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Abstract: We denive for the first time, the new mathematical expression for Local Truncation Error (LTE) by
using the order trees for the parallel fifth order Runge-Kutta formulae while solving the mitial value problem
v =1 (xy) y (X)) =y, Based on the concept of tree theory, a modest effort has been made to obtain the error
coefficients and derivatives of the T.TE using the order trees and elementary differentials of the explicit parallel
Runge-Kutta fifth order methods. It is shown that the new parallel scheme (PPRKF) compares well with the
analytic solution and 1s often more accurate than other parallel methods (PRKF 1 and PRKF 2). With the help
of numerical examples, the absolute error and estimated L.TE have been computed.
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INTRODUCTION

It 15 well known that ordinary differential equations
arise in many fields of scientific endeavowr ranging from
mathematical  modeling of  electron transport
(Efurumibe et al, 2012), the problem of unsteady
stagnation pomt flow and heat transfer (Nik Long et al,,
2011), the flow and heat transfer characteristics of a
visco-elastic fluid (Krishnambal and Anuradha, 2006), the
steady and unsteady laminar flow of an electrically
conducting viscous mcompressible fluid between two
parallel porous plates (Ganesh and Krishnambal, 2006,
2007), m the simulation of cellular neural networks
(Ponalagusamy and Senthilkumar, 2008), in the Potato-
Osma dehydration process (Mazaheri et al., 2005) and
invariably arise if there is motion or growth (Burrage,
1995) and many such system of differential equations
(Ponalagusamy, 2008), cannot be solved by analytical
methods in a closed form selution and hence we go 1 for
numerical methods.

Much research work has gone into the derivation and
analysis of numerical methods of Tnitial Value Problems
(IVPs) because of practical importance and the maim class
of method commonly employed in practice is the
Runge-Kutta method (Butcher, 1987). Runge-Kutta-
Butcher (RKB) methods are being applied to determine
numerical solutions for the IVPs that arise in the fields of
science and Engineering. Runge-Kufta method was
originally derived from Runge in the year 1895 and
extended by Heun and Kutta about the year 1901. The
computational techniques and the subject of research of

both the implicit and explicit Runge-Kutta methods
were discussed elaborately by Butcher (1964, 1987),
Hairer and Wanner (1974), Hairer (1981) and
Hairer et al. (1993) and many others. Further approaches
in Runge-Kutta methods are found by Khiyal and Rashid
(2005) and Bazuaye (2006). Tt is of interest to note that
increasing availability of parallel computers has recently
spurred a substantial amount of research concerned with
the possibilities for exploiting parallelism in numerical
solution of Tnitial Value Problems (IVPs) for ordinary
differential equations. The preliminary swveys of parallel
methods for TVPs and the need for parallel computation in
IVPs were provided by Gear (1986), Tackson (1991) and
Tackson and Norsett (1995). Burrage (1995) extended the
surveys of parallel methods for [IVPs using Runge-Kutta-
Butcher methods. Evans and Sanugi (1989) and Katti and
Srivastava (2003) have proposed parallel algorithms for
Runge-Kutta formulas. The construction of variable
step-size approach for class of general linear methods for
stiff and nonstiff systems in sequential and parallel
environment was given by Bazuaye and Ataha (2006). The
stability of the Runge-Kutta methods was analysed and
elaborated by Butcher (1987). Ponalagusamy and
Ponnammal (2008) described the stability regions of the
existing and the new parallel Runge-Kutta-fifth order
methods.

In regard of the error analysis of the Runge-Kutta
methods, Lagrange has given the error bounds for the
Taylor polynomials in the year 1797 and Cauchy derived
bounds for the Euler polygons in the year 1824. Kutta and
Runge derived error coefficients in the year 1901 and 1905,
respectively for the fowth order classical Runge-Kutta
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method. Bieberbach used the Taylor series to find the
error bound in 1951. Evans and Yaakub (1996), provided
error estimates and error control for fifth order weighted
Arithmetic mean Runge-Kutta formula
Taylor expansion for the imtial value problem y” = f (y),
y (%) = yo.

The local truncation error coefficients and formulas
for Runge-Kutta methods by using the order trees and
elementary differentials were discussed elaborately by
Hairer et al. (1993). The order trees and elementary
differentials related to the derivatives in the Taylor
series expansion were elaborated by Butcher (1987) and
Hairer et al. (1993). According to Butcher (2010a, b), trees
play a central role in the theory of Runge-Kutta methods
and they also have applications to more general methods,
mvolving multiple values and multiple stages.

