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Abstract: This study reports a detailed review on selected channel estimation algorithms for orthogonal
frequency division multiplexing communication systems. Pilot based channel estimation algerithms such as

least square, mimmum mean square error, maximum likelihood and decision feedback estimators are discussed

and also compared in terms of their simplicity, computational cost and suitability conditions. Moreover
Subspace Based Blind channel estimation algorithm for cyelic prefix system is described along with its limitation
of applicability for fast varying wireless channels. References for the report and other estimating algorithms

which are not considered here are also cited.

Key words: Inter symbol interference, channel estimation, equalization, Orthogonal Frequency-Division

Multiplexing (OFDM)

INTRODUCTION

Orthogonal ~ Frequency Division Multiplexing
(OFDM) (i and Stuber, 2006) is a promising multicarrier
digital commumecation technique for transmitting lngh bit-
rate data over wireless commumcation charmels. The
indispensable obstacle for most wireless communications
systems is the multipath channel that causes Inter Symbol
Interference (I3I). Reliable channel estimation and tracking
15 a fundamental step for recovering the transmitted
symbols in the presence of ISI for coherent detection.
OFDM systems are also more sensitive to the frequency
offset (Zhang and Lindner, 2005a, b, 2007) which results
m the loss of orthogonality among sub-carriers and
causes intercarrier interference (ICT). ICT degrades the
performance of both the channel estimation and symbol
detection. So, due consideration should be given to
frequency offset along with ISI. Chamnel state information
can be obtained in two ways: One way is to insert known
symbols (pilots) into the data on several sub-carriers in
frequency and time dimension. This approach i1s more
feasible even though there is a significant bandwidth loss
due to pilot tones. This has motivated development of
blind channel estimation methods which possess
desirable advantages of better bandwidth efficiency. In
this approach need for a pilot sequence 1s replaced by

some knowledge of statistical characteristics of received
signal. However, many blind methods suffer from several
drawbacks which prevent them from widespread use.
Pilot based channel estimation in OFDM is a
two-dimensional (2-D) problem which means chammels
needs to be estimated in time -frequency domam. Hence,
2-D methods could be applied to estimate channel from
pilots. However, due to computational complexity of
2-Destimators (Sanzi et al., 2003), the scope of channel
estimators can be limited to one-dimensional (1-D).The
idea behind 1-D channel estimators are usually adopted in
OFDM systems to achieve tradeoff between complexity
and accuracy. The focus of this review report is based on
1-D methods. The two basic types of pilot arrangements
used in OFDM 1-D channel estimations are block type
and comp type in which pilots are inserted in frequency
and time direction respectively as shown m Fig. laand b.
Following earlier developments of Blind equalizations
algorithms for Single Tnput Single Output (SISO)
(Shalvi and Weinstein, 1990) and Single-Input and
Multiple Output (SIMO) (Moulines et afl, 1995;
Tong et al, 1991) systems, in recent years, block
transmission systems using Linear Redundant Precoders
(LRP) have become popular due to their capability to
facilitate block channel equalization of frequency selective
channels. Blind estimation with LRP estimation with LRP
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Fig. 1: (a) Block-type. (b) Comb-type

has a small band width expansion factor which 1s
asymptotically wunity and is robust to channel order
overestimation. Hence, blind methods developed in LRP
systems are considered superior to those m SIMO
systems. As block transmission systems using redundant
precoding, such as Orthogonal Frequency Division
Multiplexing (OFDM) systems, become progressively
more popular and research on blind chamnel estimation
15 recently given much attention. Recent developmental
work on block transmission systems with redundant
precoding (Pham and Manton, 2003; Su, 2008) has shown
that redundancy, originally introduced for purpose of
eliminating interblock interference (IBI), 1s useful to blind
channel estimation. Many blind methods with different
types of redundant precoding have been developed for
block transmission and proved to be free from several
limitations present in conventional blind channel
estimation (Moulines et al., 1995). These new algorithms,
however, still have several problems such as slow
convergence speed due to requirement of a large amount
of received data which makes them less applicable in an
environment where channel status is fast varying.
Computational complexity, constraints on data
constellations are also some of the problems to be
mentioned. Subspace based blind channel estimation
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algorithms are widely considered for OFDM systems due
to reasons stated by Su, (2008) and are considered for
cyclic prefix (cp)system in this report.

Estimators based on Least Square (LS), Mimmum
Mean Square Error (MMSE) and Maximum Likelihood
(ML) are considered and compared for pilot based and the
widely used subspace based algorithm is treated for blind
based channel estimation.

