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Abstract: The transmission and storage of large amounts of vertex geometry data are required for rendering
geometrically detailed 3D graphic models. To mitigate bandwidth requirements, Vector Quantization (VQ) is an
effective lossy compression technique for vertex data in triangular meshes. In this study, we present a new
vertex encoding scheme based on VQ. Particularly, we propose a novel prediction method that generalizes the
conventional parallelogram prediction methed and further reduces the prediction error. During the encoding
process, the vertex to be encoded is predicted by all the encoded vertices neighboring to it within a large edge-
distance, instead of the encoded vertices directly connecting to it with 1-edge-distance as in the conventional
parallelogram prediction. Experimental results show that, compared with the vertex encoding scheme based on
the conventional parallelogram prediction, the proposed algorithm consistently achieves a higher encoding
quality at the same bit rate.
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INTRODUCTION

Interactive computer graphics plays an important role
i various fields such as entertainment, manufacturing
and virtual reality When combining the graphics
technology with the Internet, the transmission delay for
3D graphics data is becoming a major performance
bottleneck, especially for meshes consisting of millions of
triangles (Chou and Meng, 2002). As regard to the limited
network bandwidth, as well as the storage problem within
host systems, reducing the amount of data is, go without
saying, an effective solution. Consequently, the interests
in compression techniques for the 3D geometry data have
swrged in recent years.

At present, conmectivity compression has reached its
limit of less than two bits per triangle for the connectivity
portion of a mesh; On the other hand, relatively more
works need to be done i the geometry portion of a
triangle mesh. Therefore, it is necessary to develop
effective compression techrmiques for the vertex data in
order to further reduce overall mesh representation and to
meet geometry bandwidth requirements.

In this study, we are engaged n the application of
Vector Quantization (VQ) (Gray, 1984) as an effective
compression techmque for vertex geometry data. So far,
VQ is a popular technique for data compression and has
already been extensively applied in audio, still image and

video coding (llyas et al, 2010, Al-Husamy, 2007
Naushahi et @l., 2006). Tt has many advantages over
entropy coding, for example, high rate-distortion
performance, real-time decompression for its simple
decoding and hardware tractability. Furthermore, we
assume that the new triangle can be reconstructed by the
neighboring previously reconstructed triangles, so the
compatibility 1s maintained for most existing connectivity

compression schemes.

Prior work: The early works usually quantize, umformly
and separately, the vertex positions for each coordinate in
the Cartesian space. Deering (1995) first proposed a vertex
data compression scheme where positions are first
normalized within an axis-aligned bounding box. Since
then, many variations of Deering’s scheme were proposed
(Deering, 1995; Touma and Gotsman, 1998; Taubin ef af.,
1998) and more sophuisticated vector quantization schemes
been proposed by Chou and Meng (2002)
and Ko (2000) as
Gotsman (2000) demonstrated the relevance of applying
quantization in the space denoted by spectral
Sorkine et al. (2003) addressed the issue
on how to reduce the visual effect due to quantization

have

and Lee well Karm  and

coefficients.

ITOrS.
As for the prediction scheme, the early work (Deering,
1995) employed simple delta coding or linear prediction
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along the vertex order dictated by the coding of the
connectivity data (Touma and Gotsman, 1998;
Taubin et al., 1998). The approach proposed by Lee et al.
(2002) achieves better visual appearance by applymg
quantization in the angle space after prediction. Inspired
by the TG parallelogram prediction scheme (Touma and
Gotsman, 1998). Isenburg and Alliez (2002) complete the
techniques described by Khodakovsky et @l. (2002) by
generalizing it to polygon mesh geometry compression.
Kronrod and Gotsman (2002), prediction trees are
employed to improve the prediction where the geometry
drives the traversal order instead of the commectivity.
Sorkine et al. (2003) suggest a multi-way prediction
technique, where each vertex position is predicted from all
its neighboring vertices, as opposed to the one-way
parallelogram prediction. In the approach proposed by
Shikhare et al. (2001), the redundancy is removed by
detecting similar geometric patterns.

Proposed method: The basic idea for vertex encoding in
the existing 3D mesh geometry compression schemes is
the parallelogram prediction, which predicts the vertex
based on the assumption of planer mesh surface. In this
work, we propose a VQ scheme which optimally employs
the correlation between the vertex to be encoded and its
adjacent encoded vertices in a larger edge-distance.
The proposed prediction method 15 a generalized
parallelogram prediction algorithm, which achieves better
quality at the same bit rate as verified in the experiment
section.

