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Abstract: Through the analysis of binomial cascade process, a Cauchy distribution multiplier with variable scale
parameter was set up to establish a multifractal cascade model for network traffic. Compared with the moments,
partition function and multifractal spectrum of the original data, it was proved that not only the statistical
properties of the model can well fit the original data, but also the multifractal characteristic was similar to the

actual network data.
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INTRODUCTION

The complexity of modern commumnication network
leads to a total change in modeling of teletraffic data, so
that we should analyze and design a new generation of
network protocols and network management to improve
the network Quality of Service (QoS). Various models
based on self-similarity theory and monofractal processes
have been adequately studied, eg., TARIMA model
proposed for video traftic (Garret and Willinger, 1994),
the forecasting method using fractals proposed for
software system (Cao and Zhu, 2010). However, the
study of Feldmann ez al. (1998, 1999) has showed that
Wide Area Network (WAN) traffic data possesses
more complex behavior of multi-scaling, making the
monofractal models inadequate in describing the WAN
traffic.

Multifractal cascades (Krishna et «l., 2003) were
proposed as a possible model for broadband traffic data.
This is a relatively new territory for multiplier cascade
process to establish a network traffic model. Multifractal
Wavelet Model (MWM) proposed by Riedi et al. (1999)
and Variable Variance Gaussian Multiplier (V.V.G.M)
model proposed by Krishna et al. (2003) are both based
on the multifractal cascade. The V.V.G.M model is simpler
than the MWM and computationally less complex.
Moreover, V.V.G.M 1s also superior to MWM m the
statistical properties. Although, Gaussian distribution
could well model a lot of optimal system about the
signal and noise, it 1s not suitable for describing the
non-Gaussian (especially the heavy-tailed) signals.

In this study, a new network traffic model named
Variable Scale parameter Cauchy Multiplier (V.5.CM)
model 18 proposed, which is based on the binomial

multiplicative  multifractal cascade processes. On
comparison of the multfractal performance between the
original data and the V.3.C.M process, the Cauchy model
with variable scale parameter can fit binomial random

multiplier very well.
MULTIFRACTAL OF THE NETWORK TRAFFIC

For detecting the multifractal nature of the traffic
data, a key parameter is the multifractal spectrum f(ct).
Moment method for estimating the spectrum (Wang ef af .,
2009) 1s adopted. Suppose random data set (X}7 is
considered as a sampling of the multiplier estimators on
the interval [0,1] at a scale of 1/2.

Partition function: We use an intermediate parameter
partition function (Krishna et af., 2003) and it 1s defined
as:

Nim, .41
K@= (X7 ()
k=1
where,
chm) = EXE;‘(—DH\-H
i=1

with a fixed value m. The partition function depends on
the scaling nature exhibited by the value m, it 15 as follow:

A (@) ~m™*? (2)

taking logarithms, we can get:
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Fig. 1: Partition function of Aug&9 traffic
logy}, (@) =@ logm+C (3)

where, C is a constant. If log ¥*.(q) exhibits linearity with
log m, it indicates that the data is multifractal in nature.

Moultifractal spectrum: t(q) is the slope of log-log
regression curve. With the discussion of literature
(Okoroafor, 2008; Wang et al, 2009), the multifractal
spectrumn can be obtained by Legendre Transform
(Krishna et al., 2003) of 1(q). The relation 1s as follows:

4

f(a) =min{qo — ()}

where, o 18 the local Hélder exponent. The local Holder
exponent of monofractal 1s a constant, so if ¢ changes
largely in the multifractal spectrum, the traffic data is
considered as multifractal. Owr original traffic data (file
BC-pAug89.tl) contains 2'° byte-level traffic at the scale of
0.01s, which was collected by Bellcore researchers in
August 1989 named Aug®9). The data can be considered
as the multiplicative cascade data at stage 16. Figure 1 1s
the partition function and Fig. 2 is the multifractal
spectrum. It indicates that the data 1s multifractal in
nature.

BINOMIAL MULTIPLICATIVE CASCADE

For modeling binomial multiplicative cascade
(Viewra and Ling 2006), we expect that the multipliers of
every stage are different and we can obtain the multiplier
from a certain distribution.

