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Abstract: Estimation of camera relative positions is very important in computer vision Assuming that the
camera has been calibrated, this study presents two algorithms of camera relative pose estimation which one
is to recover the camera motion parameters by essential matrix and the other by epipolar geometry. Algorithm
1 is commonly used in three-dimensional (3D) reconstruction. In algorithm 2, firstly linearize coplanar condition
equation through Taylor's expansion and solve elements of relative orientation by iteration procedure, finally
recover camera motion parameters. Compared with the above two algorithms, algorithm 1 requires at least eight
pairs of matching points and consider degenerate condition, algorithm 2 simply requires five pairs of matching
points. Experimental data reveals that the two algorithms are feasible and the results of them are close which

have the higher robustness and can satisfy the requirement of 3D reconstruction
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INTRODUCTION

The development of modern digital photogrammetry
is closely linked with the research of computer
vision (Pu et al., 2011). The research aim of computer
vision is for the computers to acquire the ability through
image to understand geometry
mformation of object in the 3D setting, mcluding its
shape, position, posture, motion, etc. (Kaawaase ef al,
2011; Muwthy and Jadon, 2011). Sunply put, computer
vision 1s to utilize the computer to simulate the human eye
so as to identify and understand the space object. From
this point of view, there are so many similarities between
computer vision and digital photogrammetry. And of
course, the basic categories of photogrammetry are to
determine the geometric and physical properties of the
measured object (Hussain et al., 2007).

two-dimensional

Using the image correspondingly to estimate the
camera’s position, posture and spatial scene structure 1is
one of the mam tasks m computer vision and
photogrammetry (Yakar et al., 2009). The relative
position estimation between two or more cameras 1s called
the extrinsic parameters assumption in computer vision
which is
photogrammetry. The algebraic description of motion
parameters among the sequence images was first
suggested by Longuet-Higgins (1981) which could be
described by the essential matrix, E=[T], R, [T]. is
symmetric matrix of translation matrix T, T= denotes a

also called the relative orientation in

difference of one scale factor and rotation matrix R can be
determined by the decomposition of E but the results are
not the only.

Hartley and Zisserman (2004) and Wu (2008)
introduced SVD decomposition method for solving the
problem of Euclidean motion and structure. Practice
shows that it 1s a very effective method for solving.
Luong and Fraugeras (1997) presented another method to
recover camera motion from the essential matrix. In
addition, with its easy linear solution, fast calculation
speed and etc., eight pomnts algorithm (Hartley, 1997,
Hartley and Zisserman, 2004) are very widely used.
Wang (2009) obtained analytical relative orientation by
linearizing coplanar equations of stereoscopic pairs in
photogrammetry.

Spatial straightnesses S, M, S,M, S,S, are coplanar
and coplanarity constraint as shown in Fig. 1. Obviously,
the coplanarity condition 1s also true in binocular stereo
vision model, as shown in Fig. 2, so as to establish
coplanarity constraint equation to get relative orientation
elements. By a review of the relationship between relative
orientation elements and camera motion parameters,
camera motion parameters can be recovered.

In Fig. 3, when air survey camera photographs the
ground, the angle o is the primary optical axis of
photographic lens deviation from the plumb line
SN which is called aeroplane photograph angle of slope.
The current aerial photography technology keeps «
withim 3 degrees. In Fig. 4, air swvey camera must be
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Fig. 1: Stereo photogrammetry model

Fig. 2: Binocular stereo vision model
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Fig. 3: Aeroplane photograph angle of slope

vertical with the ground and fly along a straight line in
photographic process to keep the motion angle of

Air route

Datum plane

Fig. 4: Strip aerial photography

adjacent spacing camera to a minimum which usually
can not keep in computer vision.

This study mainly
connection between

considers difference and

computer vision and
photogrammetry and discusses typical methods of
recovering camera motion parameters and make theoretical

analysis and comparative experiments.