Conceptually, VQ 1s a generalization of non-umform
scalar quantization to operate on vectors rather than
scalars and offers superior performance over scalar
quantization in terms of rate-distortion (Gray and NeuhofT,
1998). VQ can be defined as a mapping procedure from a
g-dimension Euclidian space to a finite subset, 1.e., Q: R*
C, where the subset C = {¢; |1 = 1, 2,.. N} is called
codebook, in which ¢; is a codevector and N is the
codebook size. The mapping procedure 1s as follows:
Select an appropriate codevector ¢, = (g, Gy, ©, .1y} 85 the
decoded vector for the training vector x = (%, X,,....X 1), to
guarantee that the codevector ---- is the closest vector to
x amongst all the codevectors in C. The distance metric 1s
usually the square Euclidian measure as follows:

(1)

d(x,e;)=[x-c;

2 2
‘ 721(){1"0“)
i

Vector quantizer design: The first 1ssue in designing a
VQ scheme for compressing any kind of sowrce 1s how to
map the source data into a vector sequence as the input
of the vector quantizer.
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Fig. 1: Predictive vector quantizer (a) encoder and (b)
decoder (a) Encoder (b) Decoder

We exploit Predictive Vector Quantization (PVQ)
{Cuperman and Gersho, 1985) that 1s proper for 3D mesh
compression (Chou and Meng, 2002). A block diagram of
the PVQ encoder and decoder is shown in Fig. 1. In order
to exploit the correlation between vertices, it is necessary
to use a vector quantizer with memory. Let {v;}"_
represent the sequence of vertices encountered as a mesh
is being traversed dictated by its topology information
and let v, be the vertex to be encoded. The encoder forms
a prediction v, of v, based on observations of previously
encoded vertices. The residual vector e, 1.e. the error
vector, is then computed as e, = v, - v,. This residual
vector 18 then quantized by the vector quantizer, which
generates a codevector e”, that approximates e,. The index
identifying this codevector is then stored or transmitted
to the decoder. Each vertex is thus encoded with log , N
bits in ordinary VQ, where N is the codebook size.

To permit reconstruction of the vertices by the
decoder, the prediction must only be based on previous
reconstructed vertices. Therefore, the encoder also needs
to reconstruct the vertex to be encoded for computing the
prediction vectors for subsequent vertices. The decoder
receives the sequence of indices. Given an index, the
decoder first performs a table lookup operation to obtain
the residual vector ¢’,. The decoder then adds e, and v, as
shown in Eq. 2 to reconstruct the quantized vertex v,. As
in the case of the encoder, v, is fed back to the predictor
for computing subsequent vertex predictions. The
residual vectors are then used as training vectors to
generate the codebook based on the minimax partial
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distortion competitive learning technique (Zhu and Po,
1998). Compared with some well-known codebook design
algorithms, the MMPDCIL algorithm consistently
produces the best codebooks with the smallest average
distortions.

Prediction design: The proposed prediction scheme is
mspired by the famous parallelogram prediction rule
(Tsenburg and Alliez, 2002), which is intuitively illustrated
inFig. 2. In parallelogram prediction, a vertex is predicted
by its neighboring triangle, exploiting the tendency for
neighboring triangles to be roughly coplanar and similar
in size. This is particularly true for high-resolution,
scanned meshes, which have little variation in the triangle
size. Suppose that " ¢“? and ¢ inFig. 2 are the
three vertices of a neighboring triangle buffered by the
encoder. Then, an effective and computationally
inexpensive way to compute the prediction v,of the next
vertex v, is:

¥, =V e @

However, in case of more cwving 3D meshes, Eq. 2
1s not proper any more. To tackle this problem, we
propose a generalized prediction scheme here, in which e,
is minimized by observing the encoded vertices within k-
ring edge-distance to achieve a better prediction.

If we consider v, M, a vertex whose 3D coordinates
are given by the vector v, from the 3D mesh M, we define
its r-ring neighborhood as the vertices comected to it
with a r-edge distance:

N,(v,)={ij,j=l,---,Lijvi|=r,r=0,L---} 3)

Predicted veator
Index i

Residual vector

Actual veator \__/V“

where, |v; v;| denotes set cardinality and counts the set of
points on the line segment joining the two vertices, but
excluding the end-points and L denotes the total number
of vertices of the neighborhoods N, (v,). The point v, 1s
considered as being its own O-ring neighborhood.