In this study, we derive the Local Truncation Error
(LTE) for the parallel Runge-Kutta fifth order methods for
the mnitial value problem y* = f (x, y), v (x,) = ¥,, by using
the order trees and elementary differentials. The L.TE is
obtained for the examples and compared with the absolute
error at each step.

by using

ORDINARY DIFFERENTIAL EQUATIONS AND
RUNGE-KUTTA METHODS

Ordmmary differential equations can be represented in
one of two ways. The first 1s known as non-autonomous
form. The Ordinary Differential Equation (ODE) 1s written
as:

vy )=ty &) ()

The variable x 1s called the independent variable and
v (%) is the solution to the differential equation. Tt should
be noted that y (x) can be a vector-valued function, going
from R-R"™ where m is the dimension of the differential
equation.

In the second form, ¥’ (x) does not depend directly on
X, except as a parameter of y (x). A big advantage 1s
obtamed by transforming Eq. 1 to an autonomous form by
appending x to the dependent variables as:

[ﬂ{uﬁ,y)} @

Any non-autonomous system may be written in
autonomous form by adding the equation x” = 1 to the
system. If we add the mtial condition y; = ¥ (x,) to the
system of equations we get the Imtial Value Problem
(IVP):

Yy &)=ty X ¥ =y (x0) 3

Definition 1: Let s be an integer (the number of

stages) and a,,, a;,, @y, ..., Ay, Ay, .., SR b, b, by, ... b,
C,, ..., G, be real coefficients. Then the method:
k, = 1{(x, ¥o)

k; = f(x,tc,h, ypthay ki)
k; = f{xgtc;h, yth (a;, ktay, k)

(4
k, = fix;tc.h, yD+h.(;151 k+. . +a, . k)
vy = yoth (b k+.. +bk)
where, ¢, satisfy the conditions:
Cy = 8y, C3 = 8y 8 gz vy G = 8y (5)
or:
o=Sa, (6)

is called an s-stage explicit Runge-Kutta method for
Eq 1.

DISCUSSION OF ORDER CONDITIONS OF
EXPLICIT RUNGE-KUTTA METHODS

To determine the coefficients of Runge-Kutta
methods, 1t 1s necessary to derive the order conditions.
For the order conditions we must compute the derivatives
of y, = y,(h) for h = 0 and compare them with those of the
true solution for order 1, 2, 3 and 4 etc., depending on
the order of the method. Butcher (1987) and
Hairer et al. (1993) used the rooted trees and elementary
differentials to determine the order conditions instead of
expanding into Taylor series as deriving the order
conditions 18 more complicated i higher order cases.

The mam difficulty m the denivation of the order
conditions using rooted trees 1s to understand the
correspondence of the formulas to certain rooted labeled
trees. The components of vectors are denoted by
superscript indices as in tensor notation (Hairer et al.,
1993). Then Eq. 2 can be written as:

Vy=£0&,...yJT=1,....n (7)

We next rewrite the Runge-Kutta method Eq. 4 for the
autonomous differential Eq. 7. In order to get a better
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symmetry in all formulas of Eq. 4, we replace k; by the
argument g; such thatk; = £ (g,).
Then Eq. 4 becomes:

i1

T_d 1 n p

gi=yp+ hf(g.Lgty i =128
0 jzl:a*u i j )

s
vi=ya+2.b;hf' (g}...6})
i=1

If the system Eq 7 ongmates from Eq. 2, then, for
IT=1:

il
g=% + 2, ah=xy +oh
=

by Eq. 5. We see that if Eq. 5 is satisfied, then for the
derivation of order conditions only the autonomous
Eq. 7 has to be considered.

As indicated in the beginning of this section, we
have to compare the Taylor series of y,' with that of the
exact solution. Therefore, we compute the derivatives of
y,' and g’ with respect to h for h= 0.

Trees and elementary differentials: The continuation of
the process of Taylor series gives rise to very complicated
formulas. Tt is therefore, advantageous to use a graphical
representation  (Butcher, 1987).
development of the order of a method, the basic tree

For a convenient

theory 13 mtroduced. A tree 13 a rooted graph which
contains no circuits. The symbol T is used to represent
the tree with only one vertex. All rooted trees can be
represented using T and the operation [t,, ..., t.].

Definition 2: Let A be an ordered cham of indices
A = {j<k<l<m<...} and denote by A, the subset
consisting of the first qindices. A (rooted) labeled tree
of order g (q=21) 15 a mapping (the

mapping):

son-father

AN A,

such that t(z)<z for all zeA)\{j}. The set of all
labeled trees of order q is denoted by 1.Tq (Hairer et al.,
1993),

Definition 3: The order of the treet € LT, is defined
by:

1,ift=1
q=r(t)= 1 e
+r{t)+- -+ if t=t, Lt ]

That is, the order of a tree 1s the number of vertices
the tree has. The number of trees up to order 10 can be
seen1 1 Table 1. The height of a tree 1s k-1, where k 1s the
number of vertices in the longest path beginming with the
root (Butcher, 1987).

