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A Neural Network Model for Equality and Inequality
Constrained Minimax Problems
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Abstract: For signal processing and process control, the minimax problem is a crucial point in research subjects.
But efficient solutions to equality and inequality constrained nonlinear general minimax problems are relatively
scarce. A minimax neural network model was proposed to solve the general minimax problem based on penalty
function. In this model, the unique requirement is that the objective function and constraint functions should
be first-order differentiable. In addition to the global stability analysis based on the Lyapunov function, the
proposed model was simulated and its validity was evaluated with numerical results. Experimental results
demonstrated that the proposed minimax neural network model can solve the problem in seconds which is more
efficient than the conventional genetic algorithm and simplex genetic algorithms.
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INTRODUCTION

The Minimax Problem (MMP) 15 a kind of optimization
problem to find the solution x with the minimum worst
cost £, where some related parameter y 1s chosen by an
adversary. At the same time, the design may have to
satisfy a set of constraints. A general MMP with
constraints can be formulated as follows:

minmaxf (x, y)
oy
h(x,y)=0 1
Coelxy)z0

where, x = (x;, %, ..., Xx)€R% v = (v}, v5 ..., V) ER,,
f: R*>R-R, h: R™*R-R™ and g: R"*R-R™%. Minimax
problems have been found in many fields such as
schedulmg  (Herrmamm, 1999), network  design
(Kalyanasundaram et al., 1999), filter design (Chao et al.,
2000), controller design (Zheng et al, 2001), function
approximation (Demyanov and Malozemov, 1974) and so
on. The main difficulty 1s that how to make the cost
function decrease with x while increase with vy
simultaneously. It 1s not an easy task to simply mimimizing
the cost function with x while fixing y and then maximizing
the cost function with y while fixing x, since the cost
function value may oscillate between peaks and valleys.
Several authors have mvestigated the mimmeax
problem and introduced some heuristic solutions to this
problem. Herrmann adopted the Genetic Algorithm (GA)
over a set of possible scenarios (Herrmann, 1999, Liu,
1998) utilized GA tosolve the minmimax problem with both

continuous variables. Longhua ef af. (2001) proposed a
Simplex-GA (SGA) based scheme through studying the
convergence speed and solution accuracy of the GA
approach (Longhua et al., 2001, Ye et al., 1997) presented
a neural network model for unconstrained mimmax
optimization and proved its stability for some convex
cases. Tao and Fang (2000) proposed a quadratic neural
network model for quadratic minimax problems under
some positive/negative matrix assumptions.

In virtue of penalty functions, this letter develops a
kind of mimmax neural network for the general mimmax
optimization problem with both equality-based and
inequality-based constraints. The only requirement 1s that
the objective function and constraint functions should be
first-order differentiable. When the alternative searching
point is forced into the feasible region by penalty terms,
our neural network tries to solve the unconstrained
minimax problem approximately similar to Ye et al. (1997)
neural network. Thus, the neural network model of
Ye et al. (1997) is used as a special case of ours safely.
Although there are several types of penalty functions, for
the sake of the global stability of neural network, the
penalty function with an archetypical form is chosen
which guarantees a large enough penalty parameter.

PROPOSED NEURAL NETWORKS MODEL AND
STABILITY ANALYSIS

Equality constrained problem: Let us consider the
following Equality-constrained Minimax Programming
(EMMP) problem first:
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mxin mygxf(x,y) (2)
st c(x,y)=0

where, x = (%, X;, ..., X,) €R%, vy = (¥}, V2 ..., v,)€R and
R*R-R and ¢ R*™*R-R™ are given functions that are
assumed to be first-order differentiable. Before detailed
theoretic defimitions and evident

analysis, some

propositions are given.

Definition 1: (3: R*xR’ 1s the feasible region of EMMP, if
(%, y)eQ=c(x,y) = 0.

