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Abstract: An adaptive Unscented Kalman Filter (UKF) for nonlinear stochastic systems is proposed and 1t 1s
applied to the single observer passive location in Non-Gaussian environment. A Spherical Simplex Unscented
Transformation (SSUT) is used to reduce the calculation requirement. In order to improve the filtering effect,
an adaptive iterating estimation strategy is introduced to modify the gain of the algorithm update and the error
covariance of the filtering is replaced by the square root of the error covariance to ensure numerical stability.
The Monte Carlo simulation results show that, based on the glint noise statistical mode 1, the new algorithm

has faster convergence, higher stability and accuracy.
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INTRODUCTION

With the development of information war, the active
radar is threatened strongly for its defects, such as bad
abilities of anti-reconnaissance and anti-interference. By
contrast, passive detection system has long ranging, high
concealing and survival ability, due to not emitting
electromagnetic wave (Sun and Guo, 2008). Tn fact, the key
of single observer passive localization is the typical
nonlmear filtering. Traditional EKF (Extended Kalman
Filter) method and its derivative algorithms performed low
calculation precision and significant ill-posed feature
which lead to bad stability and divergence of filter in
strong nonlinear conditions (Tawfeig et al, 2011).
However, UKF produces several sigma points which are
gotten by the Unscented Transformation (UT) and deal
them with nonlinear transformation (Chouraqui and
Benyettou, 2009). It can avoid the i1ssues which are
mtroduced by the linearization process of extended
Kalman filter, while its performance is superior to EKF
(Tuliers and Uhlmann, 2004; Hassanzadeh and Fallah,
2008). But m the system of single observer passive
localization, classic UKF algorithm is effected by the
rounding error of calculator, weak observability and large
observational noise, which lead to the problem of poor
stability, slow convergence speed and low precision.
Therefore, SRUKF (square root unscented Kalman
filtering) is put forward under this great background in
some references and its performance is superior to the

ordinary UKF (Tuliers and Uhlmann, 2004). However, the
above algorithms can only be used in the environment
with Gaussian noise (Kaawaase ef al., 2011). Due to
scattering characteristic of target, Radar observation
noise is not the only white Gaussian noise, but regularly
glint noise with “the long tail” under the actual condition
(Hu et al., 2004, Zhu, 2007). To solve the problem, this
study focuses on the method of moment matching,
combined with SSUT (Yong et al., 2010), principle of
adaptive iteration (Zhan and Wan, 2007; Barzamimn ef af.,
2009, Xinchao et al., 2011) and square root filter, a unte
algorithm of SISRUKF (Simplified Tteration Square Root
Unscented Kalman filter) 1s proposed (Farivar et af., 2009,
Tong et al., 2007), this new method is more effective in
approximating  the state estimation and evidently
decreases calculational amount, finally provides an
effective way to solve the filtering problem under
Non-Gaussian situation.

PRINCIPLE AND PROCESS

Locating model: Locating and tracking of the target are
always m certamn coordinate system (Yedjour et af., 2011),
a two-dimensional model was built with observation point
as the origin of coordinate, meanwhile, radiation signal
reaching direction Angle, Angle variation, Doppler
frequency variation and Doppler frequency were used as
observational parameters. As shown in the first diagram
X, =[x, vy % %i]is the state vectors of target at k point
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Fig. 1: Geometrical relation between observer and target
in 2-D plane

intime and [ is the azimuth. Figure 1 showed Geometrical
relation between observer and target in 2-D plane.

Then, state equation and observed equation of
positioning system can be established accordingly:

X =KX + B, W, =1(X,, W,) (1)
. 2
ka:h(Xk)JrVk:[ﬁk ﬁk fo fy 1+V, ( )
where:
[ T,
E‘{o IJ
and:

Sy

denote state and noise transition matrixes, I; is 3-D unit
matrix. T is measurement period. W, is the state noise. V,
15 measurement noise. Given V, and W, wrelevantly. It
means:

E[WkWJT]: Sk,JQk (3)
E[v,v]|=8, R,

Based on the theory of kinematics, we get formulas as
follows:

B, =arctan(x; /¥}) 4)

b ek - X3 (5)

G +y7)

when observation point and target have relative radial
velocity, Doppler frequency 1s obtained by observation
station. Assuming target signal frequency is constant,
there 1s:

f=f+f, (6)

where, f denotes the received signal frequency of
observation station, f; and f; are frequency of target
radiation and Doppler frequency (Gong, 2004). The
eXPIession 1s:

fy = 7%(5(1« sinf3y + ¥, cosPy ) (7)

Where, ¢ 1s the speed of electromagnetic wave, the
expression of Doppler frequency variation is:

T :’%[Xk sinf, + ¥, cosf, +rk(Bk)2:| (8)

Spherical simplex unscented transformation (SSUT):
Computation efficiency of UKF algorithm depends on the
number of sampling ponts in UT. For n-D random vector,
the classic UT needs 2n+1 sampling points and calculated
amount is increased with the increase of the dimension of
vector. SSUT has a good performance in approximating
the probability distribution of the state by nt1 points with
equal weight values. These points distribute in the
hypersphere with the mean of random state as the centre.
Then, nt2 sampling points of UT are composed of ntl
sampling pomts of hyperspheres distribution and the
state mean-value point (Liu et al., 2010). The selection
procedure of SSUT 15 as follows:

Step 1: Given weight value w; and O<w, <1

Step 2: Set weight value w;:
w,=(l-wy)/ (n+14i=1--,0+ 9
Step 3: Initialization of vector sequences:
ey =[0], ¢ =[-1/ 2w, ], ¢ =[1/ yZw] (10)

Step 4: Extend the vector sequences (= 2,..., nn):
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-
SR i=q
0

e
el = — R i=L-j (11)
1/’1}_1(_|+1)WJ
o
L — , i=j+1.
i/ i+ Dw,

where, e denote the j dimension random variables at i
sampling pomt. ¢ is zero vector of j dimensions.

For N dimensions random variables, with the mean
% and mean-square deviation P, sampling points of
hyperspheres distribution can be obtained by:

Xp =X +.J11§e?, i=0,1,---,n +1. (12)

SSUT with nt+2 sampling points takes the place of the
classic UT with 2n+1 sampling points. It can reduce nearly
the half of the sampling points and greatly lessen the
amount of calculation system.

SRUKF algorithm: Considering the robustness of the
nonlmear filter, a square root version of the UKF was
introduced, SSRUKF replaces the covariance matrix with
the square root of the covariance matrix in recursive
operation and it can avoid the trouble of negative defimte
covarlance matrix.

The procedure for implementing the SSRUKF can be
summarized as follows:

Step 1: Imitialization:
%, =E [x,] (13)
$y = chol{E[(x, — &, )(x, —%,)"1} (14)
Step 2: Sampling points calculation:
(k-1 =x(k— T+ Sk ~1)e* i=0,L-,n+1 (15)
where, € denotes vector sequences of SSUT

Step 3: Time update:

5k /k-D=fx(k-1)) i=0L-n+1 (16)
%(k):iw,x,(k/km (17)
i

SG k-1 = ar{yw e, (k k- - X o) (18)

S/ k —1) = chol{S(k / k- Dy, (k /k-1)- Xk} (19)

y(k/k -~ D=hix(k /k 1) (20)
fr(k):iw,y,(k/k—l) (21)

Step 4: Measurement update:
8,0 = ar{[yw (vl k4D =500, ROOT) - (22)

$,(Kk) = chol{S, (k) vy (k / k ~1)— §(k),w, } (23)

ot .
P, ()= Y w[x &/ k-D- K@y, k/k-D-0r (24

HGRICRETERICENTS) (25)

%) = 20k Sk —1) +pl)y (k) = §(k Sk 1)) (26)
U= p(k)s, (k) 27

$(k) = chol{S(k / k —1),U,~1} (28)

where, QY denoctes the state noise variance of system R’
1s the measurement noise variance of system gr means QR
decomposition chol means Cholesky first-order update
(Van der Merwe and Wan, 2001).

SISRUKEF: In order to enhance the stability, convergence
and precision of the algorithm, adaptive iterative method
was introduced  into SISRUKF algorithm. When
observation information has been obtained, estimate
value and prediction covariance are used to resample.
Then, SSUT recalculate around the state estimation.
Finally, the state estimation is updated by observed
values and the performance of the filter is improved
(G et al, 2009, Gao et al., 2008). The process of
SISRUKF algorithm are expressed as follows:

Step 1: Atk time, state estimation and covariance can be
calculated via the formula 13~28.

Step 2: Resampling:
Ry (k)= £(k /K — 1), 8,(k) =S(k /k 1) (29)

%, = k(k /k—1), 8, (k) =8k [k —1) (30

1253



Inform. Technol 1., 11 (9): 1251-1257, 2012

%0k —D=x(k ~T) + S0k —)e* i=0,1, ,n+1 (31)
where, d is the iteration time.
Step 3: Set the adaptive factor:
(K= G -y (17 G k) - y (k) / S, (k)78 (k] (32)

1, nik)= 8o (33)

wll) = {e/ k) k) >e

where, B is an empirical value, which is always 1-2.5.

Step 4: State estimation and variance update:

pk) = p(k) / p(k) (34)

(k) = 20k /- 1)+ p(yik) - §k /K —13) (35)
U = p(k)s; (k) (36)

S(k) = chol{s(k / k —1),U,~1} (37)

Step 5: Given the following equation:

7, (0 =h(X, () (38)
%, (k)= Z{k) - Z, (k) (39)
%,00= %, 00 - X, (0 (40)

Then, set this inequality:

X3 ()85 (k)85 ()X (k) + Z3 GOR ™ (k)Z, (k) (41)
<ZHRR™ (k)Z,, (k)

If inequality (41) is workable, back to step 2 again,
Or else, return to the following values:

X(k)= X, (k) (42)
S(k) = 5,(k)

where, X and S(k) are state measure estimate and the
square root of covariance after iteration updated
respectively (Zhao et al., 2011).