Notation: Normal letters represent scalar quantities. Bold
symbols denote matrices and vectors. The Discrete
Fourier Transform (DFT) matrix of size M>M is given by:

00 M-
Wi - Wy
F= .
(M-130 (M-1)(M-1)
Wi - Wy
where:
N
Wy=—=le™ |, ile0l.. M-1
M

F" denotes The inverse FFT, (), ()%, ()" denote
corjugate,  transpose and  transpose  conjugate
respectively. I, denotes identity matrix with M size, R
denotes real part, & mnagmary part, E{.} 13 statistical
expectation.

OFDM SYSTEM MODEL

The main idea of Orthogonal Frequency Division
Multiplexing (OFDM) transmission 1s to turn the channel
convolutional effect in to multiplicative one. The complete
base band OFDM system model 1s shown mn Fig. 2 and
described.

Let M be OFDM block length, 7 be block mumber and
consider the processing of 7 th block After serial to
parallel conversion the data will be modulated. Then, we
take the TFFT of the block as given in Eq. 1. After taking
TFFT, acyclic prefix of length P is inserted to each block.
Note that in OFDM systems instead of inserting a cyclic
prefix, a set of P zeros can also be added as the guard
interval called Zero Padding (ZP).

Suppose x be the M by 1 vector obtained by taking
the TFFT of the symbol vector X:

x =F'Y (1
where, F is the M>M FFT matrix x' = [x(0), -, x' (M-1)]"
and let the channel length is .. At receiver if we consider
M+P symbols received which are y' (-P), ' (-P+1), -, ¥
(M-1) we have:
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M -1 : i 0 i'
b, b, - hy - 0 ©(M-P) YMED] o o, h, XM
0 hy b, by 0] I RM-P4D _
0 0 h, h_, - b O : y =Hx (3
‘0 hL—l hL—Z hu‘ X‘(M—l)
(Ve PphPeL1) ) where, H is an M by M circulant matrix with first column
£0) being [_ho,..., h,,, 0...,0]" Next, we take FFT of received
: block ¥ and obtain:
Xl(Mil) 1 i Hyr i
(MEEAL-1pd Y = Fy' = FHF'X (6)
(2 where, Y = [Y' (0),.., Y* (N-1)]" Since H is circulant, we

Before any processing, the cyclic prefix of length P 15
discarded from each block. If P>L by discarding first P
symbols received we get:

[ -L-1]
X (M-L)
R 0 :
by, - hy 0 xx‘(M—l)
h h, - hy 0 X' (0)
cohy by hy x'(1)
X M-1) |
3

which can be written as:

have:

FHF* = diag [H (0),.., HN-1)] N

where, H, is k th component of M point FFT of the
channel:

] kn
H, = IEhne_ﬂnﬁ (8)
n=l
Due to diagonal structure of H we have:
Tk =H,X. +N,, ke(OM-1) (%)

where, we have included the noise term N,. Equation 9
demonstrates that an OFDM system is equivalent to a
transmission of data over a set of parallel channels.
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In regard to channel estimation block, for the pilot
based one pilot signals are extracted after the FFT block
to compute the channel parameters. For blind estimation
information in the CP is processed to compute the channel
parameters. After obtaining the channel parameters, phase
and amplitude distortion is compensated before
demodulation.

PILOT BASED CHANNEL ESTIMATION
ALGORITHMS

Pilot based channel estimation is mostly adopted for
OFDM communication systems.

Inserting known signal by receiver so that the
channel can be estimated at reference wvalue location
carries it out. The entire channel can then be estimated.
Different  channel  estimation  algorithms are
considered for block type and comb type pilot
arrangements next.

BLOCK TYPE CHANNEL ESTIMATION

The block type pilot arrangement is shown in Fig. 1a
and developed for channel, which is slow fading. Pilot
signals are transmitted periodically on all subcarriers.
Given pilot signals X and received signals Y, channel
frequency response H will be estimated. The estimated
channel shall be used to decode received data inside the
block till next pilot symbols are received. Appropriate
methods will be applied as described below:

LS estimator: relation between transmitted signal X, and
received signal Y, is already stated in Eq. 9 where H, is
channel transfer function at kth subcarrier and N, is noise
for an OFDM system with M carriers, the observations
can be computed as follows:

Y, X 0 0 || H, N,
Y, 0 X, H, N,
. =|. . - - +| .
: Do L0 : :
Y 0 - 0 Xy ||Hy Ny
Y B H N
Y = X.H+N (10)

The least square estimate of such system is obtained
by minimizing square distance between the received
signal Y and the transmitted signal X as (Manolakis et al.,
2000). L8 estimator minimizes the parameter:

min T (H) = min {|Y-XH|"}
=min {{(Y-XH)*(Y-XH)}

= min {Y'Y-Y'XH-HEXEY+HEXOXH}
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Differentiating cost function with respect to H" and
finding the minima, we get:

a H H
—JH)=-X"Y+X"XH=0
oH" (H)

=X"'"(XH)"'. X"Y
=X'Y

Hence the LS estimate of the channel 1s:
Y2

. T
Hi= = {*1 - :|
X X

Without using knowledge of the statistics of the
channels, LS estimators can be computed with very low
complexity but it suffers from high mean square error
(Van-de-Beek et al., 1995).