Definition 4: The density of the tree teLT  is defined by:

lLift=1
v(t)={ o
HUMUNTCIRRTUS N £ | TN Ay

A simple way of finding the density of a tree 13 to
attach to each vertex a number that is equal to the number
of vertices above it plus one. The density is then equal to
the product of the numbers attached to the vertices.

Definition 5: For a labeled tree teL.T, we call:

F“(t)(y):g] fe EEEL@)...

the corresponding elementary differential. The various
terms in the elementary differential have a structure
related to rooted trees. The summation is over g-1 indices
K.L, ... (which correspond to A,\{j}) and the summand is
a product of g * s, where the upper index runs through all
vertices of t and the lower indices are the corresponding
sons. We also denote by F (t) (v) the vector (F' (t) (y), ...,
F*(t) (¥)) (Hairer et al., 1993).

Definition 6: The set of all trees of order q 15 denoted by
T,. Alse ¢ (1), for teT,, is the number of elements in the
equivalence class t; 1.e., the number of possible different
monotonic labellings of t.

Definition 7: Let t be a labeled tree with root j. We denote
the elementary weight T, (t) for stage j by:

D; (It ty, D=3 aga 9)
£l

the sum over the g-1 remaimng indices k, 1,... as in
Definition 5. The summand is a product of g-1 a’s, where
all fathers stand two by two with their sons as mdices.

The Taylor expansion of the exact solution: The general
result for the gth derivative of the true solution is as
follows:

Theorem 1: The exact solution of Eq. 7 satisfies:

teLT,

¥ (xp)= 3 Ft)yg)= 2 a(F()(yy) (10)
T,
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Table 1: Order trees, order conditions and elementary differentials of order 6 (q=16)

T Graph T [e4(8] PO D) Order conditions Zbd(t) = 1/T(®
n
st . m , 6 1 & e f<ELEMENEP 4 aa,a,a,a, & blc'-j:%
k
J
Ls m nhoP A 12 10 A fhue FEFEMENER a aa,a,a,a, a blci‘alkck:é
Wk
J
sz ng 18 10 8 1, K FLEMENER & a.a,8,a,a, & beiac :é
P, n
\V/k
]
m 1
2 / 36 10 é f;NP ff fLM FUEN P é Q) 3y A, 2, 3, é b,CT QaC = %
n
P k
J
1
tos P / 24 15 8l FELEMEN FVEP a a,a,a,a,a, 8 bca,ca,c,= 2
m
n k
i
m 1
Lo R ! 24 5 Q1 K, FUEMENER a a,3,a,2,a, 4 ba,cic,= o
P,
k
J
m 1
Ly 48 15 8 £, 1K £, fMENeP 4 a,a,a,3,a, 8 b aca,c =
[ 72 5 A e £ fhy FUEVE7 a a,a,a,a,a, & bc a,a, 7:7—12
1
tas 144 5 & £ £ NP & adianana, @ boaaanc, =
1
tio . m l 36 10 Qfly FOfy FMENEP a a,a.a,a,a, S bya,c,a,a,c = =
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Table 1: Continue
T Graph
bs 11

T a(®) Py

D)
72 10

2 A AT Ay

Order conditions Zbd(t) = 1/T(®

1
b.a, ca, ot = _—
E FAE e e 36

3 foy fag £3 T5EMEF

tg 12 30 1 g e FTEEN T T s tutmgty 3 ba, ol = 31*0
513 60 6 SEL % gL FEpN gD T o tnimin, 3 byay clayo- %
1
t14 90 4 Sy fp Tapy £ EVEF 20 Agdyg Ry By Ay z by ag, Gy el = 20
l1s 180 4 iy I fa B £5FF 3 g Ay Ay, Ay By 3 obyag Gy a0, = =
m
b1 k 120 3 Eflj( fIfN f’ia fo}; £* E By By By Ay By E b] By B Cuiyt = %
n 1
j
n
; p ‘/uJ 120 ! Efl]{ flz fiﬂm fo;I e Z B Ba i B B E bjaka“ci = %
1
1k
4j
i
b1z 240 3 i fF Do I £ FF 3 aganay, Ay, dy 3 obyag a,0a,0, = —
mn 240
I
k
j
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Table 1: Continue

T Graph Tt o(t) Py D) Order conditions ZbD(t) = 1/T(t)
ts1s P ! 360 1 QfL L M fNEP A 2a,2,8,a,,a,, 3 ba,a,a,c = 1
m 360
/
. k
J
ts2n n P 720 1 éfi fKL i f'\,c fy fP é &)y Ay Ay By A é bl 8y, 8y Ay Ay By = =0
/
m
k

For the proof, refer to Hairer et al. (1993).