Then we can represent quantized v, and its
neighborhood 1n the 1-th ring as follows:

gl =g o =01,k (4)
where v, , is a i-ring neighborhood tov,, m =0, 1,...,.1, and
L, is the cardinality of vertices in v,’s 1-ring neighborhood,
while v™_; and ¢ -i are v,’s m-th prediction vector from
Eq. 2 and error vector, respectively.

We assume that all the triangles in the mesh are
equilateral, which 1s an ordinary assumption in 3D mesh
analyses. We define ¢™__ as the average error vector &™),
from the i-th ring of v,. Tt is certainly that when v is the
vertex to be encoded, en=e, (0) =e,.

If the mesh surface 1s rather planar, we can estimate
that ¥e,, = 0, T = 0,...k;, when the shape of the swface
gradually becomes more curving, it can be approximated
that €, is a non-zeros constant, i.e., d° €,/dn’* = 0 and then

Sn = Sn—l (5)
When the shape of the mesh surface becomes even

more curving, namely, g ; varies more dramatically,
d’e,/dn’k = O may occur and then de, = de, ,, i.e.

&= 2811-1 - €. (6)

Fig. 2: Prediction ¥, of v, to be encoded using previcusly reconstructed vertices -0 -2 -5
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When the shape of the mesh satisfy the following
condition:

dfe/dnF=0 (7)
Then we can generalize €, using induction theory:
3
¢, = X, - ®

=1

where ', is the combination of 1 out of k. Tt is obvious
that Eq. 5 and 6 are specific instances of Eq. 8.

Then when the swface satisfies the following
condition:

dedn=0and &' e /dn™ =0 (9
it can be iteratively deduced as follows:
de =d"e_,
d*'e =2d"'e_,-d"e_,
d*%e_=3d"%e_,-3d"%e_,+d""e_,
k
e~ $ e, 1 10
=1
according to the assumption in Eq. 8.
From Eq. 10, we can easily deduce that:
en:enﬁ[): Cie. (-1 X Cle, < - 1)™ J an
P T
=(k+1Je,, '(C11<+Ci Je, +(C12< +C?< Jenytlte,,  x(- !
Combined with the basic theorem as follows:
cper=cy, (12)
we can deduce that:
k+l X
en:ECLﬂemx(_l)‘*‘ (13)
=1

Tt can be safely concluded now that assuniption () is
true according to the induction theory based on Eq. 3, 6,
8 and 13.

Now we can represent v, as follows when Eq. 7 is
satisfied:
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(14)

where v, 15 the newly predicted vector of v, while £, 1s
the average of the error vector e ™, for each predicted
vertex.

Now Eg. 4 1s updated to the following equation:

vV, =V, t+M, (15)
where, 1, 1s the error vector between v and v and 1s
expected to be of less magnitude than e, that is generated
by the conventional parallelogram  prediction.
Parallelogram prediction 1s obviously equivalent to the
situation of k = 0 in the proposed algorithm. m, is then
quantized as Tj, and represented by its corresponding
codevector index. The smaller error vectors are, the hugher
quantization quality is expected to be achieved.

Vertex encoding: At first, the 3 vertices of the mitial
triangle of the region growing process are uniformly scalar
quantized at 8 bit in each coordinate and then Huffman
encoded. Then we set the error vectors of these 3 vertices
to be 0, 1.e. if we encode the first vertex v, that is adjacent
to the mitial triangle, €, =g, = 0. V,, , a subsequent vertex
in the traversal order, 15 at first predicted by Eq. 2,
obtaining 1its mitial predicted vector v, and each €, 1s
computed by averaging all the error vectors m the i-ring
of v,. Then the new predicted vector v 15 computed
according to Eq. 14. When we have encoded v,, the
prediction error 1), 18 quantized by the codebook and
identified by its corresponding codevector index. The
encoded vector v’ 18 computed by adding v, to 1j,. vis
replaced with 1), in order not to accumulate errors for the
encoding of subsequent vertices. The error vector v, is
calculated by Eq. 4 and then buffered for computing the
subsequent average error vectors.

