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Abstract: In this study, a state variable Function Vector Synchronization (FVS) of two non-identical chaotic

systems with both varying parameters and delay 1s investigated. Based on feedback principle and Lyapunov
stability theory, the adaptive fuzzy controller 1s constructed. The synchromzation for the state variable function

vector of systems can be reached by using the proposed controller. The control is robust for varying

parameters and disturbance of systems. Compared with the traditional synchronization, aided by appropriate

state variable function vectors of master and slave systems instead of state variables, signal transmission
security can be improved. The simulation results shows the effectiveness of the method.
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INTRODUCTION

Since the synchronization problem of two chaotic
systems with different initial conditions was investigated
(Pecora and Carroll, 1990), the main interest in chaotic
synchronization stemmed from its potential applications
such as secure communication, digital communication,
power electromic devices, biological systems, chemical
reaction and design and so on. There were several
schemes  proposed for the chaotic systems
synchronization such as complete (or anti)
synchronization (Agiza, 2004; Wang, 2009), phase
synchronization (Rosenblum et al, 1996), lag
synchronization (Chen et al, 2007, Miao et al., 2009),
generalized synchromzation (Wang and Guan, 2006;
Rehacek, 1999), intermittent lag
synchromization (Boccaleti and Valladares, 2000),
modified function projective synchronization (Mainieri
and Rehacek, 1999). Wang and Liu (2010), Nong and
(2011)

synchronization problem of a class of

Mainieri and

Jian-Fen vestigated modifying  function
projective
chaotic systems by desigmng a suitable response
system. Shou-Sang and Hang-Feng (2011) proposed a
method  of  time-delay projective
synchromzation for a class

Lorenz-Stenflo chaotic system. The synchronization of

generalized
of piece wise modified

non-autonomous time-varying delay chaotic systems via
delayed feedback control was investigated (Betmart et al.,
2012). By wusmg periodically intermittent nonlinear

feedback control, the synchromzation scheme for a
class of nonlinear delay chaotic systems was proposed
(Yu et al, 2012). However, based on much potential
applications of the synchronizations, investigating more
general synchronization strategies  become
challenging.

Disturbance was the common phenomenon in

more

engineering. The system parameters could be also
varying. To the best of ow knowledge, the works studied
about the varying parameters are very few. Thus,
designing controller for nonlinear systems with parameter
variable remained an open problem.

In this study, the state signal function vectors lag
synchronization for non-identical master-slave chaotic
systems was proposed. The main contributions of this
work include:

» The state vanable function vector synchromzation
of a class of chaotic systems with varying parameters
was proposed firstly. It was the generalization
of literatwes (Agiza, 2004; Wang, 2009;
Rosenblum et af., 1996, Chen et al., 2007, Miac et al.,
2009, Wang and Guan, 2006; Miainieri and Rehacek,
1999; Wang and Liu, 2010; Nong and Jian-Fen, 2011,
Shou-Song and Hong-Feng, 2011)

¢+ Proposed master-slave systems contain not only
external distwrbance but also varying perameters

(i.e., parameters have perturbance) and it is evident

inevitably in real system runming
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PROBLEM DESCRIPTION
Consider following master-slave systems:

%= £(x) + AF(x,p) + & () oy

§=8(y)+ Agly,q) + A (t) +u (2

In the above equations xcR" and yeR" are the state
vectors. f (1) € R* and g (*) € R" are nonlinear function
vectors. The perturbations:

AF()=[AR ()., AL G €R

Ag()=[Ag,(}....Ag, ()] €R”

are uncertain bounded continuous function vectors, p
and q are master and slave systems parameters
disturbances. The system disturbances A, (t) ¢ R* and are
A, (1) € R" unknown bounded functions. u 1s the control
mput.

Define the synchronization error:

e =Tt - Gly.t) (3)

where, F ()eR", G (-)eR" are the known smooth function
vectors and x, = x (t.) = x (t-1), . = -1, T = T (1) is the
system delay, satisfying: O<t<l.

Definition 1: Considering the chaotic systems (1) and (2),
the systems (1) and (2) are said to be the state
signal function vectors primary synchronization (SFVPS),
if:

Jim Je|= fm [, 1)~ Gy, 0= ¢

with €>0 is small constant and we can say that the
systems (1) and (2) are the state Signal Function Vectors
Synchronization (SFVS), when € = 0.