Yy
XM

(11)

LMMSE estimator: LMMSE estimator utilizes second
order statistics of the chammel conditions to minimize
mean square error. The estimated channel can be
computed as:

-1

Humas :Rh(Rh +0,’ (XXH) )ﬁLS (12)

It 1s assumed that autocorrelation matrix of the
channel R, and noise variance ¢ * are known in advance
by the receiver and can be computed as:

R, =E[NN"]=01

His 18 a rough LS estimate of the channel computed in
previous section. Much better performance can be
achieved using LMMSE estimator, especially under low
SNR scenarios (Van-de-Beek et al, 1995). LMMSE
estimator has considerable complexity since a matrix
inversion 1s needed every time data in X changes.
Complexity of this estimator can be reduced by replacing
(XX™™ with its expectation E{(XX")™'}. Assuming the
same signal constellation on all tones and equal
probability on all constellation points, we have:

E{(xx)" )= E{

RS

2
I .
X }

k

where, T is the identity matrix. Defining average signal to
noise ratio as:
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SNR = E{|x,['] /o
We get a simplified LMMSE estimator as:

(13)

-1
Humer =R, (Rh +L1] s
SNR
where:

2
1
Xk

v=E{xﬁ}-E{

15 a constant depending on signal constellation For
instance for 16 QAM transmission y = 17/9. Note that X
is no longer a factor in the matrix calculation. Estimator
can be firther simplified by using low rank approximations
(Edfors et al., 1998; Coleri et al., 2002).

Maximum Likelihood (ML) estimators: ML algorithm
regards the channel as deterministic but unknown vector
(Tiang and Weiling, 2003). The ML algorithm achieves
Cramer Rao Lower Bound (CRLB) ( Kay, 1993).Therefore,
it is a minimum variance unbiased estimator. Minimum
mean square error 1s achieved on condition the channel
state information 1s considered determiistic and
unbiased. The simple relationship between Y (k) and X(k)
for an OFDM system is:

Ya«){ihlexp”“ﬂxa«)m@ (14)

= H(k) X (kHN(k), O<k<M-1

Channel estimation problem can be solved using the
above expression. The channel frequency response
parameters H(0),..,H (M-1) are generally correlated
among each other, whereas impulse response parameters
ho,..., by ; may be mdependently specified, thus number of
parameters in time domain 1s smaller than that of
frequency domain. Henee, it is more suitable to apply ML
algorithm to the above relation to get ML estimate of the
chammel in time domam. Using matrix notation, the
likelihood function (Chen and Kobayashi, 2002; Jiang and
Weiling, 2003) of Y given X and h is:

1s variance of both real and imaginary

D{h,X)

20

f(Y|Xh)= ! = exp{— (15)
2na’

where, ¢’

components of the noise n(k) and 1s equivalent to:
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%E[\n(k)\z }

and the function, usually called the “distance™ function
and 1s defined as:

M-

D(h,X)=Y

k=0

(16)

1501 _jant ’
Y(k)- ¥ h exp MX(k)‘
=0

We need to find h that maximize f{(Y|X, h), or
equivalently, mimmize distance function D¢h, X). Let h =
artjby for 0<1<L-1.If we know X, we can solve for hy by:

dD{h, X
£(3a1 )lh:ﬂ:ll
aDhX) 17
e a7
which will lead to:
L1,
YaR{sik-1)}
=0
L-1
b 8fsik -1} =%{z(k)
}) {s{k—1)}={z(k)} 18)
Y a3{s(k-1)}
=0
Ll
721:b19i{s(k71)}:5{z(k)}
For O<k<L-1 or equivalently:
Liﬁls(k—l):z(k), 0<k<I-1 (19)
=0

where, zik) and s(k) are defined as IDFT of 7 (k) = X' (k)
Y (k)and S (k) = |X (k)|}, O<k<M-1, respectively. If we
take DFT of size L on both sides of Eq. 19, we have:

#7mstm=zBay, o<i<r -1 (20)

where, superscript (1) denotes size of DFT to distinguish
from previous DFT and IDFT, which are all of size M.
Thus { can be obtained as the size L. IDFT of Z (1)/3"
(1) for, 0<1<L.-1. That is:

For constant modulus signals, we have [X (k)|*=C
for all k, where C 1s a constant. Therefore:

7L

res (21)

h= IDFT{
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C, k=0
= (22)
3 {0, k=0
In this case, from Eq. 19 we can directly obtain:
=28 gcken (23)

Hence, for given X, ML estimate of the channel { 1s
the solution given by Eg. 21 or 23.0ne problem with the
above algorithm 1s unknown channel memory length L.
However, since the system requires that channel memory
be no greater than guard interval P we can satisfy this
requirement by setting L P. ML estimator has
comparable performance at intermediate and high signal
to noise ratio (SNR) compared to LMMSE. But at Low
SNR LMMSE performs better than ML (Morelli and
Mengali, 2001). ML algorithm is simple for implementation.
Note that large estimation error 1s inevitable in case of
model mismatch.

Estimation with decision feedback: This estimator is
proposed to enhance performance for block type scheme
in which estimation is performed once per block till next
pilot symbols are received. The i1dea here 1s updating the
estimator inside the block using decision feedback
equalizer at each subcarrier (Coleri et al, 2002). First
estimate of the channel f{_[g{, 1 (k=0,....... M-1) in the
block can be computed using LS or other methods. Within
the block (Fig. 1a) for each symbol and its subcarriers,
estimation of the transmitted signal is obtained by the
previously computed §, as:

Y

Hi

X =

The estimated transmitted signal X. 1s mapped to
binary data through demodulation process in accordance
with “signal demapper” and then obtained back through
“signal mapper” as X. .Then estimated channel H. is
updated by:

(24)
and is used in the next symbol within the block.
Application of this scheme 1s limited to slow fading
channels only.

COMB TYPE BASED CHANNEL ESTIMATION

In comb type based channel estimation, pilots are
mserted umformly for each transmitted symbol as shown
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in Fig. 1b. This arrangement is proposed for intermediate
and fast fading channels. Different methods, which are
described next section, can be implemented to estimate
the chamnel in frequency domain.

LS estimator based on 1-D interpolation: Equation 9
shows relationship between transmitted signals X, and
received Y,. T o estumate the channel, pilots symbols are
needed. We assume that every p-th subcarrier contains
known pilot symbols (X,). Using known pilots symbols
(X, and received symbols (Y,) at those pilot sub-
carriers, we can calculate raw channel estimate ( [, ) at
pilots as:

Ve

Huy=—
X

+N—pk=Hpk + N, (25)

K

where, N, is the noise contribution at pk -th sub-carrier,
N’ is a scaled noise contribution at that sub-carrier. 1-D
linear interpolation method estimates the channel by
interpolating channel transfer function between f,, and g,
{fixed time). Where fi,, is raw channel estimate at pk-th
subcarrier frequency and time 1 and 7, is raw channel
estimate at pm-th subcarrier frequency and time |
(Coleri et al., 2002; Hsieh and We1, 1998). This estimator
works well for a channel with high coherence bandwidth.
But fails for a channel with low coherence bandwidth
(Akram, 2007). It s simple channel estimation. The
following mterpolation methods can be employed:

Linear Interpolation (I.T)
Spline Interpolation (SI)
Cubic Interpolation (CT)
Low pass Interpolation (LPI)

The performance of the above interpolation
techniques 1s given in (Arshad and Sheikh, 2004). Their
performance in decreasing order is LPT, CT, SI, LI.

LS estimator based 1-D general linear models: The
channel estimation problem can also be solved using 1-D
generalized linear model framework (Chang and Su, 2002,
2000, Wang and Liu, 2002; Tang et al., 2002). The channel
transfer function H, can be modeled as a linear weighed
sum of some basis function evaluated at k-th sub-carrier
frequency as:

H, = fui ¥, (f,) (26)
i=1

V. (f,) is i-th basis function evaluated at that k-th
subcarrier frequency.
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¢, is weighing factor of the basis function. M is number of
basis functions used in the linear model.