Definition 2: Q" R*™<R" is the e-feasible region of EMMP,
if (x, V)eQ’ =|c (x, v)| <&, where £>0 is a small enough
positive real number.

Definition 3: (x*, y*) is the solution of EMMP, if
V(x, y)eQ, there is f(x*, v)<fix*, y*)<fix, y¥*), that is
(x*, y*) 1s a saddle point in Q.

Proposition 1: Tf (x*, y*) is a saddle point in €, then:

Vs =0 md Ve = (3)
where:
a of ot
v.f e
(x.y)= [a,Xl o, a,Xn]

Present goal 15 to design a neural network that can
settle down to an equilibrium pomnt satisfying (3),
whereas, what should primarily be considered are the
constraints. In general, a penalty approach is employed.
And consider the following equivalent expression of
Eq 2:

minL, (x,y)= min [f(x,y)+o.5c|| c(x,y)ﬂ )

minL,(x,y) = min[ £ (x,y) + 0.5 e(x. ) |
¥ ¥

where, 6>0. Thus, if L, can be mimmized with x, it 1s
equivalent to minimizing f with x, unless constraints are
not satisfied which makes 1., going away from minima.
Similarly, mimmizing L, with y 18 equivalent to minimizing
-f, that is, maximizing f, unless constraints are not
satisfied. Wah et al. (2000) have showed that the
convergence speed and/or the solution accuracy could be
affected by an additional weight in the objective function
(Wah et al., 2000). Thus, take into account an additional
balance factor w m the objective function as follows:

{ L,(x,¥) =0 f(x,5)+0.56] e, y) | (5)
L,(x,y) =~ £(x,3) + 0.50] o y)If

where, 0>0 and w is a tunable weight, e.g., we can adopt:

w:{ﬂ.l e x> (6)
10 Jle(xy)l<e

where, £>0 is a small positive real number, e.g., £ = ¢°7
Take above mnstantiated w and £ values as default values
for later simulation if there is no additional annotation.
Thus, the transient behaviors of the proposed neural
network can be defined as follows:

OX YL, =V, y)- 0Vl )T o)
dt (7)

d
Vs =0V fley) - oV yete ) elx.y)

Theorem 1: When |jc(x, v)||<e, € = 6°7, Eq. 5 nearly
degenerates to an unconstrained mimmax problem
min max [of (x,y)] and there exists:

d
= VL y) =V, i(xy) ®)

VL) oV £xy)

This theorem obviously exists, since if £ =0g""
and |c(x, v)|<e, then 0.50lc(x, v)*<0.50", thus
0.50||c(x, )|} is neglectable in Eq. 5 when o is large
enough. Note that @ = 10 when |lc(x, y)||<e, merely
because the gradient and accelerate the convergence
speed are supposed to augment. If the network is
physically stable, the equilibrium point denoted by
(x*, y*) that satisfies Eq. 3 and c(x*, y*) = 0 obviously
also satisfies Eq. 7.

Theorem 2: Let the energy function of the neural network
be E(x, y) = Lix, y), Byx, y) = L{x y). If [e(x, y)|[>e and 0
is sufficiently large, the energy functions decrease with x
and y, respectively.

This theorem can be proved by checling if AEn <0

and 2E; ., ornot. Since:
At

AE1 T dx T dy (9)
pu— L (x, —t R —
A V.L(xy) it VYLI(X ¥) it

On the one hand, we have:

dx:é

dt

dx _
V.L .22
(x¥) - T

<0 (10

On the other hand, we have:
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dy
v oy —L=
Ja(x¥) n

& o(x,y) - Vel y)- V0l 9) o,y
PV £y -V E(y)

(1)

Note that when o 1s sufficiently large, the second
term 18 much smaller than the first term (especially when
w 1s small) and thus 1t can be neglectable. Thereby we
have:

d
VyLl(x,y)T-d—fso (12)

Therefore, we can obtain that:

At

Similarly we can also get:

That 18 to say, the system energy is decreasing. Note
that the condition that ¢ 1s sufficiently large 1s easily
satisfied, for that as a penalty parameter, o starts from a
large positive mumber and is always increasing. And when
|le(x, )€, w = 0.1, that means the term with ®” is tuned to
be much smaller.