Remark 1: F (), G (1¢R" in Eq. 3 are designed by both
sides of the communication, therefore, and they could be
modified. The degrees of the freedom of F () and G (+) are
much great, so, the variability and the randomness of the
signals could be increased uncommonly, it is hard to
than traditional algorithms
communication.

decode through  signal

Remark 2: We can clearly see that the SFVS is the
synchronization, when F (x, t.) =x, G (v,;t) = y. The FVS is
the synchromzation of the literature (Nong and Jian-Fen,
2011), asF(x, t) =% G (v,t) =My, or F (x,, t.) = Mx, G (y,t)
=vy.

Remark 3: How little the positive constant £ of system (4)
1s can be contingent on the specific condition

Remark 4: The unknown nonlinear function vectors
Af (x, p), Ag (v, @) m system (1), (2) contan the system
parameter disturbances p,q.

The objective of this study is to design a controller
such that synchronizing two state variable function
vectors of non-identical chaotic systems with varying
parameters.

Design of the fuzzy logic system, (FLS): The basic
configuration of a fuzzy logic system contans a fuzzifier,
some fuzzy [F-THEN rules, a fuzzy inference engine and
a defuzzifier. The fuzzy inference engine uses the fuzzy
rules to perform a mapping from an input vector X to an
output f.

The ith fuzzy rule 1s written as:

s RLIfx isF, x,is, F', ... x, is, F!, then, fis G, 1 =
1 N.

5 eeen

X = [X, ..., X,|" and f are the input and output of the
fuzzy logic system, ', G are the fuzzy sets. Fuzzy logic
system could be expressed as follows:

ATV RTINS

fi(x
Where:
wismax o o Hg (;)

the fuzzy basis function is defined as:

B H?-M-LE {x;) (5)
i T

Define w = [w,,...,wy]", £ = [£,...E " then, fuzzy
system could be written as:

Fx)=w'E (&)

According to fuzzy logic rules, the umiversal
function approximating theorem 1s given as following:
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Lemma 1: g (x) is the continuous function defined at the
tight set Q, then Ve>0, there exists the fuzzy system (6),
such that:

sup le(x) - f(x)| <z @)

MAIN RESULTS
Considered the error (3), the time derivative of e becomes:

&= FxT {xp, by (1-)— Gy(y,t)y + FtT (xp,t1-1) - G {y.t)
:F’(t (xt,tt)(1—‘c)(f(xt)+Af(xt,p)+A1(tt N (8)
R (xrt)(L- 1) - Gy (.6l ) + As(y.a)

+HA, (1) +u) -G (y.t)
(8) can be written as:
é=H-G (y,0u +A &)
where,

H= (B, (x.,:,t.t)f(x.,:)+15tt {(x,ty NI-1)

_ _ (10)
~Gy (v.)e(y) -G, (7.1)

A=A, AT

=By (xy, bp KL= 2)(A (t5) + AfGop, p)) (1)

-Gy, Ay, )+ Ay(t))

In the controller design, we need the following
assurmptions.

Assumption 1:

OV

HGY (x,t)” <m
where, are constants.

Assumption 2: |A, (1)]|<p,,|A; (b)]|<p,, where p>0, p,=0 are
unknown constants.

Assumption 3: G, (y,.t) is non-singular matrix and the
constant matrix AcR™™ 1s positive definite, 1., there exists

the A0, such that A=Al T is n dimension identity matrix.

Assumption 4: For unknown function Af, (x,p), Ag; (v.q),
there exist the continuous functions:

AT (x) and ag, (v)

such that:

‘Afi(x,p)| AT (x)

|ag; 7.0)| < 45,5

Remark 5: Assumption 1 and 3 are not restrictive,
because the F (x, t) and G (y, t) are designed by both sides
of the communication

Remark 6: The unknown constants p,, p, in Assumption
2 can be estimated by the adaptive law.

