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Abstract: Selection of Relevance Vector Machine (RVM) kernel function parameter is one among ineffectively
resolved 1ssues which 1s first resolved n the literature by Adaptive Particle Swarm Optimization (APSO). A
novel APSO-RVM methoed 1s proposed to optimize and select the RVM kemnel parameter, thus forming, taking
the advantage of APSO dramatically convergence. Furthermore, the method is applied to the fault detection of
liquid rocket engines test-bed. In order to verify the validity of dramatically effectiveness in fault detection, this
paper demonstrates the proposed APSO-RVM approach by performing both simulations and experiments using
Oxygen Valve Outlet Pressure (Pejy) data. Results show that APSO-RVM can rapidly detect faults effectively

and has a high practical value.
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INTRODUCTION

Liquid rocket engines experiment is a extremely
sophisticated integrated technology and huge systematic
project. Compared with other large scientific experiments,
it has particularly high comprehensiveness encompassing
large numbers of subjects such as rocket engine expertise,
monitoring and control technology, propellant chemistry
technology, cryogenic technology, vacuum technology,
high-altitude  environment simulation technology,
environmental monitoring technology, environmental
technology and orgamzation and management science
(Figueroa and Schmalzel, 2006). Because of complex
structure, high precision and hefty expense, experiment
failure can lead to huge losses and even equipment
damage. According to the fault records form Aerospace
Testing Technology Institute, the failure rate due to
experiment system fault was 20%. The early detection of
faults can help avoid failure from spreading, reduce
system shutdown and prevent accident involving human
fatality and material damage (Wu, 2005). Therefore, it has
great economic and security significance for early fault
detection and timely preventive maintenance of the liquid
rocket engine test-bed.

Our liquid rocket engines test-bed still adopts off line
monitoring method in the present in China which merely
forces on several main parameters, while may result in
fallacious prediction even erroneous failure detection
relating to the sensors fault (Wu, 2005). Many widely
employed methods based on statistics are simple and
reliable, however, whose accuracy rely heavily on
statistical results of test-bed. And it 1s difficult to
establish accurate mathematical model by mathematical

analysis on account of nonlinear and instability of the
liquid rocket engine test-bed. In recent years, as computer
technology and artificial intelligence constantly
developed, many new theories and methods in the field of
fault detection and diagnosis are applied to propulsion
system. Fuzzy hyper-sphere newral network based
real-time monitoring failure system is presented
(Huang et al., 1999) which 1s verified that it outperforms
the BP neural network m the article. Neural network based
real-time fault detection algorithm in ground test process
is implemented with MATLAB (Huang et af., 2007) which
performs effectiveness in engine failure detection through
many offline evaluation and real-time online test. A
Support Vector Machines (SVM) based multi-fault
classifier 1s established for data mining of liquid rocket
engine steady state test (Han and Hu, 2007) which is
verified by experiment that the algorithm has excellent
classification and anti-jamming ability and recuires few
training data.

To deal with the defects of difficultly determined
neural network structure and easily immerging in partial
minimum frequently, a novel adaptive particle swarm
optimization relevance vector machine (APSO-RVM) is
proposed which 1s based on liquid rocket engines test-
bed fault detection method. Through, mappmg the raw
data to high dimension space with kernel function, it
solves nonlinear in the high dimension space to avoid the
lower linear inseparable problem. It not only resolves over
learming problems in virtue of small samples and nonlinear
but also generates better generalization ability by solving
sparse model.

The mam contributions m this study are the
development of the following:
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+ A novel RVM kernel parameter selection method is
proposed, reflecting faster computing speeds and
locating the global optimum

¢ A novel liquid rocket engines test-bed fault detection
method was suggested, reducing the alarm time and
promoting the system reliability

THE RELEVANCE VECTOR MACHINE

RVM, like SVM, has a sparse probabilistic model
(Tipping, 2001). However, RVM appeases to be
advantageous against SVM due to Bayesian treatment
which does not suffer from the basic limitations of SVM.
The RVM trains in the Bayesian framework, obtains the
priori probability of weight by a set of hyper-parameters
and find the optimal value via iterative algorithm. RVM
applied Bayesian inference based on Gaussian process
methods to SVM, derives probability distribution and
makes kernel function free from Mercer. Tt has good
performance (Tipping and Lawrence, 2005) on function
regression and classification.

