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Abstract: Dense depth maps provide significant geometry information for 3D video and free viewpoint video
systems. Traditional stereo correspondence methods usually deal with each stereo image pair separately. As
a result, the generated depth sequence 1s temporally mconsistent. This paper presented a novel approach to
recover spatio-temporally consistent depth maps. The proposed method first applied sequential belief
propagation algorithm to achieve an approximate minimum of spatial energy on Markov random fields. Then
in temporal domain, a smoothness cost along optical flow was mcorporated between consecutive frames. The
combined cost which determined the disparity value was passed forward and temporal consistency was
enforced during the process. In addition, the streamlined implementation was time and memory efficient. In
experimental validation, quantitative evaluation as well as subject assessment was performed on several test
datasets. The results showed that the proposed method yielded temporally consistent depth sequence and
reduced flickering artifacts in the synthesized view while maintaining visual quality.
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INTRODUCTION

The concept of three-dimensional display has
attracted human being for several decades. Seeking for a
real 1mpression of natwral world, people have made
many attempts to exploit stereopsis in 3D display
(Konrad and Halle, 2007). Glass-based stereoscopic
displays use filters or shuttles to provide virtual 3D
visual experience (Urey et al, 2011). Obviously, it 1s
inconvenient for the viewers to wear glasses or other
special device. Autostereoscopic techniques which
directly present stereoscopic images seem more popular
(Dodgson, 2005). Tn autostereoscopic displays, more than
two views are required so that the viewers can observe
different corresponding scenes m different positions
(Zwicker et al., 2007). However, the vast raw data of
multi-view video 1s considered as a severe conflict with
the transmission bandwidth (Meesters et ai., 2004).

Recently, Depth Image-Based Rendering (DIBR) has
been considered as one of the most significant
techmologies for 3DTV (three-dimensional television). The
3D content is typically represented by regular 2D video
and associated gray-scale depth map (Fehr, 2004). On the
other hand, the topic of stereo comrespondence is a
fundamental issue in computer vision (Brown et af., 2003;
Zigh and Belbachur, 2010; Yu et al., 2011; Shuchun et al.,
2011). A large number of methods have been proposed to
solve this ill-posed problem which suffers from image

noise, border mismatch, textureless regions and
occlusions. Scharstein and Szeliski (2002) showed a
survey of taxonomy and categorization for dense stereo
correspondence algorithms. The existing techniques for
dense sterco comrespondence roughly fall mto two
categories: local methods and global methods. Local
methods determine the disparity value of a concerned
pixel depending on a local surrounding area, e.g., block
based method (Bae et @l., 2008) and variable windows
approach (Veksler, 2003). They have very efficient
implementations but lead to mismatch in boundary
regions. On the contrary, global methods make explicit
smoothness assumption and solve the optimization
problem in a global framework. The main distinction
among these methods 1s the optimization procedure used,
such as simulated annealing (Barbu and Zhu, 2005), graph
cuts (Boykov et al., 2001), belief propagation (Yang ef al.,
2006) and so on In general, these methods deal with
each single image pair and disregard of the correlation
between consecutive frames i a video sequence
{(Scharstein and Szeliski, 2002). They do not explcitly
distinguish moving objects with static background.
As a result, the depth value of static objects and
background  may fluctuate m a different time.
Furthermore, it causes critical artifacts in the synthesized
virtual view and discomforts the viewers because human
vision 1s sensitive to the frequent flickering (Lee and Ho,
2010).
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Motivated by the demand of enhancing temporal
consistenicy, the stereo correspondence procedure
incorporates several improvements in current research.
Bleyer and Gelautz (2009) applied smootlhing operation on
disparity map sequence to decrease flickering artifacts.
Smimov et al. (2010) proposed a filtering method to
achieve high-quality and temporally consistent depth
maps. Commonly these methods enforce temporal
coherence with filters, so the results often get blurred in
object boundary. Tao et af. (2001) addressed the problem
of extracting depth information of non-rigid dynamic 3D
scenes from multiple synchronized video streams and the
temporal consistency is improved dwing the process.
Zhang et al (2009) proposed a bundle optimization
framework to incorporate geometric coherence constraint
of multiple frames in a video. Also a general form of scene
flow can be utilized to estimate depth maps (Vedula et al.,
2005) but 1t mcreases computation cost dramatically and
fails to realize in real-time application.