The generalized linear model can be used to rewrite
raw channel estimates, [, as:

Ha=H, + N, =h§ul.‘1’1(fk) AN, (27)

i=0

where, every p-th sub-carrier is a pilot, H, is actual
channel transfer function at pk -th carrier, N, is noise at
pk-th carrier, y; (f,) is I-th basis function evaluated at
that pk-th sub-carrier frequency f;:

H v v (f) Vi) e, 1 [N
ﬁp B Wy L (fp) Y (fp) oy N N,
i Wl ) W) - W E ) g N
Hegg-n | [ 70 g 1 p(M,Gn 1M pog-1 ul\:l p(:;, "
H
(28)

where, M, is the number of pilot carriers. Using matrix
notation, we can write it as:

H-G.-a+N
The least square estimate of weighing matrix 1s

calculated by mimmimizing the squared distance between
actual channel H and modeled channel i as:

(o) =Ifi-H =(fi-H) (fi-n) (29)
Mimmizing we get:
%J{u} --G'"H+ ¢'Ge=0
s =(GPG) G'H (30)

-~ ~ T
s =|:CLLSU U.LSN—I]

The least-square estimate g . can then be used to
estimate the channel H;;, at regular
frequencies f, as:

sub-carrier

ﬁLS,k :hﬁawi ;6D (31)

i=0

Basis functions such as polynomials (Orthogonal or,
Legendre polynomials), Fourier series and others can be
implemented. For polynomial basis functions, orthogonal
polynomials have following merits over legendre
polynomials.

920

The calculation of 7 . remains numerically stable
since the product G"G is a diagonal matrix for
orthogonal polynomaials

Since G"G is a diagonal matrix, the inverse (G"G)™'
can be calculated at low computational complexity
The degree of orthogonal polynomials can be
mcreased without changes m any previous
calculation results of g, .

This estimator works well as long as the right
selection of polynomial order i1s done. It 1s more
computational complex as it requires a matrix nversion
and multiplication for each set of pilots. Since same matrix
is inverted for each set of pilot, saving polynomial matrix
mwverse and using the mverse matrix for channel
estimation for each set of pilots can reduce complexity. It
is effective in reducing LS estimation error (Chang and
Su, 2002).

LMMSE estimator based on 1-D winner filtering:
Theoretical framework for 1-D Wiener filtering is
presented (Akram, 2007, Scharf, 1991; Edfors et al., 1998,
Sandell and Edfors, 1996). LMMSE method uses
knowledge of chammel properties to estimate the unknown
channel transfer function at non-pilot sub-carriers. These
properties are assumed to be known at receiver for the
estimator to perform optimally.

Where, f, is ith raw channel estimate (at the pilot
signal) and ¢ is ith filter coefficients. Tet us see how to
determine filter coefficients. Consider M, set of raw
channel estimate:

Fia = H, + N, (32)

Hyis a raw channel estimate at pk-th subcarrier
frequency, H,, is actual channel value at pk-th subcarrier
frequency and N, is neise contribution at pk-th subcarrier
frequency.

Given a set of observations on the raw channel
estimate ( {, ), LMMSE estimate of the channel can be
written ( Hyypees ) 8t k-th subcarrier as:

-1
& ¢;He
1=0

M-l
¢ (H, + Ny
=0

Huvvsex =

(33)

i

where, ¢, 1s 1-th Wiener filter coefficientand f, is1- thraw
chammel estimate. The LMMSE Hj yyer . estimate at k-th
sub-carrier 1s calculated by filtering raw channel estimate
vector H-[H, H, — Hugo] by a Wiener filter ¢ s
=[c, ¢ ... Cup]" and can be written as:
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(34)

P o o~
Himmsex = € ppues H

where, ¢ and [ are column vectors, containing M,
Wiener filter coefficients and M, raw channel estimates,
respectively. Filter coefficients can be found by
minimizing expected mean square error (Manolakis et al.,
2000). Given as:

‘|
I

= E{(Hk — Huvms ) - (Hk — Hinose )H}

E{‘Hk - ﬁLMMSE,k‘
(35)
~E{m,m;} - cHE{ﬁH;}
~H o [t
—E{HKH }c +c E{HH }c
Minimizing the above expression we can get:

£
—FE
ac”

~ o~ H
+E{HH }C =0

H, - ﬁLMMSE,k‘z } = *E{HHL}

Come :[E{ﬁﬁ“}]" r{firr ) (36)

AAH] :

Let us consider first expression E{HH j

E{ﬁﬁH} =E{(ﬁ +N)-(H +N)H}

- E{ﬁﬁﬁ} +E[AN¢ ]+ E{NﬁH}

F I i
+E{NN"|
L d
Fn

The additive white noise (AWGN) and channel are
uncorrelated. Hence the above expression can be written
as:

E{ﬁﬁH}:Rh LR =R, +01 37)

where, R, is autocorrelation matrix of the channel and o?
1s noise-variance per subcarrier. Note that:

Similarly E{AHHI’:} 1s given as:

921

E{HH; | =E{(H+ N)-H;}
~£{fm; } + E{N-1;}

[N

r o

where, r 1s cross-correlation vector of the chammel at k th
sub-carrier and the channel at pilot locations:

(38)

E{ﬁp(]\ﬂp—l) ﬁ; }

Hence Wiener filter coefficients that provide the
LMMSE channel estimate 1s:

Chmise = (Rh + 021)_l r (39)

Once we have calculated Wiener filter coefficients,
we can estunate charmel at k -th subcarrier as:

ﬁLMMSEk = CEMMSEﬁ
o (40)
:((Rh+cl) r)-H

This estimator outperforms both estimators above
especially at high SNR and low coherence bandwidth. In
other words, LMMSE can be applied in sparse multipath
channel (Tiang and Weiling, 2003). But, its performance
will degrade if mismatch between statistical characteristic
and real environment arises. This method 13 most complex
method for channel estimation as it requires matrix
inversion and matrix multiplication for each set of pilots.
Moreover, its high complexity prevent it from widespread
application when number of paths in wireless chammel 1s
large (>>10).The complexity can be reduced by low rank
approximations (Edfors et al., 1998).

Note that ML estimator can also be applied for comb
type pilot estimation (Chen and Kobayashi, 2002). There
are also other channel estimators for OFDM system such
as 2D estimators (Hou et al., 2004), Tterative channel
estimators (Sanzi et al., 2003), estimators which employ
Multiple Antenna (Auer, 2003) and estimators based on
parametric channel modeling (Yang et «l, 2001).
Moreover, a channel estimation algorithm which employs
wavelet denoising filters can be applied to obtain more
accurate channel estimation by reducing the effect of the
noise on estimated channel (Alnuaimy et af., 2009).
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BLIND CHANNEL ESTIMATION

Fimite alphabet and non-fimite alphabet based
algorithms are two major classifications of blind channel
estimation algorithms in Linear Redundant Precoding
(LRP) systems. Algorithms that employ knowledge of
finite alphabet of source data generally have a shorter
convergence time but computationally expenssive when
the constellation size is large (Zhou and Giannakis, 2001
Chotikakamthorn and Suziki, 1999). Most non-finite
alphabet based algorithims make use of second order
statistios of received data (Heath and Giannakis, 1999,
Petropulu et al., 2004). These methods obviously need a
longer convergence time than finite alphabet counterparts
before a true channel estimate can be found due to use of
statistics. Another important category of non-fimte
alphabet based algorithms uses  subspace
decomposition and can alse be implemented
determimstically (Pham and Manton, 2003; Cai and
Alkansu, 2000; L1 and Roy, 2003; Muquet et al., 2002).
Subspace based algorithms are applicable for any kind of
constellation, even though they require a longer
convergence tume. First subspace based blind channel
estimation algorithm was proposed by Scaglione et al.
(1999) for Zero Padding (ZP) systems. Subspace
algorithms in Cyclic Prefix (CP) unlike in ZP systems the
received block contains Inter Block Interference (IBI)
which makes blind algorithms more difficult. These
methods all need persistency of excitation property of the
input signal that is signal richness to offer the data
covariance matrix to have full rank. This requirement
demands the receiver to collect number of blocks at least
equal to block size for one channel estimate and hence
makes the approach less applicable when the chammel 1s
fast varying.

Recently pomted out by Manton and Neumann
(2003) that blind channel estimation without knowledge of
finite alphabet in ZP systems is possible with only two
received blocks. An algorithm that views the channel
estimation problem as computing greatest common
divisors (GCD) of polynomials representing received
blocks was proposed (Pham and Manton, 2003). Even
though many blind algorithms in LRP systems have been
developed, they have limitations such as slow
convergence speed, high complexity, poorer performance
as compared to pilot assisted methods.

Subspace based blind channel estimation: Subspace
based blind channel estimation methods for CP systems
based on literature (Muquet et al., 2002; Li and Roy, 2003;
Cai and Akansu, 2000) is discussed below. Let source
vector Xy, (k) 1s precoded by MxM constant IDFT matrix
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Fi resulted in precoded data. Subscript M shows size of
matrix or vectors. A cp of length L, taking from last L
elements of x,; (k), is defined as:

x, (k)= [OLx(M—L) L }'XM &) (41)

Note that it 1s assumed L+1<M. The ¢p is appended
to xy,; (k), forming a vector:

%, (k)
X, ()

x(k) = [ } =[x, K], .y, (42)