For regression, given a set of input vector {x,}7, and
relevant output vector {y,}, , supervised learmng aims at
designing a model with those training data and prior
knowledge (Tipping and Faul, 2003). Based on new input
vector x,, the model can forecasted relevant output vector
v(x,). 1, are observed output which can be taken as a
unknown function y(x, w) contained the Gaussian noise
with o variance:

t=v(x, wite ()

where, € is independently distributed noise; w is
adjustable parameters weight. So, obtain:

y(x,w)= iw,(bl(x) =wdi(x) (2)

where, @,(x) =K(x, x,). The selection of kemel function will
be free from Mercer. Thus, we can choose the most
popular kernels such as Gaussian kernel, polynomial
kernel, Radial Basis Function (RBF) kemnel, etc. The
likelthood fimction corresponding traimng set 1s :

plt | w,0%) = (20 ) "2 exp{—%H 1 Dw|P} (3)
(s}

Where:

t= (e ), W = (Woaeoor, W'

D = [d(x0), Plx),.... Plx)]"

that:

d)(xn) = [1: K(Xn: Xl): K(Xn: XZ))"': K(Xm XN)]T

The way got the optimal weight w of Empirical Risk
Minimization (ERM) can result in over learned. To avoid
this situation, given a priori conditional probability
distribution using sparse Bayesian method for the
weight w:

(] 0= ] NG, [0,65") “
1=0

Meanwhile, for hyper-parameters ¢ and noise
variance [5 = o° definite hyper-prior distribution as T’
distribution:

N
play=] [Gamma(ct |ab), p(B)=Gamma(plc,dy (5
i=0

Where:
Gamma(c|a,b) =)' b* &, ['{a) = J'D”tﬂ'l et

In normal circumstances, parameter a, b, ¢, dis very
tiny, it can provide a=b = ¢ =d = 0. So, it will get
consistent hyper-prior.

Then, according to the Bayes rule, it can find
posteriori formula for all of unknown parameters as
following:

pit|w, oo )plw,0,5) (6)

2
LU0 [t) =
p(w, 0, 0" t) olt)

Given to new observed point x., the distribution of
corresponding target forecasted value t. 1s:

pltft) = [pltfw, &, 0%) p(w, «, ¢°lt) dw de do®  (7)

Considering;

p(w, &, 0°) = p(wlt. &, o®) p(et, o7t) )
Thus:
ol 07y = P W0 ) plw e

plt|a,a’) (9)

= (2 2|3 [ expe o X w )

where, covariance matrix 15 X% = (0 ®TD+A),
A = diag(a,, @,,..., @y), mean vector is 1= o " ZO.

This study use the peak of delta function to
approximate the hyper-prior pe, o’ft) in the above
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formula. Aim at forecasting, we do not care
pler, 6992 8(Cyp, 0°yp), where @, 0° possible values are ¢y,
o’,,p. Focus on:

J‘p(t*‘a: 02) 6(051\/‘[13: UZMF) da: doz ”J'p(t“aa 02)
[p(a, o’lt) dedo? (10}

Thus, RVM problem is converted into posterior mode
for hyper-parameters problem, that is, seeking the
maximum of posteriori hyper-parameters which is equal to
seeking the maximum of & and B. Tn the condition of
consistent hyper-prior, it only needs to take the maximum
of pt|e, ¢°). So, obtain:

pit|a.a®)=[p(t| w, o) p(w | cidw

(1

1
= @A™ L 0ATOT [ exp(- T+ 0ATOT) 1)

To obtain p(tje, 6°), it need to integrate out « and P
with following iterative formula:

o= X
meoo (12)
2w _ [T G0l

@ N-Zy,

where, v; = 1-¢gN;, N; are the ith diagonal elements of
posteriori weight covariance matrix.