Theorem 3: Let { be the energy function when ||c(x, y)||<g,
1t decreases with x if y 13 fixed and increases with y if x 1s
fixed.

Proof: Tt has been proved that when ||c(x, v)||<€, BEq. 5
nearly degenerates to an unconstrained mimmax problem
minmax [of (x.y)] . Based on Eq. 8, we have:

df

oY dx 1
(%]

afy _ﬁT.d_Y_lHd_Yz
At gy | oAt of dt

That means the system energy decreases with x
when y is fixed and increases with y¥ when x is fixed, if
the neural network state 1s restricted m the e-feasible
reglomn.

When utilizing neural networks for optinization,
people are usually much more interested in the global
stability of the network. Tt is highly desirable that the
network is globally stable in the sense that it will never
display oscillation or chaos, starting from an arbitrary
point. Thus an optimal solution can always be obtained
by setting the imtial state of the network with an arbitrary
value. One of the most effective approaches for stability

dx

ax[* o (13)
dt

>0 (14

analysis is Lyapunov's method. So we construct a
Lyapunov energy function for our neural network as
follows.

Definition 4: The Lyapunov energy function is defined
by:

E(x. y)=0.5|L,(x, y +Ly(x )| (15)

Theorem 4: When ||c(x, y)|[>€ and 0 1s sufficiently large,
the proposed neural network model is nearly Lyapunov
stable.

This theorem can be proved by checking if dE(x.9)
or not. Based on Eq. 15, we have: dt

FEUT) o etx, )| (i) + Potx. ) (16)

Here) Pl(xa y)zvxLl(X: y)T'VxLl(Xa Y)+VVL2(X: y)TvyLZ
(x, viand Pix, v) = V,L (%, v)".V,Li(x, y)+V,L(x, y)T.V,.L,
. y).

Obviously, P (x, y)2 0. Furthermore, when ||c(x, y)|[~¢
and o is sufficiently large, we have:

VVLI(Xa y)T'VVLZ(Xa Y) = OZHVYC(Xa y)T'C(Xa Y)
-0’V e(x, ¥)|[F=0

Se does V,Ly(x, y)".V,L/(x, v)z0. Thus, P(x, y)=0.

Therefore, it follows 9E(&.¥) . .
dt

Theorem 4 concerns the stability of network when
lle(x, v)|[~€. In the case that ||c(x, v)||<€, Ye ef al. (1997)
have argued the global stability of unconstramned mimmax
neural networks (Ye ef al., 1997) and the conclusion are
sinply list here.

Proposition 2: Assume that f R**R-R is a convex-
concave function (that 18, convex to x and concave to y),
the neural network defined by Eq. 8 1s global stable and
the asymptotical equilibrium point 18 unique (Tao and
Fang, 2000).

So far we have presented the neural network model
and completed its stability proof. However, we would like
to point out that, the watershed & which divides the space
into the e-feasible region and the remainder region is
merely a supposed parameter. It does not exist at all. We
make it out just for the convenience of proof, making a
smooth conjuncture between the previous work and ours.

Inequality constrained problem: If mequality constraints
are counted i, the EMMP mn Eq. 2 15 extended to MMP in
Eq. 1. Yuan (1993) have summarized some techniques to
convert inequality constraints into equality constraints,
including the following one (Yuan, 1993).
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c(x,y):{ b Gy } (17)

min (g (x,¥),0)

where, ¢: R*<R>R", h: R**R>R™ and g: R"xR>R™™. By
such disposition, all constrained conditions can be
transferred mto equality constramts.