There 13 a umt mnterval [0, 1]. At each stage, this
measure 18 divided by multiplying with ratios r and 1-1.
Suppose the initial measure is preserved, random
multiplier r, is chosen from a probability distribution fx, (1,)
at stage j (O<r,<1). If fy, (1)) is symmetric about:
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so that both r; and 1-r; have the same probability
distribution.

And here, X"(i 1,..,.2" denotes the cascade
construction at stage N. Every point in X% can be
expressed as the product of several random variable
W = mym,..my, where, m;, (j = 1,....N) indicates random
variable r; or 1-r. Figure 3 illustrates the above concept
{r; is the specific values of the random number r,).

ESTIMATION OF MULTIPLIER DISTRIBUTIONS
XG4 = 1,..,2" is the data at stage N (with the
resolution 27™), so the data at stage (N-1) is obtained
by aggregating the consecutive values at stage N
over non overlapping blocks of size two. As the same,
if we have the data at stage (N-j), X™(i=1,...2""), then
the data at stage (N-j-1) (lesser resolution 27"} can
be obtained by using the same method as above:
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Fig. 4: Stage 5 histogram and stage 6 histogram of multipliers. (&) Multiplier distribution between stage 5 and 6 and (b)

multiplier distribution between stage 6 and 7
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Fig. 5: Estimation of Cauchy distribution. (a) Measured position parameter ¢« and (b) Measure scale parameter b

When the aggregates form one point at the coarsest
scale, stop the procedure. The multipliers from stage j to
j+1 can be written as (Vieira and Ling, 2006).

AD

2i-1

r =
i N=j-1
Xl

(6)

where,

A0 .
ro,i=1..,2"
1

are the samples of the multiplier distribution fx(r) at
stage j. We can obtain the multiplier distribution at stage
j from the histogram.

We aggregate the original data (Aug®9) according to
the algorithm mentioned earlier. Figure 4a and b shows
the probability density function for the multipliers
between stage 5 and 6 and stage 6 and 7, respectively.

The variable scale parameter Cauchy multiplier: It can
be seen from the Fig. 4 that taking a Cauchy distribution

of the appropriate  parameter as the multipliers
distribution 15 more than the
distribution. The Cauchy distributions are centered at
¢ = 0.5 (Fig. 5a), but scale parameter b of the Cauchy
distributions is varied with the stage (Fig. 5b). Using the
curve fitting techniques, the equation for the scale

suitable Gaussian

parameter b can be written as:

b(j) = 0.1760-0.0107; (7)
where, 1 (j = 1,....,16) 1s the stage.

In summary, we start from the coarsest value of
aggregate and multiply 1t with multiplier values chosen
from the aforementioned distribution. Finally, we obtain
the synthesized data at stage N. The model is named as
V.5.C. M model.

SIMULATION RESULTS

In this study, we aggregate the initial traffic data
(Aug89) to obtain the coarsest value. Begin with this
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Fig. 7: Partition function: V.5.C.M

value, generate random numbers obeying C(0.5b(7))
distribution at stage j, multiply the starting aggregate
value by multipliers generated at each stage.

The comparison of the moments of aggregated data
and original data 1s shown in Fig. 6a-d. It can be seen that
V.5.C. M model best fits the statistical nature of data for all
moments up to 4.

Same as Fig. 1 and 7 show log-log partition function
of V.8.CM aggregated data. Visually, the logy™.(q) of

log,”(q)

log,™(q)
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original data extubits linearity with logm, so 1s the
aggregated data. Moreover, the slops of the two are
basically the same. Tt is illustrated that the aggregated
data 15 multifractal in nature.

Figure 8 compares the t(q) of original data and
aggregated data and Fig. 9 compares the f(a) curve. This
shows that ¢ changes in a large range, which is also
clearly illustrated that the aggregated data 1s multifractal
1n nature.
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CONCLUSIONS

We aggregated the actual network data and obtained
the parametric equation for the multiplier factor of the
multifractal cascade process. Thus, we established the
multifractal model, which 1s well fit the actual network data
and its multifractal nature. Also, the V.S.CM model 1s
analytically simple, computationally easy. According to
different network properties, different parameters or
models can be adopted to estimate the multipliers and
thus establish various kinds of multifractal models.
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