Tdeally, if given an new input X., it can predict target
through following steps:

PCElt, Cye, 0%4p) = (LW, 0°10) PWIE, Gy, 0% )dw (13)

Pltft, Gyp, 0%4p) = N(LJys, 0.7) a4
Yo = p' dx) (15)
0.' = o'yt (x.)" d(x 0.) (16)

Corresponding to the new observations, the
predicted output of RVM is y(x., W)

SELECTION OF RVM KERNEL PARAMETER

Yet it has never been proposed any analytic
instructional method for RVM kernel parameter selection
(Li et al., 2010, Tao et al., 2008). At present, empirical
method and ergodic searching have been mostly used to
study kernel parameter setting. Hrgodic searching has
certain blindness for parameters setting and demands
enormous sacrifices of time.

Characteristics analysis of RVM kernel parameter: In
this study, based on standard function sinc, effects of
kernel parameters on training results is discussed.
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Fig. 1: Regression performance diagram

Table 1: Regression performance of different o

a RV mean Training error Test. error
0.2 71.2 0.0108 0.2225
0.5 220 0.0750 0.1364
0.7 16.9 0.0854 0.1238
1.0 11.5 0.0918 0.1181
1.5 89 0.0926 0.1143
2.0 7.9 0.0938 0.1137
2.6 6.9 0.0962 0.1095
33 0.8 0.0969 0.1105
4.2 7.0 0.0962 0.1049
51 7.0 0.0967 0.1077
6.0 82 01017 0.1110
6.5 10.2 01146 0.1258
The function of sinc 1s:
fix)= S0X 4 0.1% noise

x

where, noise 1s random noise in the range [-1, 1]. Even
taken 100 sample points as samples, this paper adopted
5-fold cross-validation to calculate training error and test
error. The Gaussian kernel used for the construction of
the basis matrices is K(x, y) = exp[-|[x-y||/a*].

From the Table 1, it can conclude that traiming error
approximates zero as 0 approaches zero which means all
samples can be compact fitted. Whereas, we must notice
that corresponding test error approaches infinity, the
number of corresponding relevance vector 1s 100, that 1s
to say, all the traimng samples are relevance vector, for
test samples are 100. At this stage there is over learned
and RVM lost learning ability. All above arguments show
ERM based on traditional learning approach such as
neural network cannot enswre excellent generalization
ability. The sizes of relevance vector get smaller with the
increase of ¢ (in a small range) and traimng error
increasing but test error decreasing. That means the
generalization ability of RVM is improving. When o
approximates 4.2, it can get minimum test error. Figure 1
illustrates minimum test error is not coincide with minimum
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training error which verifies traditional ERM cannot
guarantee excellent generalization ability. When o reach
a certain value (nearly 6 in the Table 1), the sizes of
relevance vector and corresponding traiming error and test
error are mcreasing agamn. That indicates the performance
of discrimination and generalizations gets worse.
Actually, the generalizations ability of RVM based on
Gaussian kernel goes from low to high and to low.

Adaptive particle swarm optimization: After RVM kernel
parameter characteristics analysis, a novel method about
optimizing RVM kernel parameter with adaptive particle
swarm optumization 1s proposed. Particle Swarm
Optimization (PSO) based on swarm intelligence theory 1s
an optimization technique for locating the global optimum
(Tu et al.,, 2011) which produces swarm intelligence to
guide optimization with cooperation and competition
among particles. This algorithm simulates birds foraging
behavior, considers each individual always mamtain the
optimal distance with adjacent ones during activity. Tt
promotes the co-evolution in the virtue of information
sharing. Comparing with other intelligent optimization
algorithms, PSO has an excellent performance on parallel
searching and meanwhile it has few parameters and shape
convergence speed. In PSO, each optimization problem is
regarded as searching a flight particle m the space. Flight
direction and distance of particle depend on velocity and
optimal objective function determines fitness. Particles
dynamically adjust their speed based on flying experience
and find the optimal solution by iteration.