SPECTRAL RADIUS ANALYSIS
AND COMPARISON

Themultilevel programming example given (Liu, 1 998)
can be modified as a good minimax programming example
where n = 2 which can be described as follows:

minmax £(x,y} = _(Xl +¥E, +¥)
x ¥ 1+xy, +X,¥,
x} +x,% <100 (18)
x,20,x,20
0Ly <x
0Ly, <x,

s.t.

The solution given by GA (Liu, 1998) 1s x* = (7.0854,
7.0291), y* = (7.0854, 0.0000), with { = -1.9760. We have
studied the transient behavior of the network from various
initial states by simulating the dynamic equations via
the classical fowrth-order Runge-Kutta  method
(Atkinson et al., 1994; Lietal, 2010) on a Pentium ITT
500 Hz digital computer. We found that the total
computation time varies with different start points. As a
representation we choose x = (80, 80) and y = (80, 80) as
our initial pomts that have a mean performance. The
results are listed in Table 1 in comparison with the GA
(Liw, 1998) (number of chromosomes 30, mumber of
generations 300) and the Simplex-genetic Algorithm (SGA)
(number of chromosomes 8, number of generations 100)
(Longhua et al., 2001, Jia-Liang et al., 2010).

Performance of the proposed minimax neural networlk
outperforms the evolution-based algorithms in shortening
the computation time, because it is a gradient guided
algorithm while GA and SGA are "blind search”
algorithms to some degree. But the solution accuracy of
minimax neural network 1s a bit inferior to that of the other
two algorithms. Three reasons for this phenomenon may
be: Firstly, there 1s truncated error in Runge-Kutta method

which is ineluctable; Secondly, to avoid becoming infinite,
it is obliged to cease increasing at 10° which brings a lot
of error; Thirdly, the gradient around the saddle pomt 1s
very small and our algorithm stops somewhere near the
equilibrium. The geometric shape of f whenx = (7.0711,
7.0711) withy = (v, v,) between O and 8 1s shown in
Fig. 1 and the surface 1s so flat that our algorithm could
not proceed any more within the error limit which confirms
our supposal.

The speed advantage of neural circuits over
evolution strategies is more salient in large dimension
optimization. GA has to spread imtial seeds in the whole
search space uniformly, so with the increase of variable
dimension, the number of seeds increases exponentially.
For example, if the 2-D plane are divided mn grid with 9
equal parts per dimension and make every cross point be
an initial chromosome, consequently we have about (9+1
initial seeds. If the space is not a 2-D plane but a 3-D
cube, the number 1s 10°. Thus when the variable
dimension increases to N, the number of mitial
chromosomes needed is about 10" The more the
chromosomes, the slower the algorithm converges. In
contrast, neural networks start at an arbitrary point then
follow gradient information searching every dimension,
respectively, thus the computation assignment does not
increase much.

However, the proposed neural network model 1s a
purely gradient guided algorithm which could not escape

f-value

Fig. 1. Geometric mformation of f whenx =(7.0711, 7.0711)
(y = (y, y,) are the vector whenn = 2 m Eq. 2)

Table 1: Comparisons among genetic algorithm, simplex-genetic algorithm and the minimax neural network model scheme

Algorithm Final solution Objective function value Execution time
GA (Liu, 1998) X = (7.0854, 7.0201) -1.9760 About 28m
¥ = (7.0854, 0.0000)
S8GA (Longhua et af., 2001) ®x=(7.0711, 7.0711) -1.9608 About 7 m
¥ =(7.0711, 0.0000)
Minimax neural network model scheme x=(7.0711, 7.0711) -1.9807 Less than 4 sec

¥y = (7.0711, 7.0711)

X =%, Xy) and ¥y = (¥, ¥,) are vectors wheren =2
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from the attraction of local minima of x or local maxima of
v spontanecusly. This algorithm is global stable but does
not guarantee that global mimima or maxima are bound to
reach. Since some algorithms, such as sumulated
annealing, evolutionary algorithm, gradient descent with
multi-starts (Wah et al., 2000), perform well in global
optimization, combmation with neural network may be a
way out. Nevertheless, how to combine them with only
little sacrifice of speed is still an open topic.