In contrast with 3D MRF model which treats all the
frames simultaneously (Zhaozheng and Collins, 2007), this
framework adopts streamlined implementation. First in
spatial domain, Belief Propagation (BP) algorithm is
applied for each frame to find a mimmization of MRF
energy. Then in temporal domain, a recursive function
combines all frames and computes total energy m a linear
structure. After BP based matching of each frame
accomplished, the temporal algorithm allows the
computational belief messages to be released. Only an
aggregated cost 1s transferred forward for the next frame.
Moreover, temporal consistency is refined during the
process. Based on the streamlined framework, a novel
method was proposed to recover consistent depth maps
from stereo video sequences in this paper. Temporal
smoothness function was employed along motion path
decided by optical flow. The framework of traditional
stereo correspondence based on Markov Random Fields
(MRF) was extended to whole video sequence.

MATERIALS AND METHODS

Overview of framework: To facilitate the work of stereo
correspondence, several necessary preprocess are
required. First, epipolar geometry constramt 1s imposed.
Unlike motion estimation in video compression which
only cares about the data redundancy, disparity vector in
stereo correspondence relates to a pair of pixels which are
exactly from a same position in 3D scene. In order to
reduce the number of potential correspondences and
mcrease matching reliability, original stereo video 1s
calibrated in an epipolar line (Hartley and Zisserman,
2004). In epipolar geometry, the search range of disparity
is limited in a horizontal scan-line and the disparity value
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can be easily transformed to a depth value when camera
parameters are known. Second, image quality of stereo
video need to be corrected. The intrinsic property of
image such as color, or intensity, will mfluence the
measure of similarity and further impact the computation
of matching cost.

In general, the
energy-minimization framework based on Markov Random
Fields (Geman and Geman, 1984). MRF model provides a
convenient and powerful foundation for many mtractable
problems in early vision involved with gridded image-like
data (Bai et al., 2008, Izabatene and Rabahi, 2010). A
regular algorithm is designed by terms of Maximization A
Posteriori (MAP) estimation based on Bayesian network.
A typical MRF model of N, neighborhood system is
shown in Fig. 1. The white circles £ (1, 1) denote unknowns
to be inferred while the dark circles £ (i, j) denote input
data. The black boxes d (1, J) denote elemental data penalty
terms and s (i, j) denote interact potentials between
connected nodes n the random fields. The data term
together with the smoothness term make up the total
energy function. In stereo correspondence problem, the
goal is to find corresponding points between two rectified
mmages. The label of each pixel indicates discrete variable
of disparity value. The data term measwes how well the
pixel in source image matches the one in reference 1mage.
While the smoothness term imposed by MRF model
indicates that pixels in neighboring areas should have
similar disparity value (Boykov et al., 2001). Altogether,
the energy fumction of stereo correspondence problem
can be defined as:

methods are formulated in an

fit+1, j)

(i, j+1)

Fig. 1. Graphic model for an N, neighborhood Markov
random field. Note: The white circles denote the
unknowns f (1, ) while the dark circles denote the
input data f* (4, j). The black boxes d (i, j) denote
data pemalty and S (1, j) denote interaction

potentials between adjacent nodes
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E = E+AFE; (D
where, Hy is the data energy and E; is the smoothness
energy. A gives the relative weight of the smoothness
penalty.

The overall flow chart of the proposed method can
be depicted as follows: After input stereo video stream is
rectified (Du et af., 2004), raw matching cost is computed
first. A robust measure of truncated AD (absolute
difference) of mtensity 1s used which 1s specified m Eq. 3,
where, p and p’ are the corresponding pixels with the label
of disparity |, and S 1s the set of pixels in the image. A
Disparity Space Image (DSI) is created for storing raw
costs within all possible disparity. Then, BP based stereo
correspondence algorithm is applied for each single frame.
If current frame 1s the first of the video sequence, the
disparity map can be immediately obtained. Otherwise,
temporal smoothing 18 enforced by calculating an
agpregated cost along motion path. The temporal
accumulated energy and the spatial energy together form
the total energy. Then a Winner-Take-All (WTA) strategy
15 used to determine the output depth maps. The raw cost
and temporary memory storage will be released before the
next round starts.