According to the above problem, defined PSO fitness

function as:
Fitness = liw‘ y,— %) an
)

where, w; 1s relevance vector weight, vy, 1s truth value, ¥, 1s
predicted value.
The implementing steps of this optimization process

. Step 1: V.. =1, Vi = -1, ¢, = ¢; = 1.5, iteration step
is 100, population size is 20. Definite mutation
operator as 0.9 on the basic PSO to prevent from
immerging in partial minimum on account of iterative
efficiency reduced in the post couwrse of the

optimization procedure

*  Step 2: Random generate velocity and position of
each particle

*  Step 3: Calculate Fitness according to fitness
function

Table 2: Optimization results of APSO

a RV Fimess
4.7221 7 0.1054
4.7648 7 0.1046
4.5672 7 0.1062
4.3964 7 0.1008
4.8588 7 0.1050
4.5056 7 0.1062
4.8216 7 0.1051
4.4345 7 0.1026
4.8277 7 0.1044
4.4402 7 0.10d41

»  Step 4: Compare the current fitness value and the
best fitness value in lustory for each particle. If the
current fitness value 1s smaller, then take it as the
best experienced individual fitness value

»  Step 5: Calculate the mimmum of the best fitness
value of all particle experience and record it as the
global best fitness value

s Step 6: Update particle velocity and position and
limit each new velocity and position

»  Step 7: Random generate mutation factor. If reach the
variation conditions, re-initialize the particles

s Step 8: If reach the maximum of iteration step, stop
searching and return the best fitness value and the
position. Else turn to step 3

Following the above steps, 10 optimization results are
give m Table 2.

From Table 2, the experimental results show that o
makes a nearly perfect fit with the optimal value at a high
probability, meanwhile which prove consistent relevance
vector number and close sparse level (7/100). From what
has been discussed above, it may safely draw the
conclusion that the proposed APSO is efficiently
applicable to the problem of RVM kemmnel parameter
optimization.

PROJECT EXAMPLE

Establishing mathematical model is the emphasis and
difficulty of complex and nonlinear dynamic systems fault
detection (Yu et al., 2009). For a project of liquid rocket
engines test-bed, hydrogen supply system is the key part
of rocket engine test-bed, whose work status will have a
directly impact on the engine test. For security, it have to
real-time monitor many sigmficant parameters, such as
oxygen valve outlet pressure (Pejy), oxygen tank pressure
(Pxy), pre-pump pressure of oxygen (Pohy), etc. which
ensure reliability of entire system. Because system
conditions rapidly changed before ignition start, the value
of parameters mentioned above changed abruptly. Tt is
necessary to use sensors real-time monitoring signal
change, in order to prevent unnecessary damage.
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Fig. 3: The results of training Pejy via APSO-RVM

Table 3: Pejv training p arameters and results
Joi Fitness RV MSE
0.103 0.0929 8 7.24x1077

RMSE
8510~

Here, it demonstrates how the proposed APSO-RVM
framework is efficiently applicable to the project of liquid
rocket engines test-bed fault detection. This paper focus
our analysis on the parameter of Pejy and model it using
37 times normal test data which are truncated 10 seconds
data in pre-cooling phase before igmtion with 50 Hz
sampling frequency. The total sample points are 500. The
modeling process is as follows:

¢ Data preparation. First of all, make data
preprocessing and normalize to [0, 1]. Besides, select
Gaussian kernel and optimize kernel parameter using
APSO-RVM. Return optimal kernel parameter o

¢+ Modeling using the theory of section 2. Simplified
process is as Fig. 2

¢ Calculating prediction error and evaluating upper and
lower limit of model

*  According to Chebyshev inequality P(jx-p|zno)<1/m’,
via APSO-RVM model, obtain:

P(\iw, @.(x)- pl2no) < (18)
1=1 n

2

In practice, making estimated standard deviation
S instead of the standard deviation 0. The threshold range
of sensor signal characteristics can be formulate as:

= [w' $(x)-nS, w' d(x)+nS] (19)

where, w' is relevance vector, ¢(x,) relevance vector kernel
matrix, n = 3. The probability of falling into this interval 1s
99.74%. The results of training Pejy model via APSO-RVM
are shown in Fig. 3. Training parameters and results are
presented in Table 3.