Remark 7: Note that the distuwrbance vectors p, q are
bounded, so the continuous function Af (x, p) and
Ag; (v, q) are bounded too, Hence, Assumption 4 is by no
means Trestrictive, since such fimctions: Af(x), A%;(¥)
always exist.
Let us denote:

A = (AL + A () + AR () + |Aa (1) (12)
then:

A €Eui=1....n (13)

According to lemma 1, we have:

B =g 45 (a4

where, |§|<€, g is unknown constants, w;* is the optimal
values of w, they are assumed to be constant and

unknowrn, with:
W.o=w — W,k =8k, i=L...n (15)

The designed controller 1s following as:

=G (y,H - ) (16)
Where:
v=[m,...0,]" >
with:
T, = sign(e, )W, &, —k,)— he, i=1....n (17)
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From above discussion, we can get the following
conclusions:

Theorem 1: The SFVPS between the master system (1)
slave system (2) can be reached, under control law (16).

Proof: From system (3), (9) and (16), we have:

ele= Zn;e,i, +Zn: e SZ“; AT +i‘e,|3,
=1 = =L =1
n n
=5 e, |(wWTE, +8) -5 el
%\EJ(WA i) ; € (18)
n
+3 e |iwTE +g)

i=l

N .
=Dl AE 4 E) -3 el
i=1 i=t

Let us consider the following Lyapunov function:

T L R o R (19)
V=—eet+—> —Ww+—>—k
2 zgvm : z;:vm‘

The time derivative of V is given by:

n

V=l S L atd S Lk

= Yo = ¥

< Dlef(#75 +2)- et (20)
i=1 i=l
21 TR LS VI

W -3 —kk,
=1 Yoi = Y

with:
W, =¥ ‘e;|§) + YoMy W, fc; ="y ‘e;|+ yhmhf{i (21)

where, Vg, ¥ My, My, Yo, Yy A€ NON Negative constants,
(20) could be written by:

VS—i(mmW;rﬁ’l +m1iEiEi>) _iﬁﬁe? (22)
i =
We could easily check that:
W,

T 1 .+ 1.
7mulw‘Tw1 sffw,Tw1 +fw,T
2 2

mykk, <1k 4L
22
(22) becomes:

VzZ-avV+b (23)

where:

a= mli'n{z}ul Mgy YoMy

Integrating (22) over [t5,t], we have:

V(= (V(ty) - g)e'a“"“ +E, tzt, (24)

Let V (t;) = 0, then:

vl (25)
a

Remark 8: From system (23,25), we can see that the error
e canbe exponentially stable quickly by choosing A; as
much as possible and mg,
When my,
However, if 4, was too great, the burden of the controller
could be increased, so, the A, must be chosen suitable.

m,, as little as possible.
=m, = 0, the error e can converge to zero.

Simulation studies: In this section, we provide an
example to show the effectiveness of the proposed
method.

Choose Lorenz-Stenflo chaotic system as the master
slave

system and  Lu’s system as the

respectively.

systemn,
Consider Lorenz-Stenflo chaotic system as following:

% (1) = a (x,(£) — x, (1)) + dyx, (1)
x5 (1) = x{t)(e; —x5(1)) — x5(t) (26)
xS(t) =X (t)xzm —byx,{t)

X, (t)=—x(t)—ayx,{t)

The initial conditions are x {0) = [0.1, 0.3, -0.1, -0.2]".
whena=1,b=0.7 ¢ =26, d= 1.5, the system is hyper-
chaotic. Considering the system with delay, disturbance
and varying parameter vectors, the master system could
be described as:

% (ty)=a,(x,(tr) = %, (t70) + dixy (bg )+ dyy ()
K, (tr =%t WE — x5(t; )”) —x,(t ) +dyty) (27)
X3(te ) =% (b )Xy (tr ) — byx5(te) +dislte)
)Q(t-t )= ’x(t‘c h &%, (t‘c )+ dm(t‘c)

Where:
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and d are the distwbances of the parameter a,, b,, ¢, and
d,. We choose:

@, =0.5sin2t,b, = 0.5sint

T =0.4sin3t,d = 0.4sin 2t

dy (tg) =sin{mtr ), dy;(tr) = 0.2c08 (57t}
d;(tr )= sin(dnty ), d,,(tr )= 0.6cos(Intr)

and T=0.2
Comnsider Lu’s system as follows:

¥i(t)=a; (¥ (1) — v, (1)) + ya (1)
¥alt)= ¥iun¥s (t) — e5y,(t) (28)
¥3(t) =y (¥ (t); — bays(t)
Y4(t) =¥ (t)Y3 (t) -0y, (t)

The initial conditions of the slave system are
y(0) = [1,-1, -1,1]". When a, = 36, b, = 3, ¢, = 20,
-35¢< 1,13 the system 1 hyper  chaotic.
Considering the system with the disturbance and
varying parameter vectors, the slave system could be
described as:

¥t =a,(y,{t) — 7, (t)) +ya(t) +dy (1)
¥alt)= Y1(t)Y3(t)’ Eng(t)erzz {t) (29)
¥3(t) =y (Dy(t); — byys(t) +dy(t)
Falt) =y (D)ys (1) — By, (t) + dy(t)

where,

and

82:d2+ 2 2.b,.T

and © are the distwbances of the parameters a,, b,, ¢,,
and r,. we choose:

dy, = 0.48in (0.25nt), dyy = 0.1cos(3nt)
dy; = 0.3sin (nt), d,, = 0.5cos (2nt)
h =30,i=1,2,3,4

Fix,t)=(0.1+ 0.058in (0.3mt))[ 0. 3x, + 0.5x,,
0.7x, - 0.3x,,0.6x, + 0.4x,,x, T
Gl =[ypys ¥yl

Then, we have:

F{x) = (0.1+ 0.05s5in(0.37t))
0.5 0.5 0 0
0 07 -03 0
0 0 0.6 04
0 1

G, (y)=1G; (y) = LG, (y,t}=0,1=0
F, (x,t)=0.0157 cos(0.3n)[0.5x, +0.5x,,
0.7x, — 0.3x,,0.6x, +0.4x ,x,]"

For convenience, F;, (x, t) is denoted by F, and
G (v, by Gii= 1,234

The response of states x and the function vector
F (xt) of the system are depicted n Fig. 1 and 2,
respectively. From Fig. 1 and 2, we can see that the
response curves of the state vector x are different from
ones of fumction vector F (x, t). Figure 3 indicates that the
eITOTS €, ¢, ¢, and e, are stable. Figure 4 shows that the

504

Fig. 1: The response of the states x;, x5, X; and x, of the
master system

4
N

Fig. 2: The response of the state function vectors F|, F,
F, and F, of the master system

1623



Inform. Technol. J., 11 (11): 1619-1625, 2012

0.5 7 1.0
(a) (b)
0 0.5
5y 5%
-0.5 () i
-1.0 T 1 -0.5 T 1
1.0 0.5 7
(©) (d)
0.5 0
5% o
0 — -0.5
-0.5 T 1 1.0 T 1
0 10 20 0 10

4 - 2
(@) (b)
Fl FZ
G, G,
2 A (U
_ . v/
S e V
[ 25
0 - 2
‘2 T 1 '4 T 1
4 1.0 7
(©) (Y]
F, F,
Gl G4
2 0.5 1
<) \/\ <)
=58 2y
(U 0
'2 T 1 '0.5 ¥ 1
0 10 20 0 10 20

Fig. 4(a-d). The response of function vectors (a) F,, G, (b) F,, G,, (¢) F;, G; and (d) F,, G,
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Fig. 5: The response of the control inputs u,, u,, u; and u,

G, (y.1), G, (v.t), G; (y.t) and G, (y.t) are synchronized with
the F, (x.t). F, (x, t), F, (x, tyand F, (x, t) well after small
mterval. Figure 5 shows the response of the mputs u,, u,,
1, and u, The simulation results demonstrate the
effectiveness of the proposed method.

CONCLUSION

In this study, the problem of robust generalized lag
synchronization for two non-identical chaotic systems
with varying parameters and disturbance had been
addressed. By using fuzzy logic rules approximating
nonlinearity then tedious calculations could be avoided.
Unknown constants were estimated by the adaptive law.
Utllizing proposed adaptive fuzzy controller, the dynamics
of error system could achieve asymptotical stability. In
comparison with the traditional method, selectivity was
much great for the system state function vectors. By
using state fimction vectors mstead of state vectors, it
was much difficult for the signal to be cracked. Simulation
results were given to demonstrate the effectiveness of the
proposed scheme.
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