Theorem 2: Hairer et al. (1993): The derivatives of g
satisfy:

8 o= 2 703 2y D (DF(1)y,) (1D
eLT, 7

The Runge-Kutta solution y, of Eq. 8 satisfies:

17 laeo = 3, @)Y (1) by Dy (OF(t)(3p) (12)
1

11T,

Comparing Theorem 1 and Theorem 2 to match the
Taylor series, we obtain the following Theorem.

Theorem 3: A Runge-Kutta method Eq. 4 1s of order p
iff:
1

b ()= (13)
250

for all trees of order <p (Hairer et al., 1993).

Therefore, For any Runge-Kutta method of order p,
if we construct the order trees, elementary differentials,
elementary weight function and other functions related
to order tree structure such as ¢ (), v (t) and r (t) as in
Definitions 2-7, then Eq. 13 m Theorem 3 represent the
order conditions for any Runge-Kutta method of
order p along with Eq. 6 by not actually expanding into
Taylor series. Finding the LTE for parallel fifth order
Runge-Kutta method using the tree functions 1s explained
i section 4 which can be extensible to lgher order
methods.

The local truncation error (LTE): For higher order
methods, obtaining rigorous error bounds is unpractical
and therefore it is necessary to consider the first nonzero
term in the Taylor expansion of the error. For autonomous
equations Eq. 3, the emror term 1s best obtained by

subtracting the Taylor series and using Egq. 10 in
Theorem 1 and Eq. 12 in Theorem 2.

Theorem 4: If the Runge-Kutta method is of order p and
if fis (pt1)-times continuously differentiable, then the
LTE can be obtained from:

pH
¥ Gty = 3wt eF O 0w (1)

(p+1) 1T,

Where:

()= 19(D) Zs:bJ (1) (15)
=

and y(t), a(t) and @, {t) are given in Definitions 4, 6 and 7.
The expressions e (t) are called the error coefficients
(Hairer et al., 1993).

THE PARALLEL RUNGE-KUTTA
FIFTH ORDER METHODS

Parallel machines are computers with more than one
processor and this facility might help us to speed up the
computations i ordinary differential equations. In this
section, we present formulas for six stage fifth order
parallel versions of Runge-Kutta methods.

Definition 8: s-stage p-parallel g-processor Runge-Kutta
method: Tn a Runge-Kutta method, if the Runge-Kutta
matrix, A, consists of pxp blocks with each block of
dimension atmost g and A strictly block lower triangular,
then such a method 15 called an s-stage, p-parallel,
g-processor explicit method and the parallelism arises from
the fact that up to g processors can be used to compute
the stages withn a block concurrently (Jackson and
Norsett, 1895).

Parallel Runge-Kutta-fifth order method 1 (PRKF 1):
The following is the existing 6-stage 5th order 5-parallel
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2-processor parallel Runge-Kutta-fifth order algorithm
(Tackson and Norsett, 1995) (selecting a,; = 0 so that k;
and k, can be evaluated sinultaneously):

K, =hf(x,.y,)
K2=hf(xn+%,y“+25ﬂ)

K, =hfix, +;, Ya +%k1 ‘*’%kz)

K4:hf(x“+%, Yn+%k1+%kg) (16)
K, =hf (x, +%, v, +3—92 k, 7% , +%k3 +%k4)

9
K;=hf(x, +h, y, ——k, +—k, - —
5 (x, ¥ s 1 Tag T

1
Yo = ¥n o g (T +35k, +12k, +32k; + Tk)

Parallel Runge-Kutta-fifth order method 2 (PRKF 2):
The following 1s the existing 6-stage Sth order 5-parallel
2-processor parallel Runge-Kutta-Fifth order algorithm
(Tackson and Norsett, 1995) (selecting a; =0 so that
k;and k; can be evaluated simultaneously ):

K, =hf(x_.y.)
K2=hf(xn+§,yn+k?1

K3=hf(xn+%, Yﬁ%kﬁz—ﬁsk;)

K, =hf(x, +%= y“+ik1—3k2+%k3) (17)
K;=hfix, +%, y,ﬁ%kﬁgkr% . +%k4)
Koo, + 2y, - Sk 2 0 B