RETRIEVING CAMERA MOTION PARAMETERS
FROM ESSENTIAL MATRIX

Essential matrix: As shown Fig. 1, left and right
coordinate systems are O-XYZ, O'-X'Y'Z’,
respectively. Let (R, T) be motion parameters of
the second camera relative to the first one (R
and T are rotation matrix and translation vector).

camera

Assuming camera intrinsic parameters matrix K, K’ 1s
known, two images can be normalized transformation
m,=K'm,m’,=K’'"'m and two new images {L, I’} will
be obtained which are called the normalized image of the
original image. Fundamental matrix between origmal
images is F = K'77 [t]. RK™', so epipelar constraint
equation between I, and I’, must be m’", [t], Rm’, = 0. The
equation with essential matrix E can be determined as
follows:

E=[t. R=K""FK (1)

Retrieving camera motion parameters from essential
matrix: Assuming camera calibration matrix K, K’
15 known, from Eq. 1, the fundamental matrix F 1s
gotten and then essential matrix E can be obtained
(Zhao and Lv, 2012). The fundamental matrix F
requires at least 8 pairs of matching points which
is obtained by RANSAC algorithm (Zhang et al.,
1995, Wang et al, 2009, Guo et al, 2011)
Matching points can be obtained by Tomasi and
Kanade (1991), Harmms and Stephens (1988) and
Zhang et al. (1995). Using the essential matrix, we
can further

parameters. Let:

retrieve  the camera relative motion
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Through decomposing E by SVD, one has
E~Udial (1 1 0)V", where = stands for equality up to scale,
translation vector is t = [u,, U, U], rotation matrix is
R, =UWVorR,=UW™~

Assuming that the first camera coordinate system is
world coordmate system and then projection matrix is
P, =K [I 0] in the first camera, projection matrix has four
possible solutions in the second camera P, =K [R, t],
P,=K[R, P, =K [R,t, P, =K [R, -t].

From the geometric analysis of solutions in cameras,
1t 18 found that only one set of solutions are reasonable
which can be determined by reconstructing of a pair of
corresponding pomts. When Z coordinates of the
reconstructed pomts 1s negative value m the two camera
coordinate systems, it is the solution we need.

RELATIVE ORIENTATION DETERMINE THE
MOTION PARAMETER OF CAMERA

InFig. 2, S, S, are the optical centers of two cameras,
respectively, m,, m, denote the image of space-point M
under the left and right camera and S;m,, S,m, denote the
ray through the optical centers of two cameras,
respectively. They are coplanar with the baseline 3,3, of
cameras and this plane can be denoted by mixed product

of three vectors R, R, and B:
Be (R;*R;) =0

In the above formula, switching coordinates on the
type, its third-order determinant is equal to zero:
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where, [X, Y, Z,], [X, Y, Z,] denote the coordinates of m,,

m, under the two camera coordinate systems,
respectively. Equation 2 13 called coplanar condition

equations.

Retrieving motion parameters: As a camera coordinate
system, one may usually take one of the world coordinate
system 1n the binocular stereo vision. Assuming that the
first camera coordinate system is world coordinate
system, X, Y,, Z, 13 known and B, =Bxcosuxcosy,

By = Byxtanp, B, = Bxcosv where B is set to 1. Beyond
this, assume that ¢, w, ¥ denote the diagonal elements of
the two cameras.

Proposition 1: Coplanar condition equation can be
linearized by Taylor expansion.

Proof: Since Eq. 2 is nonlinear function, the first-order
term can be approximately expanded by Taylor formula
about multiple-vanable functions, we have:

P+ Lo+ Fdor Tanr Fop du+ Lopdo=o (3
o0 [20] K o du

If we want to solve the partial derivative:

2/
2l

i Eq. 3, we must first solve the partial derivative:

0X, 8X, @z,
Mt ok

When ¢, o, ¥ are small-angle, coordinate transformation
type can quote small rotation matrix:

The derivative of ¢, @, ¥ can be obtained,

respectively:
-1 x,
0 |y, |
0| £

-1 0 x,
0 0y,
0 0] -f

Using the above equations solve the five partial
derivatives of Eq. 3 and substitute into Eq. 3, we obtain:
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Bx By B Bx By B Bx By B
X, Y, Z|do+|X, Y, Zldo+|X, Y, Z|dk
f 0 x 0o f vy, -y, x; 0 (4)
2 X 4 Y
+B, du+ By du+E =0
2, X 2y Y,
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Proposition 2: Let:

EN
B,Z,

q =
can establish system of linear equations about the exterior

orientation, in which:

v BZ-BX,
X2, 2%,

15 the projection coefficient to translate unage point m,
mnto pomt M in the space.

