relatively straightforward to
determine the critical parameter values. Consider sub-
problem ABC, as shown in Fig. 6a. Such a triangle exists
only if: 3(A,C) +38(B,C)z 8(A,B)z ABS(HA.C)-8B.CY . The
mimmum and maximmum value of 8(A B) are its critical
values. For these values, the triangle degenerates to a line
segment (Fig. 6b, c).

For a sub-problem that depends indirectly on the
parameter, as 1s the case for sub-problem BDE m the
example m Fig. 1, the relation between the critical
parameter values and the degenerate solutions of the
sub-problem is more complex. To find these critical
values, we first determine all degenerate solutions of the
sub-problem. Sub-problem BDE is similar to the case of
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Fig. 7: The problem of Fig. 5 after adding a constraint on
3(b,D). (a) Modified constraint graph and (b) new
DR-plan

Fig. 6, 1.e., 1t has two degenerate solutions. Next, we
modify the system of constraints by removing the
constraint corresponding to the variant parameter and
adding one or more constraints that correspond to the
first degenerate solution. For sub-problem BDE, we add a
distance constraint between points B and D that
corresponds to the distance between those points in the
first degenerate solution of the sub-problem. We then use
the constraint solver to solve the modified system. From
the result of this backwards solving step, we determine
the first critical value of the variant parameter, simply by
calculating the corresponding distance 8(A B) from the
solution.

Consider again the constraint system in Fig. 5a. By
removing the constraint on 8(AB), the variant parameter
and adding a constraint on 8(B,D) that corresponds to the
distance m one of the degenerate solutions of BDE, we
obtain the constraint system in Fig. 7a. The DR-plan for
this system is shown in Fig. 7b. As can be seen, sub-
problem ABC has disappeared, sub-problems

ACD and BDE remain and a new sub-problem
BCD has appeared. To solve this system, all three
sub-problems are solved mdependently and then merged.
However, sub-problem BCD is new and no intended
solution has been defined for it. This sub-problem has
two solutions: one where the relative orientation of the
points is clockwise and one where it is counter-clockwise.

Allin all, we search for six critical values for 8(A,B):
two for the degenerate cases of sub-problem ABC, two for
the first degenerate case of BDE and two for the second
degenerate case of BDE. There is no value for the variant
parameter corresponding to the particular degenerate case
of the particular sub-problem of this step. So, there 13 no
corresponding critical value for this step either.

Sub-problem degeneration solutions: Sub-problems nthe
DR-plan that depend on the variant parameter have one or
more degrees of freedom when the constraint
corresponding to the parameter removed. For
these sub-problems, the degenerate cases must be
determined.

i
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Fig. 9: Four cases of triangle sub-problem

The basic 3D sub-problem is the tetrahedral problem
wmvolving  only distance constraints, an example
tetrahedral problem is shown in Fig. 8 Suppose that the
distance d(A,B) is the variant parameter. With five known
distances, the problem is under-constrained in 3D.
However, in 2D the problem 1s well-constrained and has
two solutions, corresponding to 8(A,B) and 8(AB)= 243,
shown in Fig. 8a and b, respectively. These solutions
correspond to the co-planar degenerate case of the
tetrahedral problem.

Angle constraints need to be considered only in
2D sub-problems. There are four cases of triangular
sub-problems with angle constraints. These are labeled
aad, ada, add and dad, where a’s and d’s represent angles
and distances, respectively and the order indicates the
configuration of these angles and distances, as shown in
Fig. 9. If an angle 1s the variant parameter, the triangular
problems in which the parameter is directly involved may
again degenerate. all angle parameters are in the range
[0,]]]. When solving degenerate cases of tetrahedral
sub-problems with angle constraints, the above triangular
sub-problems also occur. Consider the problem in
Fig. 10a. Two degenerate solutions are found, again by
solving the system in 2D.

A pseudo-code algorithm for parameter range
computation 18 presented in Algorithm 1. The algorithm
takes two input arguments, a geometric constraimt
problem (argument GCP) and a variant parameter
(argument VP). The variant parameter is mapped to a
geometric constramnt when a value 18 set for it (method
SetParameter). If the wvalue 1is cleared (method
FreeParameter), then the geometric constraint is removed.
Geometric constraints can be added to (method
AddCoenstramnt) and removed from the GCP (method
RemoveConstraint). We assume that the generic solution
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D

Fig. 10: A tetrahedral sub-problem with an angle constraint. (a) Tetrahedral constraint graph, (b) the first degeneration

and (c) the second degeneration

(function GenericSolution) 13 automatically updated by
the GCP, resulting in an efficient algorithm, but this is not
strictly required.