P +é (23k, +125k, - 81k, +125k, )

Proposed parallel Runge-Kutta-fifth order method
(PPRKF): The following is the new 6-stage 5th order
S-parallel 2-processor parallel Runge-Kutta-fifth order
algorithm (Ponalagusamy and Ponnammal, 2008)
(selecting a,, = 0 so that k, and k; can be evaluated
sinultaneously):

K,=hf(x_y,)

E,=hf(x, +%,yn +%)

KE:hf(x“Jr%, yﬁ% k1+%kz)

Kb, 2y e k-T2 (18)
K,=hf(x, +%, Ya +% k, —%kz +%ks)

K,=hf(x, +h,y, 7% k, +5k2 +%k3 f%kﬁ%ks)

We have made use of the order trees and order
conditions to find out the LTE for the parallel Runge-
Kutta-fifth order algorithms. We have computed c(t), y(t)
and @(t) which are depicted in Table 1. Table 1 also
presents the order conditions related to trees tel.T, for
deriving LTE for the parallel fifth order Runge-Kutta
methods presented in this study. Each subscript j, k,... 1s
summed from 1 to s, the stage of the method. The
expressions e(t) are called the error coefficients defined as
in Eq. 15 and these coefficients are calculated using v (t)
and (a;) matrix and b;’s from the following Runge-Kutta-
fifth order methods and presented in Table 2.

Description for obtaining the error coefficients: To
obtain the I.TE of the parallel fifth order methods we need
the 20 order trees of methods of order 6 which are listed
here in Table 1 are used. We are making use of the

Table 2: The error coefficients for the parallel Runge-Kutta-fifth order
methods given by Fq. 16-18

Error coefficient e(t) PPRKF PRKF 1 PRKF 2
€51 -3 0 1
1600 75
. 125221 27 1
309400 100 75
e 123477 101 1
61880 200 25
s 3919457 49 1
6183000 250 150
€ss -2371833 99 1
43316000 250 75
ess 63193833 643 -109
123760000 5000 225
e 11999 91 1
7140 200 25
€ss 29652313129 66172 1
23390640000 118125 150
ess 147593 53 0
77350 125
€510 E 1 71
91 5
et 1000511 173 1
’ 2165800 200 25
€1 1633617 31 3
’ 1732640 40 5
€1 6855256693 4 1
' 23761920000 625 10
€14 1945639 29 El
1697280 40 20
€15 188771 381 1
116025 1000 5
€16 78291 23 0
49504 50
€17 16143 1 1
’ 11648 g 2
- 122 1 1
’ 91 g 5
€19 457 1 0
364 5
Bion 1 1 1
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elementary weight function @, (t) and density function
vy (t) in the Table 1 and by the formula given in
Eq.14and 15.

From Eq. 15:

e(t) = 1-y{t) 3b, @, (1)
=1

The b’s and a;’s are defined in Eq. 16-18 for the
parallel  Runge-Kutta fifth  order  methods,
respectively.

For example, to find the error coefficient e;, for the
parallel Runge-Kutta fifth order method 1 givenin
Eqg 16

]
e, =1 (1) Z; b, @, (1)
<

where, @, (t) = L aya,a,.a,.a,.

Here, the indices j takes value from 1 to 6 and k, I, m,
n,pvary from 1 to 5.

By making use of the coefficients:

a*zafE *ia*ia*ia*Oa*ia*2

1”58 64’332 o1 T g e g te Bln T e T o

a—3a—9a—9 —35:1—0a =— 8b—7

T T gy 7g e T Hu g5 7T 50t
32 12 32 7

by= 0,b, =" b= b= b=

T 007 907 9070 90

We abtain, e, (t) = 0.Similarly, The error coefficients
of the parallel Runge-Kutta fifth order methods are
obtained and given in Table 3.

Description for obtaining the derivative terms: We
have obtained the derivative terms using the formula
F'(t) given in Table 1. For example, to find the first
derivative term, i.e., for teT,, by making use of f' =1,
ff=r