The experimental results indicated that APSO-RVM
has excellent modeling ability (fitness is 8/500), while
reduces detection time.

Furthermore, for verifying the performance of
model presented via APSO-RVM, it employed on the
actual data of an oxygen valve leakage. Using the method
proposed 1n this literature, alarm occurred at 17.53 sec
which 1s 0.95 sec ahead of alarm time via red threshold
detection method.

CONCLUSION

In this study, a novel APSO-RVM kernel parameter
method is proposed for augmenting RVM kernel
parameter selection by adaptive PSO. What this paper
done make up for amending the defects in the analytic
instructional method for RVM kernel parameter selection.
Results show that kernel parameter will converge in a tiny
region using analytic instructional method proposed
instead of experience and ergodic searching. Tt is
efficiently applicable to the project of liqmd rocket
engines test-bed fault detection and can rapidly detect
failure which meet the engineering requirements of real-
time and reliability with high practical significance.
According to the different observer points, it can flexibly
analysis select the appropriate
parameters. Tt will have extensively effect.

As further study, the proposed model remains to

data features and

integrate consider the pressure and flow direction among
different observer points.

REFERENCES

Figueroa, F. and J. Schmalzel, 2006. Rocket Testing and
Integrated System Health Management. In: Condition
Momnitoring  and  Control  for  Intelligent
Manufacturing, Hafez, M.M. (Ed.). Springer Verlag,
London, pp: 373-391.

1500



Inform. Technol. J., 11 (10): 1496-1501, 2012

Han, Q. and X. Hu, 2007. Application of support vector
machine in steady state fault detection and diagnosis
of liquid-propellant rocket engine. Missile Space
Veh., 4: 54-58.

Huang, C., Y. Zhang and Q. Chen, 1999. Neural network
approach to fault detection of liquid rocket
engine-pattern recognition technology. I. Propul.
Technol., 20: 1-4.

Huang, Q. IJ. Wu HG. Liuy TF. Xie, 2007
Implementation fault detection
algorithms based on neural network for liqud

of real-time

propellant rocket engines. J. Nat. Univ. Defense
Technol., 29: 10-13.

Li, G., G. Wang and H. Xue, 2010. GA optimizing method
to kernel function parameters of RVM. Control Eng.
China, 17: 335-337.

Tao, X, J. Xu, B. Du and Y. Xu, 2008. Bearing fault
detection based on RVM using phase space. J. Vibr.
Shock, 27: 6-10.

Tipping, M.E., 2001. Sparse Bayesian learning and the
relevance vector machine. J. Machine Learn. Res.,
1:211-244,

Tipping, M.E. and A.C. Faul, 2003. Fast marginal
likelihood maximization for sparse Bayesian models.
Proceedings of the Sth International Workshop on
Artificial Intelligence and Statistics, January 3-6,
2003, Florida, USA.

Tipping, M.E. and N. Lawrence, 2005. Variational
inference for Student-t models: Robust Bayesian
mterpolation and generalised component analysis.
NeuroComputing, 69: 123-141.

Tu, J, Y. Zhan and F. Han, 2011. An improved PSO
algorithm coupling with prior mformation for function
approximation. Inform. Technol. I., 10: 2226-2231.

Wu, T, 2005 Liquid-propellant rocket engines
health-monitoring-a  swvey. ACTA  Astronaut.,
56: 347-356.

Yu, C., H.X. Han and W. Min, 2009. Missile fault detection
based on linear parameter varying fault detection
filter. Inform. Technol. T, 8: 340-346.

1501



	ITJ.pdf
	Page 1


