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Abstract: In this study, we established an optimization control model and the corresponding computer

algorithm to estimate the diffusion coefficient of the drug releasing in the spherical device. First, based on the

diffusion equation in the spherical device i the polar coordmates system, the optimal control model was given
to compute the diffusion coefficient in the diug releasing problem in the sphere device. Next, the Least Square

Method based on the Separation Variables (LSMSV) was used to solve the problem to estimate the appropriate

diffusion coefficient. Finally, a numerical example was presented to show that the control model and the
numerical method are valid for computing the diffusion coefficient of the drug releasing in the sphere device.

Key words:Diffusion coefficient, separation of variables method, least square method, LSMSV, diug releasing

1n the spherical device

INTRODUCTION

The optimal control models and the computer
methods for designing the delivery devices of the drug
releasing have been paid attention in the recent years
(Mwellott ez al., 2001; Siepmann et al., 1998; Hukka, 1999;
El-Sersy, 2007; Parra-Guevara and Skiba, 2003). In order
to design the drug delivery system, it is important to
compute the diffusivity and the diffusion process in some
special For this
computational methods and the computer software are

delivery systems. reason, many
used to compute the effective diffusion process
(Arunachalam and Annadurai, 2011, Hefny, 2007;
Rao et al.,, 2011, Kossah et @l., 2010). However, many
computation methods and the optimal models depended
on the special cases in 2D or on the empirical model and
the linear problems. (Zhu and Zeng, 2002; Kohne et al.,
2002; Grassi and Grassi, 2005, Thomes, 1993). For the
special materials, many optimal models for designing the
delivery devices are nonlinear and complicated.
(Singh et al., 2011; Dash and Gummadi, 2007). Computing
the nonlmear optimal model and the complicated linear
optimal model becomes one cost-time problem. Therefore,
1t 18 necessary to find out the computing method to save
the computing time for dealing with the special cases or

the 3D cases (Grassi and Grassi, 2005; Lee et al., 1999,
Balamuralidhara et ai., 2011).

In previous papers (Li et al., 2010, 2011), in order to
be better to analyze the 3D cases than before, we
proposed a numerical method to extract the diffusion
coefficients from the diffusion and convection-diffusion
processes. However, 1n fact, for the numerical method, it
cost too much time to obtain the best approximation of the
mass rate because the numerical method computing the
releasing rate of the drug had many munerical equations
simulating the diffusion process. For these reasons, in
this study, we proposed a new computer optimal model
and the optimal computer method based on the Least
Square Method and the Separation of Variables (LSMSV)
to extract the diffusion coefficients from the diffusion
processes in the sphere device.

THE OPTIMAL CONTROL MODEL TO COMPUTE
THE DIFFUSION PARAMETER IN THE SPHERE
DEVICE

The optimal control problems governed by the

diffusion equations arise m many scientific and
applications, such as the atmospheric

pollution control problems and the diug releasing fields.

engineering
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This study is devoted to solving the following diffusion
equation n the sphere device:

a t
Xyt g, (DVC)=0  t50,(x,y,2)e Q
a
£ t
xlyat)_g {5 0,0x,y,2) € 002 (1)
2u
C{x,y,z,0)=H(x.y,z) (x,y,z)e(,

where, D 15 the diffusion constant parameter and
C (%,v, z, t) is the drug concentration.

For the mitial condition H (%, y, z), we assume that at
t = 0, the drug concentration is uniform in the device and
zero in liquid i.e.:

MEI
—_— t=0,(x,y,2)eQ
Hix,y.z)= v, bey.z)ed (2)

0 (x,y,z)c /L),

The domain 1s the sphere device as Fig. 1 mcluding
the black sphere domain €, that includes the diffusion
material and the white sphere domain € that includes the
liquads.