F) ) = Ef e = T Ty T o TH1 0F e 5410
TN Sl S S S

upon simplification. Similarly, all the other derivative terms
are obtained which are upon simplification given as
follows:

s For tety) fomtd G o TH1I06, 110 £, 45
SN s S

o Fortety £ 43 £ £ 00 £F2f f, £43
N O v S O O

»  Fortety f,L 425 L6028 £ £ fraf, £+
o L2 £ L 0+2 £ £ O+ £ £*

o Fortety: L G642 6 LEFE B2 £ L7+ £ L0+
£ £

s For tety: 07426 £ 8L G426 £ P+ £
4, £

»  For tety: §, L+ L A3 L6 2 € £ P+3f £ 0+
£ £ fi+3 £, £ e £ £, f

s For tety £,M42 £, 0 00 LG L LF
+f, 6, 0+ L

« For tety,:
P+

s Fortety,: £ £ 67 £+ 76 £+ £7F

»  Fortety,y LL L+, £ 842 £ F £ L0+ 2f £ £ F
+H 0

s Fortet,; [ £E£42 £ £ £+ £°F

»  Fortet,; £, +4L £ F4EE P+EE P £, O+
3EL, FH, o, PHE f

»  Fortety,; {643 {7 LH+EH2 1 P+ 0

o Fortety,, £, AL £ 682 € £ FHEEE 242 £ £

£ F6.FH2 7 LR EE, P42 £ £, 1,

EYTVORY

ylywbax T lylyylax XYY YTy
+H L,

o For tet,; L0 L (2 f4 [P0 [2,
£f f*

+  For tet, s R W N T
£ LEHE £

»  Fortety,y L 43 {6, 3 £ F+°f
o For ety §) Lot T LEr L L0,

Table 3: Numerical solutions of Eq. 29 using 16-18 and the exact solution of Eq. 30

t

¥ () PRKF 1

y ) PRKF 2

¥ (t) PPRKF

¥ (t) exact sohition

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

1.111200676166252
1.252305861306426
1.4381634992684074
1.6931091629940396
2.0609571381417444
2.63096564 782441
3.620264308146107
5.736376893871067
13.343869372107086

1.1156189945744146
1.2642092832206825
1.463 715868778002
1.74444806876984913
2.1659480419818555
2.864407885295942
4.245626037377813

1.1115122547098906
1.2531607259800628
1.4400011995155453
1.6968269156284592
2.0685859656164265
2.647849838494417

3.6641998062742247
5.897953017675903

14.973303510123667

1.1114633762807828
1.2530169332674046
1.4396707765716792
1.696110908922183
2.066999712085663
2.6439996941 524915
3.6529027867046437
5.848010804732598
14.304864332834005
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s Fortet,,,: £ 42 £, 71
+  Fortety,y 26+ f

Thus by making use of the derivative terms in this
section and error coefficients given in Table 2 and also by
making use of Eq. 14, we can find the LTE of all the
Runge-Kutta fifth order algorithms given earlier which are
as follows:

¢ The estimated LTE obtained for Parallel
Runge-Kutta-Fifth order method 2 (PRKF 1) is given
as:

Hofm(gulmsfz f £ +29385726f _ f +8138340f°f,_ f —4725006°f 1,

+13934025£F7, £, + 7944804 %, , £, + 360045£°f, £ +16237935¢°F, £
+41107501F, + 8221500£ ; +4110750£7f, + 47013756, £, + 21971258°f, f +

-5 3
9450001f; +189 (3215%,, £, + 512f, £, + G07T632MT, £, + 552730567, £+
2826374576, £,1, +6449625F 7, £21, +14789250£°f)f, +15485585f £, £,
+945ff (58491 +G6193f7 + 3889 ) + 43120358 £ +107455958°€7F,
+2459835 €' f, -+ 472567 (1188f, - 5, (20T, - 439€_)+ 1188IT, )

2y £2

+20f,, (926106, +1852206F, + £, (945(92f, - 5(2 + 51%)12) + 451798£F )
+926106F, ) + £, (2551500f,__ + 7561 (10125 +128)f_, + 756f (3375
+2£(3375 + 641)) £, + 23625(27367, + 202 1)+ 52937601, 1,
+5(41542201F_ £, + 3780001, + 2348677 1%, (2f,_ +f,)
+14175£2(58+174f + 65f,, + £(96 + 316)f, ) + 3199770 £ £, )

4
+2648268{°1f  + 163485lf]0f;fwffx

(19

* The estimated LTE obtained for Parallel Runge-
Kutta-Fifth order method 2 (PRKF 2) 15 given as
follows:

hﬁ
(6 o

324000
+6OfF_ £ —3150f°f f_ +GOf,  +120ff 45 +300°f

HYFY

+180f. £, £, —437 £ —900£f, £ — 900ME’f £ — 270f21 S0 1, £ +

370

451 £ +12156 £7 + 36456 7 + 901 £ +450ff £’ -1080f 1 £ +

ety sty

T20£°f, £ + 12154 +3430£°f] +1215°F, — 900£7f, £ — 180 £ -
3 2 3 4 5

B10ff_f — 810f°f_f + 900f £} + 450fF + 6f,, (f +10f, — 20fF, )+

e
S(O(-A+)fEL +120°F  -218f f —f_£)+306f f —

x Ty HIFFY sy Py o Yy

1090ff, £, —3240f*f_f - 480 f f -3210°f f -630fXf

+30f,f,f,, — 2106°f, {17 +1890ff £ —810£7f £, —270ff £
—1710f%°f - 240f7f £2 — 240F°F £2 + 90ff*f +30ff f
¥y HOFY ¥ ¥y xTVFF 00 FYF