CONCLUSIONS

In this letter, a novel kind of neural network for
general minimax problems with both equality and
mequality constraints has been constructed based on the
penalty function approach. There is no explicit restriction
imposed on the functional form. A Lyapunov function is
established for the global stability analysis. Finally,
simulation results show that the proposed model exlubits
remarkable capability in solving general nonlinear minimax
programming. Tn a word, the proposed minimax neural
network is a powerful computing tool in minimax problem
research.

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge the
financial support from the National Nature Science
Foundation of China under grant No. 61070003 and
61071128, Zhejiang Provincial Natural Science Foundation
of Chuna under grant No. R1090052 and Y1101 184; Project
of Zhepjang Department of Education under the
grant No. N20100690.

REFERENCES

Atkinson, L.V., P.I. Harley and J.D. Hudson, 1994.
Numerical Methods with Fortran 77: A Practical
Introduction. Addison-Wesley, London, Pages: 395.

Chao, H.C., C.8. Lnand B.C. Chieu, 2000. Mimmax design
of FIR digital all-pass filters. TEEE Trans. Circuits
Syst., 47: 576-580.

Demyenov, V.F. and V.N. Malozemov, 1974. Introduction
to Mmimax. John Wiley and Sons, New York, USA |
ISBN: 13-9780470208502, Pages: 307.

Herrmann, J.W., 1999. A genetic algorithm for minimax
optimization problems. Proceedings of the Congress
on Evolutionary Computation, July 6-9, 1999,
Washington, DC USA, pp: 1099-1103.

Ha-Liang, G., 7. Hong-X{a and Z. Tin, 2010. Fuzzy logic
based current control schemes for vector-controlled
asynchronous motor drives. Inform. Technol. T,
9: 1495-1499.

Kalyanasundaram, S., T. Li, EX.P. Chong and N.B. Shroff,
1999, Channel sharing scheme for packet-switched
cellular networks. Proceedings of the 19th Annual
Joint Conference of the IEEE Computer and
Commumnications Societies, March 21-25, 1999,
New York, USA., pp: 609-616.

Li, H, FX Yu, X1 Zhou and H. Luo, 2010. Every
connection routing under modified random waypoint
models in delay tolerant mobile networks. Inform.
Technol. T., 9: 1686-1695.

L, BD., 1998 Stackelberg-Nash equilibrium for
multilevel programming with multiple followers using
genetic algorithms. Comput. Math. Appl., 36: 79-89.

Longhua, M., Z. Yongling and Q. Tixin, 2001. A new
hybrid genetic algorithm for global mimmax
optimization. Int. Conf. Info-tech Info-Net, 4: 316-323.

Tao, Q. and T.J. Fang, 2000. The neural network model for
solving minimax problems with constraints. Control
Theory Appl, 17: 82-84.

Wah, BW., T. Wang, Y. Shang and 7Z. Wu, 2000.
Improving the performance of weighted Lagrange-
multiplier methods for nonlinear
optimization. Inform. Sci., 124: 241-272.

Ye, 2.Q., BL. Zhang and C.X. Cao, 1997. Convergence
analysis on minimax neural networks. Inform. Control,
26: 1-6.

Yuan, Y.X., 1993. Numerical Methods for Nonlinear
Programming. Shanghai Scientific and Technical
Publishers, Shanghai, China.

Zheng, Y.I.., L.H. Ma and T.X. Qian, 2001. Parameter
tuming method of robust PID controller. Control
Instrum. Chemi. Ind., 28: 14-17.

constrained

1639



	1655-1659_Page_1
	1655-1659_Page_2
	1655-1659_Page_3
	1655-1659_Page_4
	1655-1659_Page_5
	ITJ.pdf
	Page 1