The following process is to use the spherical polar
coordinate system to replace the Eq. 1. The spherical polar
coordinate 1s:

X =reinpcosd
y =rsin psin® (3)

Z=TCcos

Substituting (3) 1 (1), we can obtain:
6—C=D ii[r2§}+ _1 i 6—Csin¢ +— 1 62—(: (4)
a ol &) singdel B0 sin’ ¢ 8¢

Owing to the sphere being symmetrical, the
concentration C = C (r, t) is independent of 0 and ¢ in the
sphere device. The Eq. 4 can be written as:

Z

X

Fig. 1: Drug delivery device including the black sphere €3,
and the white sphere

EzD[LZE (rza_cﬂ:D{igga_cJ (5)
a ra or o roor
Using:

I L@ _2he)

ar? a  a’

a(rc)iDaz(rc
a

and setting u = rC, we have:

A

a o

The boundary condition in Eq. 1 can be translated
into:

Xy (6)
‘afpkj
For:
&2 al
a a orly,

the imitial condition (6) can be translated mto:

u(Rg,t)fRZ% =0

=

So, the three-dimensional diffusion Eq. 1 in the
sphere device can be changed into the one-dimensional
diffusion Eq. 7:

&u
e
t)=0

t>0

2
&
u(0

u(Rz,t)—Rzg =0 )
R,

2
MI]
r 0<r=<R
uir, 0) = Ad !
0 R =<r<R,

where, u = rC.

In order to obtain the diffusion concentration in the
sphere device, it is necessary to divide the radius
wnterval [R, R;] into many enough short sections. Set
R, = r=n,<.<r, = R, we can get the diffusion
concentration of each radius intervals [r,, 1], [r, 1], ... .
[ty 1] From the concentration in the same time, the mass
M. ... My, In each section denoting the mid-value of
the drug concentration in each radius interval. Therefore
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we can get the total mass M, = M+ .. +M, ., in [R,, Because:
R,].The idea is induced as following:

2 . r] r
L dr=0
Problem 1: Find D to satisfy the: YR

min { (M, - M) + (M, - M2)® + ... + (M, - M"Y} (8) is always true, we can obtain:

. . R
where, M", M’ ..., M," are given experimental data and JUEM A 5 e e RIME

My, M,, ..., M, are computed by the following formula: Fo= IR’r2¢ rREh T V_ddr: RV,
0

M, = - )e r2 S+t - el +2rk1 i) Both sides of Eq. 11 multiple:

B.r

and: rsin Pl
2

C[r +r] t] RBMD + 3 o [&sm%—EEOS%JEXP[*Dﬁgt)]sm Bn(f}u"'fj)
2 BV, MVpin’GlR R A R R/ Ty then integration from r = 0 to r = R,, the following equation
&) can be got:

THE SEPARATION OF VARTABLES METHOD - Bur

)5
BASED ONDRUG RELEASING INSPHERE DEVICE L ”“‘*C(r e[, 1By S‘“*"”EJ E, R, &
. In the following section, based on the separation of By Eq. 12, there is:
variables method (Thomes, 1995) to solve the Eq. 7, we
can get the solution of the Eq. 7:
8 4 J.;lrsmﬁil;’l—ndr—J. rsm—EUd.r+ZI E, sm in P = dr
2 d 2
u=1C=Er+ ZE“ exp(—%jsin%c[r t)=E, + ZT exp [ %J sin %
(10) and:
where, B,(n =1, 2, ...) is the positive root of tanx = x _[ EurSIH df 0
and B, (i=0,1, 2, ..) are the expand coefficients, in the
following section, we shall decide these expand
coefficient E, (1=0,1,2,..). _
When t = 0 with the initial condition, there is: If m#n, then:
- Buf . Bur
(r,0)=E, +§E—;sini—f (1) IE, S s 40
To choose the coefficient to satisfy: and:
2
M o R .ﬁg.&i Ryl . BT
Cle0)-E +Z [B“r7 v 0<r<R, (12) é ) Enst—zst:é drfEnjD ( RJ dr
SR 0 R, <r<R,,
) ) ) MYV s /Ry )dr .
Multiple r*, then integration fromr = O tor = R;, we E, = j s roin(Pue/R,) 2 IR M’ M in Pt g
. bV R(emp i VR
can get: ID sin= | dr
RZ
~ M" (R, . RPB, R, Rp,
j *C(r,0)dr= j K, - Bar NV, ain’p, [ﬁnz st—szcosR—2
ForEq. 12: where, the coefficient is:
Ry MO s B.r :RfM” _ M (R, . RP, R RP
jo 2 d.r I rzEDd.r-#Zj E,rsil R, E, Rav, N, sin® B, B2 sin R, B cos R,
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Therefore, the concentration can be computed as
follows:

gl @ 0
RM + ™M 2 B, &cos—Rlﬁ“)sinE (13)