Proof: On the one hand:

By By Bg
X Y, 2
)(2 Yz Zz ByZ,-B;X, ByZ —BzX
q=- = — Y, -By
4X,-XZ, X2, -2,X, X2, - 4%,

where, N 1s the projection coefficient of image point
m:

o BiZi-BX,
X7, -L%,

On the other hand, both sides of Eq. 4 are divided by
By, respectively and neglect quadratic or more terms.
Rearranging the result, we have:

Yx,do+ (Yy, - Zf Jdo- x,Zde+ (ZX, - X, Z, )du+ (XY, - XY, Jdu+ ;i =0
X
)

Only considering the simple term, X, vy, in
Eq. 5 can be replaced by X,, Y, and approximately regard
as:

Y=Y,
z,-2, (6)
x:g+§

Substitute Eqg. 6 into 3, N times all terms, we
Z

1

get:

XY, Y2 Y.
q= 2212 N'dg - (Z, +—LJN'deo + X,N'dk + Bydp ——2Bydv (7)
ZZ ZZ ZE

Proposition 3: Determining the relative orientation
elements p, v, ¢, ©, ¥ 18 equivalent to determining the
camera motion parameters.

Proof: Equation 6 is calculating formula for analytical
method of continuous relative orientation. Through the
solution of Eq. 6, relative orientation elements p, v, ¢, w,
K can be set which determine the rotation matrix R and
translation vector T, with:

T =[B; By By &)

cosPcosK—sinPsinwsink  —cosdsin kK —sindsinmcosk  —sinPeosm

R= COSMRINK CORICOSK —sin®

sin G cosK +coshsinmsink  —sin Osin K +coshsin WcosK  coshcos @

%)

Outline of the algorithm: In the Eq. 7, d¢d, dw, dx,
dp, dv are five unknown parameters and each
group matching points can solve an equation, so at least
five pairs of matching points solve the equation Ax = 1.
which 1s composed of Eq. 7. Since result on Eq. 7 1s
condition Hq. 2 after linearization, solving the relative
orientation elements is a step iterative process. In
practice, when all correction value 1s less than limit
0.3x107", the iteration ends. The steps of the algorithm are

as follows:

Step 1 : Let relative orientation elements p =v=¢d =0 =
K

Step 2 : Calculate R, T according to Eq. 8 and 9

Step 3 : Calculate projection coefficient N, N and solve
gqby Eq. 7

Step 4 : Establish equation AX =L

Step 5 : Solve above equation to get its iterative
solution

Step 6 : See if all unknown number and correction are
less than threshold, output R, T, else return
Eq.2

EXPERIMENTS RESULTS

Simulation result: In Fig. 5, a cube is shown in simulation
experiment. And take a commer and three mutually
perpendicular edges as the origin and coordinate axes in
the world coordinate system, respectively. The edge
length of the cube is 3000 from Fig. 5. Figure 6a and b are
the images of cubic, in which the cameras extrinsic
parameters are:
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3000 0

Fig. 5: The simulated cube and world coordinate

@ @ (b

Fig. 6(a-b). The images of the simulated cube under

different viewpoints
-0.866025 05 0 0
[rR1 T1]=|: 0 0 1 —5000]
0.5 -0.866025 0 -—10000
-05  -0.866025 0 -4133.98
and [R2 TZ]{ 0 0 1 5000]
0.866025  -0.5 0 -9160.25

The intrinsic parameters of the camera are as:

2000 0.2 800
K= 0 2000 630

0 0 1

From the above-mentioned circumstances, the
relative motion parameters between two cameras are
expressed by:

R= 0 1 0

-0.5 0 0.866025

0.866025 0 0.5 }

T = [-1 0 0], with rotation matrix R and unit translation
vector T. The algorithm in the first segment 1s denoted by
Algorithm 1 (E-SVD), the algorithm i the second segment
is  denoted by Algorithm 2 (Orientation). Using
Algorithm 1 and Algorithm 2 to carry out simulation

experiments, a cube has three visible surfaces, of

which each swface is composed of the 9 small squares.
Without considering the repeat points of adjacent small
squares, there are 9x4 comers in a surface altogether,
so the total number of corner points 1s 108 By these
corners, the experiment results are shown as Fig. 7
(R;1,j=1, 2, 3 denctes the ith row and the jth column
of the rotation matrix and T,1=1, 2, 3 denotes the ith
element of translation vector).