Length of x (k) 18 D = M+L. The chamnel is
considered to be an FIR filter with a maximum order of L.
The channel response h is L+1 column vector [h, b, .. b "
and can be defined as:

H(z) = ihkz'k (43)

The received symbols v (k) are blocked into Dx1
vectors y (k). Let blocked version of the noise is n (k), ¥,
(k) as first . entries and v, (K) as last Mentries of y (k) so
that:

yO=[y, (v T (“4)
Tt can be shown that:
¥um (k) = Hxy, (K)+my, (k) (45)
where:
hD 0 hL hl
Hon b,
- 0
0 hy h,

In which H is an Mx*M circulant matrix and ny,
(k) = [n (k)]..i» is noise vector. The Lx1 vector y,, (k)
contains inter-block interference (TRI) and can be
expressed as:

v, & =Hx_(k)+Hx_(k-1)+n_ (k) (46)
where:
h, 0
H2|:
h - h
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are L>L matrices. m_, (k) = [n (k)] is the noise component.
For channel equalization ¥y, (k) is usually dropped and
only y (k) passes to an equalizer T with dimension of
M=M and results in recovered symbol Y, (k). When
channel coefficients are identified, optimum value for
equalizer T can be computed to minimize mean square
error of equalized symbols.

Tet us see now how to estimate the channel
blindly:  While y, (k) i3 often dropped before
equalization, information in y, (k) is useful to estimate
channel coefficients (Pham and Manton, 2003; Su and
Vaidyanathan, 2007). First ignore noise term n (k) for
sunplicity and define a composite block ¥ (k) with a length
of 2M+1, and contains information from two consecutive
blocks as follows:

- T
y(k) :[yM "y, ®7 vy (k)T} (47)

Ther, from Eq. 45 and 46 we have:

Hx,, (k -1)
¥k =|Hx (K)+Hx_k-1)
Hx,, (k)
=Hx(k)

(48)

where:

and:

Note that 1 s (2M+L)*x2M matrix.

If:

L
H(z)=Y h,z™"
k=0

does not have any non zero on umt circle grid
W, 0<1<M~1, then H has full column rank 2M.
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Assume J consecutive received blocks y (0),

y (1), .., ¥ (J-1) are gathered at receiver. Subsequently we
shall have J-1 composite blocks ¥ (k) defined mEq. 41 for
k=1,2..,7-1. (2M+L)x(J-1) matrix can be constructed by
placing these composite blocks together as:

[5(1) ¥(2) ..

W
¥ o =

y(I-1)] (49)

Note that subscript cobk stands for composite block.
Next, we shall have:

U]

yEJn)bk =Hx (50)

cobk

where, X(cjn)hk:[i(l) i(z) i(]q)} 18 a 2Mx(J-1) matrix.
such that x@

Suppose there exists an integer J>2M+1 o
has full row rank 2M. Then rank of (y[cjn)hk)zzM which
means y¥) has L linearly independent left anmhilators.
Let gf be kth annihilator of ¥ , for 1<k<L that 1s
gy, =0 then, g =0 since x! has full rank, we can
write gy as gr =[gy Bom|Ba Ba

index k m the contents of ¢! for simplicity. By looking at
columns of 7, a ZMx(L+1) matrix G, can be produced as
shown next:

g, gwm] We can ignore

Bn 2o 2o
gDZ gﬂ3 gﬂ,2+L
Bomr  Bomiw Zom
gD,M—L+1 gUM ng + gﬂl
+ +
Gk _ gDM gﬂl gcl gUL gEL (51)
2 2 B
21z B Bz
£ vt i M Eim
imn T 8a C Bm T8 By
7glM + gCL gll glL _
Gh=0
. T T T
Define ©=[G] G] -~ G[| . Then, chamnel

coefficients h can be recovered within a scalar ambiguity
(Cui and Tellambura, 2005) by finding only right
annihilating vector of G. When H has no full column
rank, the above algornthm can be made applicable by
making some medifications (Muquet et af., 2002). In
presence of noise, Eq. 50 can be expressed as:
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cobk cohk *

Yo
where, the noise component n!!!  comes accordingly from
Eq. 45 and 46. In this case, y)  often becomes full rank
and no longer has L left anmhilators. By taking singular
value decomposition(SVD) of y% . the left annihilators

Hof which is the noise space can be estimated. In the
Equation ¥ (k):

)

), = X, 0 53
Yome = [U, Un]{0 5 }[vs v,] (53)

U, contains singular vectors associated with the smallest
L singular values y%)  of and g, is chosen as kth column
of U, Note that in Eq. 53 if matrix y!). 1s replaced with
estimated autocorrelation matrix which 1s:

o]