C(r,0)=
=0 Révd nEI:Vdrsm B ([5 R, By, R, R,

For the derivative C' (r, 0) of the piecewise
continuous function and C (r, 0) is piecewise function, C
(r, 0) is a piecewise smooth function. By the Fourier series
convergence theorem, the Fourier series of (13) is
convergence to:

(1) C{r, 0)(C (r, 0) at the continuous point)
(2) %[C(R1+,0)+C(R1—,O):|
(R, is the discontinuous point of C (r, 0)

So:

0
C( 0)— M {Rz R, —&cms—Rlﬁ“Jsmm

—=-sin
R; Vd nlvdrsm B\ P R, B, R, R,
(14)

where, B, (n =1, 2, ...} is the positive root of tanx = x.

LEAST SQUARE METHOD FOR SOLVING THE
OPTIMAL CONTROL PROBLEM

Let:

=M-MP(M-M)
(1%

E(D)=(M, -MD*+ (M, -M2)® +..+ (M, - M)’

where, M = (M1 (D), M2 (D))" and M* = (M,", M, ..,
M,

We now consider the optimal numerical solution of
the Problem 1. For an initial diffusicn parameter point D',
Problem 1 can be solved iteratively by the following
deduction. An increment D' in each step is calculated as
follows:

Mimmizing E (D'+8D) with respect to 8D, where D'
and 8D are the ith approximation and ith increment of D,
respectively.
Let:

£ (D)=M-M",F (D)= E (D)
So
(16)

(D)= zw(m e ) -t

The Eq. 15 can be written as follows:

F(D):iZ;;ff (D) (17)

For f (D) are the nonlinear functions, (16) is a
nonlinear least square problem. To solve this problem, we
can use the linear least square method to solve the
nonlimear least square problem. Suppose that Dy, be the
kth approximation and let the function f (D) to be the
linear function at Dy, the mmimal point Dy, and the
{(k+1)th approximation can be computed by the iterative
method. The iterative formula 1s deduced in details as
follow. Set:

@; (D) = £ (Dgy)+VE; (D(k))T (D-Dyy) =V E (D(k))T D-[V fl(D(k))T
D(k)-fi (D(k))], i: 1, 2, O

The first term m the right hand of the above
equations are the first order Taylor expansion polynomials
at Dy, and set:

#D)=="¢f ) (18)

i=1

Use ¢(D) to replace F (D) and use the minimal point
of ¢(D) to estimate the function F (D). Next, to solve the
least square problem: ¢(D), set:

o (Dy)
T 1P
VE, (D) D
A= : =
T
VI, (D(k)) o, (D(k))
a
V6 (Dgy) Dy~ (Dgo ) (19)
B= : =aADy, 1y
T
VE, (Dg) Dy £ (D)
£Dy,
£,D
andfy, =| 1"
£,D,,
C(r]+1+r] 6= 31:;[” © . AN (7SiﬂR[B R ) |3 Bl + 1)
RV, = rsm[} G R, |3n IR,
(20)

So, Eq. 18 can be written as:
&(D) = (AD-B)" (AD-B) = DAT AD-ZB" AD+B" B
In order to search the stable point of (D), set
VF(D)=2ATAD-2ATB =0 (21)

taking A and B into (21), the following equation can be
obtained:
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ATAD = AT(AD,fy)

Moving A" ADy, to the left hand in the above
equatiory, there 15

ATA (D-Dyy) = -ATf (22)

Obviously, this is a linear equation depending on the
function value and first order partial derivative £ (D) at
the point Dy, if the matrix A is the full column rank, ATA
is a symmetry positive matrix. Therefore, there is (ATA)Y ™,
we can get the stable point of the Eq. 22 as:
follows:

Doy = Dy (ATAT AT (23)

By the above deduced formula, the optimal algorithm
based on the least square method based on the separation
variables method (LSMSV) extracting the diffusion
parameters are represented as follows step by step.