—1030f°f, £, +360f° f ff +360f°Cf, -1060f*f f
FISEEL, + 667, + 36065, fF)

+24f +60f7f

SRy

+30f, —3210f_f_—270F£2 +90f7,

(20)

¢ The estimated L.TE obtained for Proposed Parallel
Runge-Kutta-Fifth order method (PPRKF) is given as
follows:

ht o s 19456397 (L+30)F, + FA+1)°E, 87
——(2f £+ £+ L * T A, + A )(E,, + 1T,
720( ey 282880 7 y (L ), + 1)
20652313129(f, + £ )f,_(f + f(2f_+1f
BT s fof v 6 (@, + 11, )8, (L, + 1EL, +1,,)
364 7 e 2339064000
. 78291F, (f,, + T, )(f,, + £2f,, + 1T ) . 1475936f, (1T, )
12376 15470
. (£, + £ )Qf_ +1ff_ . A900851f, (£7f, + ff (ff £ +(1+ D), + 1), )
15470 1732640

11999
—W(fx (f, +1, P +ff (2 + ff_{1+£)f, +£712))
+16143fy (£, (67 + £,(£, + 1) . £, (6L, + (£, +£.0)
2912 2912
. T116499(f, + £ ) (f,_ +£,) . 18877187 (f,, +3f (f, + ) + 16 )
8563200 116025
, 53193 833(f,, + £, ) (£, +3f(f, + M, )+ )
24752000
123477€ (f, + £,)(E, +T@f,_ + M, )
N 5188 N
L2220, (B + 38 )+ FQ4 20 By + 8 (B + 3 oy + Fiy) + £1,.)
30940
. 3919457 (f, (£, +E2f + £, N+ 1@ +H ) + 2+, 0
618800
. 6855256693(F°f, (£, +H )+ £, (g + T @E, + 56, +36°E, + £, 1))
23761920000
| 3 ) (Cy 58 @y + 20T+ S S B o )
1600
,L000s11E £, (£ +£, (71, + szx)))
216580

(21)

LTE bounds: Tf we assume that the following bounds for
f and its partial derivatives for xe[x,, X,] and ye[-ee,00]
according to Lotkin, 1951, then we have:

[F (x, y¥=Q (22)
61§1(;;-Y) <ZJ”1 iti<p

where, P and Q are positive constants and p is the order
of the method. Here p= 5.

Therefore, the derivatives in Eq. 19 using Eq. 22 are
given by:
P3

P
< Q2 x§x—=PSQ

\fﬂ £t 3

p* p
ﬁ"myfy‘ < QXEXE:PSQ

|f* fF,

PP
xwa| <@ XEX*uzpsQ

Q

and so on.
Therefore, we obtain from Eq. 19:

3831543131 h°p’
LBy, s 043131 W P7Q (23)
6429780000 00000
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Substituting Eq. 22 into 20, we get:

1751 h°P°Q (24)

LTE, <
P27 18225000

Similarly, Eq. 21 gives as:

6p3
LTE, < 22969445 h"P7Q (25)
6736504320 00000000

These LTE bounds are useful in selecting suitable h
values according to the error at each step. We may select
an error tolerance TOL = 0.000001 . The step-size selection
h can be made using PRKF 1 and it is given by:

3
383154131 h*P°Q <TOL

6429780000 00000 (26)

1
167811.761 TOL Y6
or h< —_——
P'Q

Similarly, the step-size selection for PRKF 2 is given
by:

1751 h°P°Q

1
10425.471 Tol Y6 27
18225000

<TOLorh < G
rQ

and the step-size selection for PPRKF is given by:

2296445  h*P°Q

— = =<TOL
6736504320 00000000

1 (28)
[171254.521 TOLJE
or he<| —————
PQ

Tt is observed from Eq. 26-28 that the PPRKF allows
us to select the large step-size as compared to other two
existing methods (PRKF 1 and PRKF 2) when the error
tolerance (TOL) is fixed.