Vertex decoding: At first, the 3 vertices of the mitial
triangle are Huffman decoded. When we encode a
subsequent vertex v,, we get its imitial predicted vertex v°,
from Eq. 2 and compute each g, of the i-th ring of v,.
Then v’ 18 computed according to Eq. 14. Now v, 1s easily
acquired by adding v, to fj, that 15 identified by its
corresponding codevector index. The error vector e, of v,
1s calculated by Eq. 4 and buffered. Note that when we
encode the first vertex v; that is adjacent to the initial
triangle, €, = g, = 0. Thus according to Eq. 14, it is
apparent that v, = v*, and then 1} = & = ¢, namely, the first
VQ encoded vertex 1s actually predicted by the traditional
parallelogram prediction rule.

Residual vector quantization: In owr scheme, 42507
residual vectors were randomly selected from a famous 3D
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mesh library (Princeton University 2001) for training the
approximate umiversal codebook off-line, and the size of
it ranges from 64 to 8192. In this way, we expect the
codebook to be suitable for nearly all triangle meshes for
VQ compression and can be pre-stored in each terminal in
the network. Thus the compressed bit stream can be
transmitted alone without any codebook in convenience.

EXPERIMENTAL RESULTS

In this study, we limit k to be 2 in order to reduce the
computational complexity while maimntaning prediction
precision. Distortion results based on the conventional
parallelogram prediction VQ is also implemented for
comparison. Performance comparisons of the proposed
method with the conventional parallelogram on models
with various characteristics are shown in Table 1. The
codebook size 1s 1024 for all the experumental meshes, 1.e.
the compression bit rate is 10.0 bpv. P1 and P2 in Table 1
denote PSNR by the conventional parallelogram method
and the proposed method, respectively.

The proposed method performs as high as about
1.7 dB better than the conventional VQ for Stanford
Bunny, because of the relatively smooth and curving
surface which is proper for the proposed method For
Caltech Feline, some parts of the surface are jugged whle
other parts are smooth, so the gain of the proposed
method 1s only 0.9 dB. The worst case appear in Fandisk,
because it is rather smooth in most area (in this case the
proposed method 1s the same as the parallelogram
prediction) and in some parts, the surface is extremely
jugged (in this case neither proposed method nor the
parallelogram prediction works). We also experiment on a
simplified version of Bunny, in order to verify the
scalability of the proposed methed. Although the surface
of the simplified model becomes more jugged than that of
the original model, the proposed method also achieves a
gain of 0.7 dB.

PSNR in this study is defined as PSNR 20log, , Peak/d,
where peak 1s the mesh bounding box diagonal and d 1s
the root mean square error defined by symmetric face to
face Hausdorff distance (Aspert et al., 2002):

d=max {d (X, Y), d (3, Y3 (16)

where, d (X, Y) 15 the asymmetric distance from the mesh
X tomesh Y and is defined as:

d(X,Y):\ll/ ARO[ dxY)dx (17

where, d (X, Y) 1s the Euclidean distance from a pomt x on
X toits closest point on Y and A (X) is the area of X.

Table 1: Comparisons of two methods on different meshes

Mesh P1 P2 Vertices Faces
Bunny 61.25 62.93 35047 69451
Feline 5712 58.02 49919 99732
Fandisk 5803 58.11 6475 12946
Bunny small 51.97 52.65 1889 3851

(0]

@ (h)

@) (k) 0)

Fig. 3: Rendered meshes of the uncompressed models,
compressed models with parallelogram prediction
and proposed methods. (a, b, ¢) Bunny models (d,
e, ) Feline models (g, b, 1) Fandisk models (3, k, 1)
Simplified Bunny models. Models in the three
coluruns are the uncompressed, compressed with
parallelogram prediction and compressed with the
proposed multi-ring prediction, respectively

To illustrate, Fig. 3 depicts the Bunny, Feline, Fandisk
and the simplified Bunny meshes uncompressed,
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compressed with the parallelogram VQ method and
compressed with the proposed method for comparison.

CONCLUSIONS

This study has demonstrated that the proposed
generalized parallelogram prediction scheme based vector
quantization is a promising V() techiique for compressing
the geometry of triangle meshes. Hxperimental results
indicate that the proposed prediction scheme shows
superior performance over the conventional parallelogram
prediction scheme which has been used extensively in 3D
triangular mesh compression. The prominent benefits of
the proposed technique include superior rate-distortion
performance, efficient decompression that is amenable to
hardware implementation, compatibility with existing
connectivity compression schemes and maintaining low
computation complexity. The future work will concentrate
on the estimation of k based on the characteristics of local
surface patches in order to achieve a better rate-distortion
performance while maintaining low computation
complexity.
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