Algorithm (LSMSV) :
Step 1:  Give the initial value Dy, sett, =0, C; =0, M; = 0 and the
control error £-0, let k=1, then go to Step 2

Step 2: Take Dy, into (14) and obtain M;, go to Step 3

Step 3: Computing the solution of function £ (D) =M, -M,"
by (16), then computing £, (D) and fy iteratively as from
Step 1 to Step 3, computing the first order partial derivative:

)
D

i=1,2, .., e by (20), then get ex1 matrix Ay = (ay),«, go to
Step 4;

Step 4:  Solve AT A (D-Dy,) = -AT f;, by the formula Dy, = Dyy-
(ArA)! AT £y to compute D4y, go to Step 5;

Step 5:  If [Dyssy-Degll <2 Lthere is a solution D = Dy, get the optimum
diffusion coefficient T); else, let k =k+1, go back to Step 2;

Step 6:  Output the optimal ditfusion parameter D and stop the algorithm.

NUMERICAL EXAMPLE

In order to test the convergence, the computing
velocity and the validity of the proposed scheme, an
example 1s given in this section. The spherical device 1s
divided into large and small spherical structires where
small spherical container including the diug is fixed in the
large and the large container 1s filled with the liquid. The
radius of small and large sphere devices are 0.4800 and
2.8399 dm, respectively and there 15 500 g of drug mn small
spherical vessel. When t = 0, the inner concentration is
1079.33855, the outer is 0. After some diffusion process in
a period of time, suppose tune 18 1079.33855, the wmer and
outer concentration is equal and is 5.2116, it is:

MEI
= =107933855 0<r<R,
C(r,0) =1 1R’

0 Ry =<r<R,,

C(r,e)=5.2116 0<r<R;

Set the following formula compute the total error in
order to estimate the convergence rate:

12
Totalerror (i)="" (Numerical calculation M'(j) — Ex perimental dataM Gy’
=1

We firstly compute the diffusion process to obtain
the experiment data of the concentration shown in
Table 1 according to the given diffusion parameter
D = 0.0006. Next, using the above optiumal computer
algorithm (LSMSV) to estimate the diffusion parameter
based on the optimal control model of the drug releasing
in the sphere device and the mass.

Suppose the time mterval be 60 sec and get 18 terms
in Bessel function, by the LSMSV algorithim, the optimum
points and their error values m each optimal step are
given in the Table 2. Tn order to illustrate the convergence
of the LSMSV algonthm, the optimal increment 8D and the
optimal values D of the diffusion parameter are depicted
as Fig. 2 and 3.

In order to illustrate the convergence of the algorithm
(LSMSV), we discuss the convergence data as follows:
from the second column in Table 2 and Fig. 3, the
increments 8D convergent are very fast because their
values become from 1.3867=107" to 7.6555%107". From the
last column in Table 2, the optimized value D also
becomes very fast from 2.3867x107°-6.0000x107* by only

Table 1: The change of drug quality
Time (sec)  M(g) Time (sec)  M(g)

Time (sec)  Mi(g)

0 0 240 461711 480 478.2738

60 305.9245 300 4591927 540 481.5865

120 386.8367 360 467.8269 600 484.1414

180 425.0202 420  473.8695 660 486.1531
345{ 10° The total error value on the intial value 0.00001

Error values

Iterative No.

Fig. 22 The error value of the optimized diffusion
parameters by (LSMSV)
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« 107 The optimized icrment on the intial value 0.0001
1.6 1
1.4 1
1.2 1
=
% 1
2 08
0.6 1
0.4
0.2
O T T T T T T T T T 1
1 1.5 2.5 3 35 4 45 5 5.5 6
Iterative No.
Fig. 3: The increment of the optimized diffusion
parameters by (LSMSV)
6 SX 107 The optimized value on the intial value 0.0001
6 * *
5.5 1
2 51
s
- 4.5
]
E Y
8* 3.5
34
2.5
2
2 T T T T T T T T 1

1 5 2 25 3 3.5 4 45 5 55 6

Iterative No.