Algorithm 1: Geomelric parameter range computation
finction GeometricParameterRange (GCP,VP)
GCP: geometric constraint problem
VP: variant parameter
begin
assert WellConstrained(GCT)
generic = GenericSolution(GCP)
dependent = DependentSubproblems{generic, VP)
FreeParameter (VP, GCP)
Y = empty set of critical values
R := emply set of intervals
for each subproblem in dependent
cases .= DegenerateCases(subproblem)
for each case in cases
AddConstraints(case, GCP)
newgeneric = GenericSolution(GCP)
cluster := find Rigid in
newgeneric containing VP and case
for each configuration in cluster
¥ = calculate VP from configuration
addyto Y
add [y¥] toR
RemoveConstraints(case, GCP)
for each subsequent interval ¥1,y2)in Y
X =(yl+y2)2
SetPar ameter(VP=x,GCP)
if WellConstrained(GCP) then add (¥1,y2) toR
return R
end

The algorithm retuns a set of intervals (R) that
represents the parameter range. The set may contain open
mtervals (e.g., (v1, y2)), half-open intervals (e.g., [y1l, y2))
and closed mtervals (e.g., [yl, y2]). When mtervals are
added to the set, overlapping intervals are automatically
combined, e.g., (0, 1) +[1, 2] — (0, 2].

To start, the algorithmm asserts that the GCPis
well-constrammed, otherwise the result found by the
algorithm is not a correct parameter range. Tt then
determines the generic solution of the problem and from
the generic solution 1t determines which sub-problems are
dependent on the variant parameter.

The algorithm then modifies the system of
constraints by removing the constraint corresponding to
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the variant parameter. Now the GCP 1s under-constrained.
For each degenerate case of each sub-problem that is
dependent on the variant parameter, we add constraints
to the GCP that correspond to the degenerate case and
we determine the generic solution of the modified
system (preferably by an incremental solving method).
The sub-problems that depend on the variant parameter
will have disappeared m the new generic solution and new
sub-problems that depend on the newly added
constraints will have appeared.

EXAMPLE CONSTRAINT PROBLEM

The example 3D constraint problem considered in this
section 1s shown n Fig. 11a and its generic solution 1s
shown m Fig. 11b. The distance between pomt B and
point C is chosen to be the variant parameter, i.e. the
parameter for which the range is to be computed. From the
generic solution, we infer that the following sub-problems
are dependent on 8(B,C): ABC, BCD, BCF, ABCD,
BCDF and ABCDF, ACEF and ABCDEF. For these
sub-problems, we must find the degenerate solutions and
the corresponding critical values of the variant parameter.

Sub-problem ABC i1s the sinplest type of triangular
sub-problem and degenerates for 8(B,C) = 1 and
3(B,C) = 7. Sub-problem BCF is similar and degenerates
for 8(B,C) = 1 and &(B,C) = 9. However, for these values,
the complete system 1s over-constrained, thus no critical
values are recorded.

Sub-problem BCD degenerates for 8(B,C) = 0. Again,
for this value, the complete system 1s over-constramed,
thus no critical values are recorded. Sub-problem ABCD
is shown in Fig. 12. This sub-problem degenerates for
3(B,C) = 1.01 and &(B,C) = 6.97. Once again, for these
values, the complete system 18 over-constrained and
no critical values are recorded. Sub-problem BCDF 1s
similar to ABCD and no critical values are found for
this sub-problem either. These clusters are merged into
sub-problem ABCDF, for which also no critical values are
found.



Inform. Technol. J., 10 (2):402-408, 2011

Fig. 11: 3D example problem. (a) constraint problem with variant parameter & (B,C) and (b) part of generic solution

dependant on & (B,C)

Fig. 12: Sub-problem ABCD

For sub-problem ABCDEF, again no critical values
are found. No other sub-problems need to be tested for
degenerate cases. Now that we have determined all critical
values for §(B,C), we test the solvability of the system by
picking a parameter value in each mnterval between two
subsequent critical values and solving the system. We
find that the intended solution for this problem exists for
O(B.,C) € [cl, c2] € [c3, c4].