From the experimental results, it is obvious that the
precision of Algorithm 1 is a little higher than Algorithm
2 (Fig. 7). However, Algorithm 1 requires eight pairs of
matching points at least and considers the deterioration
{multiple peints are collinear or coplanar). Algorithm 2
only needs five pairs of matching points. The choice of
the first 30 data points 13 mconsistent in the Algorithm
1 and 2. Algorithm 1 selects the non-coplanar data points
(considering the deterioration), algorithm 2 chooses
coplanar data points. When the number of data points is
more than 30, two methods also choose the same data
pomts for the experiment. From the above results, the
result of algorithm 2 is edging closer to the precise value
with the increasing data points. Especially there are the
non-coplanar points in the data points (that 1s, the data
points are more than 30), the precisions of result
improve significantly. With regard to algorithm 2,
although the data points are all coplanar points, the
relative error 1s also small. In a word, algorithm 1 has
shightly higher precision and the applicability of algorithm
2 is a little better.

In addition, in order to test and compare the
robustness  of two algorithms, add the Gaussian noise
(the mean value 15 zero; the mean square error 1s from 0.3
pixel to 3 pixel) on the position of pixels. 50 independent
experiments can be executed for each noise level and
solve the averages. The following Fig. & shows the
changing situation of the motion parameters R, T along
with the noise.

Experiment with real images: The factual data can be
used for comparing and testing two algorithms which are
proposed mn this paper. The kind of camera 15 CCD digital
camera. The size of image 18 320240, Figure 9 and 10 are
two photos from different visual angles. Firstly,
(Harris and Stephens, 1988) corner detection 1s executed
(Elatta et al., 2004; Zhang et al., 1995), then 20 pairs of
matching points can be get though matching, where the
red circles indicate the coordinates of the selective image
points, the blue letters 1s the serial number of matching
position.

First of all, the camera intrinsic parameters are
obtained by Zhang (2000) calibration algorithm as
follows:
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Fig. 7. Accuracy of the proposed methods concerning the number of points, Rij: Element in the ith row and jth column

of R, T1i: Element in the ithrow of T

387.755726 0 167.452919
K= 0 383.109023 181.310596
0 0 1
Then, the calculation of parameters 1s made
by Algorithm 1, 2 and the above-mentioned
20 pairs of matching pomts. The results are as
follows:

0932306 0.010082
0.004415  0.999220
—0.361644 0.038188
0.920070 0.023163
-0.020239 0.999728
—0.389107 0.002824

0361331 .
-0.039249 ,"[1:[—0.872123 0137812 0.469477] s
0.931534
0388943
—0.011614 ,sz[-0.860123 0.141825 0.489974]’
0.921188

R,, T, and R, T, show the relatively motion
parameters from Algorithm 1 and 2. Tt is evident that the
results of two proposed algorithms are very close.
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Fig. 8: Accuracy of the proposed methods concerning the noise level, Rij: Element in the ith row and jth column of R,
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Fig. 9(a-b): Photos from different visual angles
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Fig. 10(a-b): Matching results under different viewpoints

CONCLUSIONS

Two algorithms of recovering camera motion
parameters are proposed on the assumption that the
camera has been calibrated. Algorithm 1 recovers the
camera motion parameters from the essential matrix.
Algorithm 2 recovers camera motion parameters by
coplanarity equation. Algorithm 1 and 2 are commonly
used in computer vision and photogrammetry,
respectively. Comparatively speaking, the precision of
Algorithm 1 1s a little higher than Algorithm 2. However,
Algorithm 1 requires eight pairs of matching points at
least and considers the deterioration. Algorithm 2 only
needs five pairs of matching points for recovering camera
motion parameters. More importantly, Algorithm 2 doesn’t
have the degenerate case, so Algorithm 2 is more suitable.
In this study, the derivation of two algorithms is revealed
in detail. Finally, simulation and real experiments results
show that the two algorithms are feasible and very close.
Meanwhile, two algorithms also have the higher
robustness and can satisfy the requirements of 3D
reconstruction.
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