Fig. 4: The optimized diffusion parameters by the
algorithm (LSMSV)

six iterated times. Therefore, from the analysis in Table 2
and Fig. 2 and the error value m Fig. 3, the data show the
error and the increment 8D convergent stately. It is easy
to illustrate the convergence of the algorithm (LSMSV).

In order to test the convergent velocity, we obtain
the computing time to compute the optimal parameters by
the algorithm (LSMSV) in the numerical examples. The
computing time is less than one how by the algorithm
(LSMBV) in this example. In order to test the merits of the
LSMSV algorithm, it 1s hard for us to use the algorithm in
the study (L1 et af, 2010, 2011) to compute the parameter
values. However, the idea of LSCA for the sphere and the
3D disc 1n the study (L1 et al, 2010, 2011) 1s same.
Therefore, we use the computing time of LSMSV for the
sphere domain to compare the computing time of LSCA
for the disc in 3D.

The computing time shows that the LSMSV algorithm
to compute the 3D sphere is very faster than the algorithm
to compute the 3D discs in the paper (Li et of., 2010, 2011)

mass (g)

—p— Experimental data
—o0— The first optimization value
—— The second optimization value
—G— The third optimization value
—0O— The fourth optimization value
—%— The fifth optimization value
—*— The sixth optimization value

T T T

T T T
100 200 300 400 500 600
Time (sec)

Fig. 5: Comparmg the diffusion mass computed and the
experimental data

Table 2: The error value, the increment of the optimized diffusion
parameters and the optimal diffusion parameters based on the
initial value 0.0001

Iterations Total error 8D Optinized value D
1 3.0478x10° 1.3867x107* 2.3867x1074
2 5.9664x1 0 1.7962x107* 4.1829x107*
3 7.0914x1 1.3799x1074 5.5627x1074
4 2.7044 %1 0 4.1273x107° 5.9755x1074
5 7.6352x1073 24451 <1078 5.9999x1074
) 7.3919x107° 7.6555x1077 6.0000>107*

because the LSCA algorithm to compute the optimal value
costs more than one week. In addition, from the
computing processes, it 1s also easy to understand why
the computing velocity become very high because the
algorithm in this paper only compute some the polynomial
functions in each iteration to cost only less than 10
minutes, however , the algorithm in (I.i et al., 2010, 2011)
needs computing millions linear equations in each
iteration to cost more than one day. Therefore, from the
computing convergent time and in the computational
theory, we can obtain the conclusion that the convergent
velocity of algorithm (LSMSV) 18 very fast.

In order to estimate the validity of the algorithm
(LSMSV), the error values between the experiment values
and the computed values by the LSMSV algorithm are
shown in Fig. 4 and the first column in Table 2, the optimal
computed drug mass depending on the different optimal
diffusion parameters and the experiment mass are depicted
in Fig. 5. From the first column i Table 2, the errors of the
optimized value D and the parameters 15 only
0.00003x107, the error between the optimal computed
drug mass 473.2175 g and the experiment mass data
486.1531 g 18 only 12.9356 g and the relative error of the
mass 18 orly 2.6%. The error result shows the algorithm
(LSMSV) is valid to extract the diffusion parameter of the
drug releasing in the sphere devices. From the numerical
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example, comparing the data of all iterative steps of the
optimization values and the experimental data, it 1s easy to
get the conclusion that the algorithm (LSMSV) is the
convergent, fast and effective algorithm to extract the
diffusion parameters of the drug releasing in the sphere
devices.

CONCLUSION

In this study, we propose a computer method to
extract the diffusion parameters of the diffusion process
of the drug releasing in the sphere delivery device based
on the least square method and the separation variable
method (LSMS3V). The numerical result given in the
previous section demonstrates the convergence, the
computing velocity and the validity of this algorithm and
the effective of this optimal control model to estimate the
diffusion parameters for the drug releasing in the sphere
device.
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