NUMERICAL EXAMPLES AND DISCUSSION

Example 1: We consider the differential equation:

y =y, y(0)=1 (29)

The exact solution of this equation is given as
follows:

3t 1 3t 3

Bessell| —,— Gamma|:f}r 2Bessell| —,— Gamma|:f}

® 4 2 4 4 2 4
yiby=- 2 2

Besgell l,t— Gamma l — 2Bessell l,t— Gamma i

42 4 42 4

(30)

Using the methods of PRKF 1, PRKF 2 and PPRKF,
the discrete and
example-1 have been computed for different time mtervals
and depicted 1in Table 3. The values of v (t) 18 calculated
for time t ranging from 0.10 and 0.90 using a standard
step-size h = 0.02.

It 15 pertinent to point out here that the obtained
discrete solution for the present example-1 using the
PPRKF guarantees more accurate values compared to the
methods of PRKF 1 and PRKF 2. For the higher value of
t, the methods of PRKF 1 and PRKF 2 give rise larger
values of y (t) and these numerical values are very much
deviated from their corresponding exact solutions. The
absolute error which is the difference between the
numerical solutions given by Eq. 16, 17 and 19 and the
exact solution given by Eq. 30 and estimated LTE using
Eq. 19, 20 and 21 for the methods considered in the
present study are computed and shown in Fig. 1. Tt is
observed from Fig. 1 that both the estimated LTE and
absolute error are less in present numerical technique
PPRKF and these errors are very high in the methods of
PRKF 1 and PRKF 2. The absolute error of the method
PRKF 2 is not plotted for the t values 0.8-0.9 as it 1s
considerably high. Similarly, the estimated errors of the
method PRKF 1 is not taken into account for the t values
from 0.5-0.9 as it shows very high values. The estimated
and absolute errors of PPRKF shows values nearer to
exact solution and 18 working well.

exact solutions of the numerical

Example 2: We consider the differential equation:

v =2ty y ()= 1 (31)
The exact solution of this equation 1s given as:

__r (32)
yit) 1+t2

Using the methods of PRKF 1, PRKF 2 and PPRKF,
the discrete and exact solutions of the numerical
example-2 have been computed for different time intervals
and depicted in Table 4. The values of v (t) 18 calculated
for ime t ranging from 0.10 and 1.0 using a standard step-
size h = 0.02.The absolute error and estimated L.TE are
showed in Fig. 2.

It 15 unportant to note 1t out here that the obtained
discrete solution for the present example-2 using the
PPRKF guarantees more accurate values compared to the
methods of PRKF 1 and PRKF 2. The absolute error which
1s the difference between the numerical solutions given by
Eq. 16, 17 and 19 and the exact solution given by Eq. 32
and the estimated LTE using Eq.19, 20 and 21 for the
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Fig. 2. Comparison of absolute and estimated errors of Parallel Runge-Kutta fifth order methods of example-2
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Table 4: Numerical solutions of Eq. 31 using Eq. 16-18 and the exact
solution of Eq. 32

y® ¥ ¥

t PREKF 1 PRKF 2 PPRKF FExact solution
0.10 0.990096 0.990096 0.990102 0.990099
0.20 0.961516 0.961516 0.96155 0.961538
0.30 0.917368 0.917368 0.917453 0.917431
0.40 0.861944 0.861944 0.862098 0.862069
0.50 0.799802 0.799802 0.800031 0.8

0.60 0.735023 0.735023 0.735322 0.735294
0.70 0.670805 0.670805 0.671161 0.671141
0.80 0.60937 0.600937 0.609767 0.609756
0.90 0.552065 0.552065 0.552488 0.552486
1.0 0.499559 0.499559 0.499993 0.5

methods considered in the present study are computed
and shown in Fig. 2. It is observed from Fig. 2 that both
the estimated I.TE and absolute error are less in present
nmumerical technique PPRKF in compared with the
methods of the methods of PRKF 1 and PRKF 2. In
particular, the estimated error in PRKF 2 1s very lugh when
compared to the other methods observed by Fig. 2.

CONCLUSION

In this study, for the first time, we obtained the LTE
of the parallel fifth order explicit Runge-Kutta methods
using the order trees and elementary differentials and also
by not using the Taylor expansion comparisons which 1s
useful in the examination of these methods. We have
taken two examples in section 5 and applied the parallel
methods to solve the examples. We also compared the
numerical solutions with the exact solutions and observed
that the method PPRKF is well suited in those examples.
The L.TE expressions and the T.TE bounds of the parallel
methods are useful in deciding the step size in various
applications to have error control. Further, higher order
parallel methods and their corresponding LTE can be
developed to use in engineering applications.
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