To determine this parameter range, the problem was
solved for a relatively small number of degenerate cases
and intervals. In comparison, a naive sampling approach,
i.e., an algorithm that simply tries to solve the system for
different values, would need to solve the problem a very
large number of times to achieve any reasonable accuracy.
Also, a sampling approach may not find all intervals in the
parameter range, since the minimum and maximum
parameter values and the minimum sampling resolution are
not knowr,

CONCLUSIONS

A method of computing parameter range in
topological and geometric constraint system was
proposed in this paper, constraint system could find one
or more solutions in this mnterval. Topological constraint
and geometric constraint were combined 1n this approach,
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critical values of generation sub-problems were found by
decomposing a whole problem and computing these
critical values m polynomial time. It was available to
compute parameter range in some CAD system based on
parameter and semantic feature and it had the same effect
in some other areas about topological and geometric
constraint.

ACKNOWLEDGMENTS
The authors are very grateful to Editor and
Reviewers for ther comments and constructive

suggestions which help to enrich the content and improve
the presentation of this study. The study was supported
by the National Natural Science Foundation of China
under Grant No. 60173055,

REFERENCES

Bidarra, R., A. van Bunnik and W.F. Bronsvoort, 2004.
Direct mampulation of feature models in web-based
collaborative design. Proceedings of the ASME
Design  Engineering  Techmical Conferences,
September 2004, The Netherlands, pp: 27-33.

Bouma, W., 1. Fudos, C. Hoffmann and I. Cai and R. Paige,
1995. A geometric constraint solver. Comput. Aided
Design, 27: 487-501.

Bronsvoort, W.F., R. Bidarra and P.J. Nyirenda, 2006.
Developments in featre modeling. Comput. Aided
Design Appl., 3: 655-664.

Fudos, I. and C.M. Hoffmann, 1997. A graph-constructive
approach to solving systems of geometric
constraints. ACMT Graphic, 6: 179-216.

Hoffmann, CM. and J. Peters, 1995. Geometric Constraints
for CAGD. In: Mathematical Methods for Curves and
Surfaces, Daehlen, M., T. Lyche and L. Schumaker
(Eds.). Vanderbilt University Press, United States,
pp: 237-254.



Inform. Technol. J., 10 (2):402-408, 2011

Hoftman, CM. and R. Joan-Arinyo, 1998. CAD and
the product master model. Comput. Aided Design,
30: 905-918.

Hoffmmam, C.M. and K.J. Kim, 2001. Towards valid
parametric CAD models. Comput. Aided Design,
33: 81-90.

Hoffmann, C.M., A. Lomoenosov and M. Sitharam, 2001.
Decomposition plans for geometric constraint
systems, Part I. Performance measures for CAD.
I. Symbolic Comput., 31: 376-408.

Jin, P., X. Zhang, S. Wan and L. Yue, 2008. Constraint
rectangle: A novel approach to modeling
continuously moving objects. Inform. Technol.
I.,7:607-614.

Meiden, H. A V.D. and W.F. Bronsvoort, 2010. Tracking
topological changes m feature models. Comput.
Aided Geometric Des., 27: 281-293.

Nyirenda, P.J., M. Mulbagal and W.F. Bronsvoort, 2006.
Definition of freeform swface feature classes.
Comput. Aided Design Appl., 3: 665-674.

Nyirenda, P.J., R. Bidarra and W.F. Bronsvoort, 2007. A
semantic blend featwre definition. Comput. Aided
Design Appl., 4: 795-806.

Van der Meiden, H A. and W.F. Bronsvoort, 2006. Solving
topological constraints for declarative families of
objects. Proceedings of the ACM Symposium on
Solid and Physical Modeling, June 6-8, Cardiff,
Wales, United Kingdom, pp: 63-71.

Van der Meiden, H A. and W.F. Bronsvoort, 2007. Solving
topological constraints for declarative families of
objects. Comput. Aided Design, 39: 652-662.

Wet, S, M. Tieqiang and L. Tao, 2008. Constraint
conversion method in feature-based heterogeneous
CAD model exchange. Inform. Technol. ., 7: 783-789.

408



	ITJ.pdf
	Page 1