THE SIMULATION EXPERTMENT

Glint noise environment: Glint noise is a typical
Non-Gaussian noise in actual application. Glint noise
distribution has a “long tail” which is similar to Gaussian

shape. The model creation method of Glint noise is
achieved through weighted sum of Gaussian noise and
other noise. In this paper, the glint noise is obtained by
the weighted sum of two kinds of Gaussian noise with
different variances. Probability density function of glint
noise can be expressed as:

P() = {L— £XN(ex 1y, py ) + EN{e i, py) (43)

where, N(w; P, p) 18 a Gaussian probability density with
the mean of p, and the variance of p, N(w; 1, pJis an
another Gaussian probability density with the mean of L,
and the variance of p,, € denotes the strength of the glint
noise which values 0.05 in this study (Zhu, 2007).

Moments matching method is introduced to deal with
the glint noise m EKF and UKF algorithms. So, the first
and second order moments can be obtained as:

w=Ele]= (1 <y + o (44)

P =E[{w-pu)(@- )= (1- P, + B, + P (45)

where, P=0-sup, +euul —pu’ . then, the SISRUKF
algorithm can be applied in the non-Gaussian environment
(Hu et al., 2004).

SIMULATION

Assume the target is at constant velocity in 2-D
plane, the 1mitial position and velocity are [150 km 100 ki
-250 m/s 150 m/s]". Observation staticn is lecated in the
origin of the coordinate. W, = w, = 1 m/s’ is the system
error. Three groups of different observation accuracy are
as follows:

w = 1 mrad, o, = 0.1 mrad/s, %, =1 mrad/s,
n = 0.1 mrad’s, o, = 0.5 Hzfs, o, =10Hz

s = Smrad, o, =0.2 mrad/s, o, =35 mrad/s,
n = 0.5mradf’s, o, =1 Hzfs, 0, =20Hz

. oy = 8mrad, 5, = 0.3 mrad/s, o, = 0.01 rad/s,
n = lmrad/s, o, =2Hz%s, o, =20Hz

G,
[s]
G,

Q

[s]

where, 9, 6, and o, o, denote standard deviation of
azimuth and their variation in glint noise environment.
EKF, UKF, SRUKF and SISRUKF are tested separately.
In this simulation, T 18 sampling cycle which values
1s, N denotes the number of time which values 100, f;
denotes target signal frequency which values 10 GHz
o; 1s observation accuracy which values 1 MHz RRE
(Relative Range Error) is used as evaluation index.

T — 46
RRE= [0~ D O 3 o =D, (46)
(XTI’\B +yTrue +ZTme)

1254



Inform. Technol 1., 11 (9): 1251-1257, 2012

25

20

=
[$2)

ERR (%)

=
(=)

—— SISRUKH]

0 1 1 1 1 1 1 1 1 N
0 10 20 30 40 50 60 70 80 90 100
t/s
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Fig. 3: Statistical average curve in observation accuracy, condition (b)

Table 1: Comparing robustness in different observation accuracy
Convergence times of 100 times experiments

Filtering  Single running  In the (a) In the (b) In the ()
algorithm  time (msec) condition condition condition
EKF 8.02 100 76 57
UKF 37.93 100 87 74
SRUKF 25.85 100 88 78
SISRUKF 24.93 100 92 84

Each group do Monte Carlo experiment for 100 times,
the relative error which 1s less than 15% 15 defined as
convergence, positioning accuracy 1s the average of RRE
at the tracking end time. The simulation results is showed
in Table 1 and Fig. 2-4.

Table 1 gives convergence times under different
observation accuracy of the four algorithms. First, in lugh

precision conditions, all of the algorithms have fairly good
convergence. As the observation noise ncreases, the
stability of various algorithms decreases accordingly, the
stability of SISRUKF algorithm declines much more slowly
than the other three. Then, in the condition of the same
observation accuracy, the stability of the SISRUKF
algorithm has the most convergence times than others.
For reasons of SSUT and square root filtering, SISRUKF
will decrease computation cost. The simulation results
have proven that SISRUKF saved computing time
through Table 1, compared with UKF and SRUKF.
Figure 2-4 reveal that, as the observation noise
increases, the convergence speed of all filtering
algorithms becomes slow, positiomng accuracy and
stability also decline, EKF falls the most, followed by UKF
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100

Fig. 4: Statistical average curve in observation accuracy, condition (c)

and SRUKF. However, SISRUKF algorithm has the
highest positioning accuracy and the best stability. This
1s because SISRUKF i1s built based on SRUKF, the
adaptive factor is used to adjust the effect of state
mformation to SRUKF filter. Adaptive iteration method
makes covariance of state parameter prediction more
accurate. So, the performance of SISRUKF algorithm 1s
superior to other algorithms.

CONCLUSION

In this study, a new adaptive simplified iterative
algorithim  was applied m single observer passive
localization system. The method puts SSUT and adaptive
iterative thought into square root filtering to improve the
stability of the filter effectively. Simulation results showed
that, m glint noise environment, the algorithm
convergence, positioning accuracy and stability were
mnproved compared with other similar algorithms.
Therefore, the algorithm has certain directive significance
in practical single observer location passive systern.
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