Then, null space U, found by smgular value
decomposition (3VD) will remain unchanged. Since size of
R, 15 usually smaller than y') | especially when ] is large,
taking SVD on R,, rather than on y0! actually saves
computational complexity, although an additional
computation will be needed for creating the
autocorrelation matrix Ry . Once matrix R, is created
whenever a new block is received, it can be updated easily
(Muquet et al., 2002). The idea of maintaining R, can lead
to a method in which newer blocks can be weighted more
than older ones. If an mtial estimate of R, 1s made first, It
can be updated each time a new composite block ¥ (k) is
obtained using:

7

cohk

1
YE:ULK

_ 54
Ry =¥ ©9

F_ gl (55)
¥

-~ [K- — —
— =aR— " +(1- o)y (K)y (K

The parameter «e[0.1] 15 a forgetting factor. The
forgetting factor 13 used especially m time varying
channel enviromments.

A matrix x'9  with 2Mx(J-1) should have full row
rank of 2M (property of persistency of excitation) so that
above method work properly. Obviously, x  has full
row rank only when the number of columns is not smaller
than number of rows, that is J-1 =2M. This requires at least
(2M+1).D symbol durations for the receiver to wait before
channel estimation can be performed. This drawback
makes the algorithm not applicable for fast fading
channels since the channel parameters experience change
during this time of collecting data. A forgetting factor can
be utilized to give more weight to newer blocks. But use
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of older blocks as old as (2M+1) earlier is unavoidable.
This fundamental limitation can be overcome by the
method proposed (Su and Vaidyanathan, 2007; Pham and
Manton, 2003) for Zero Padding (ZP) systems.

The other mnportant issue 1s to deal with the scalar
ambiguity in the estimated channel coefficients (Su, 2008).
The frequency response of the estimated channel 1s:

(W) = Showy (56)

due to scalar ambiguity all equalized symbols has to be
scaled by unknown complex valued scalar B. One way of
resolving this ambiguity is by introducing one extra pilot
symbol and comparing it with corresponding received
symbol. If several blocks are using same channel estimate
h > the scalar ambiguity can be estimated as follows:

p=are in Sls...00- v, ()
E‘y;;u (1) Yiee (1)

E; yptl (1) i

(57)

where, C 1s complex domain, y,; (1) is pilot symbel of the
1th block and vy, (1) 15 the corresponding received pilots.
There could be different way of pilot arrangements but
attention should be given so that received blocks should
not be rank deficient.

DISCUSSION

A review of selected channel estimation algorithms
for OFDM communication systems has been presented
along with their strength and limitations in this study.
Generally, they can be classified as pilot and blind
channel estimation algorithms.

Block type pilot channel estimators are suitable for
slow fading channels. The .8 algorithm is simple but
suffers from high mean square error. The LMMSE
algorithm has superior performance over LS by giving
10-15dB gain in signal to noise ratio (SNR) for the same
mean square error (Van-de-Beek et al.,, 1995). However,
LMMSE is computationally costly but it can be simplified
by using low rank approximations (Edfors et al., 1998). ML
estimator does not require knowledge of the channel
statistics and therefore it is simpler to implement and has
comparable performance at intermediate and high SNR
with that of LMMSE. But at Low SNR LMMSE performs
better than ML (Morelli and Mengali, 2001). Estimation
with decision feedback is proposed to improve the
performance of the LS (Coleri et al., 2002), LMMSE and
ML, estimator algorithms.
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Comb type channel estimators usually out perform
for middle and fast fading channel environments. LS
interpolation based estimator is simple and performs well
for a channel with high coherence band width. But its
performance 1s not good for low coherence bandwidth
(Akram, 2007). LS linear model works well as long as the
right polynomial order is selected. The LS model based
15 very effective in reducing LS estimation error but
computationally complex. Tt requires less computation
compared to LMMSE winner filtering (Chang and Su,
2002), since no information about the chammel and noise
power level is needed. The LMMSE winner filtering based
estimator outperforms both estimators especially at high
SNR and low coherence bandwidth (Akram, 2007). But it
is the most complex method. The complexity can be
reduced by deriving an optimal low rank estimator with
singular value decomposition (Hsieh and Wei, 1998).

Subspace based Blind Channel Estimation (BCE)
algorithms are widely used for OFDM system. Generally
BCE algorithms are band width efficient compared to pilot
based ones but they suffer from low convergence and
high computational cost which makes them unsuitable for
fast fading chammel environments at this stage (Su, 2008).
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