To sum up, the modified energy function from Eq. 1
of each frame can be defined as:

E=E, +AE, +E, (2)

Ey = ¥.D,,) =¥ min((p) ~1(p".Trunc) (3
pes =

Es = E vs(lp’lq) (4)

(p.qel

where, (p, q) denotes a pair of neighboring pixels. And E,
1s the temporal aggregation energy which will be specified
in the following section.

The smoothness energy term still need to be detailed.
A simple case of Potts model (Boykov et al., 2001)
assumes that labeling should be piece-wise constant. This
model considers only two conditions. For equal labels the
cost 15 zero and for different labels the cost 1s set to a
constant. Tt is unsuitable for some complicated situations.
Here a general form of multi-pass jump smoothness costs
function is applied (Felzenszwalb and Huttenlocher, 2004),
i which different pairs of adjacent labels can lead to
different costs:

)

V,(,.1,) = min(p,

lp 71&1

+Te)

where, p; controls the rate of increase in the cost and T; 1s
the truncation value.
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Spatial optimization: There are two basic assumptions to
produce dense disparity map: uniqueness and continuity.
That 1s, the disparity maps have a unique value per pixel
and are continuous almost everywhere. In addition, the
MRF model adopts spatial and contextual constraints
which are ultimately necessary and significant in low-level
VIS10IL.

Belief propagation which 1s employed in this method,
can be used as an effective way of solving inference
problems in pair-wise MRF models. The main advantage
of BP 1s to solve MAP problem of labeling on MRF model
and reduce the computation time from exponential level to
linear level. The original standard BP proposed by Pearl
(1988) takes the idea of passing local messages around
the mnodes through edges and guarantees the
convergence for any tree-strutted graphic model
Recently, it is extended to loopy belief propagation so
that it can deal with graphs with loops (Thler et al., 2005).

The loopy BP algorithm works by passing message
to neighboring nodes along the four-connected image
grid. Each message is a vector of dimension with the
number of possible labels. Tt is initialized to zero in form of
negative log probabilities. Each node uses the message
received from mneighboring nodes to compute new
message for other neighboring nodes. Let m, (1, be the
message that node p sends to a neighboring node q on
label 1, (Fig. 2a). It 1s updated in the following way:

(1) = min(V, 0y L) + D)+ 3 () (6)

reN(p),r#q

where, the data cost D, (1) and the smoothness cost
Vs (1,, 1,) are defined in Eq. 3 and 5, respectively.

Y m,)

N (p)r2g

denotes the message calculated from neighboring nodes
of p except node q.

After several iterations of message passing n all
directions, the final belief of node q 1s calculated as:

Dy >~

RN
LR LT

Fig. 2(a-b): Graphic illustration of the proposed BP
algorithm. (a) Message computed from node
p to g and (b) Messages propagate i forward
scan-line direction
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b, (1)=D, )+ ¥ m (D) (7

pel{g)
An  iwolved 1ssue during BP  message
passing is how to arrange the updating schedule

(Tappen and Freeman, 2003). The message updating
schedule determines when a node uses the messages
recelved from neighbors to compute the new message. In
parallel implementation, the messages are passed along
rows and then along columns and used to compute the
next round of messages. Tt starts at the first node and
passes messages in one direction until reach the end.
Then the messages are passed backward in a similar way.

However, the convergence time of parallel schedule
is always quite long. An alternative schedule is to
propegate messages in one direction and sequentially
update each node. Tt means when a node sends message
to its neighboring node, the neighboring node would use
it to compute message for next node immediately. Our
sequential 1mplementation 1s mspired from TWR-3
algorithm (Kolmogorov, 2006). Tt processes nodes in
scan-line order, with forward and backward passing
(Fig. 2b). Such asynchronous updating scheme allows the
message to propagate much more quickly across the
image. Thus it is preferred in this framework.

Temporal optimization: Video processing and analysis
takes into account not only the pixel values in a single
static frame but also the temporal relations between
frames. Like the mtra-frame contimuty, temporal
smoothness constraint is exploited for an analytic
framework. A direct way 1s to comnect regular location of
continuous frames in a 6-neighborhood 3D grid model.
But the basic assumption of continuity in temporal
domain 1s violated when the object 1s moving. Therefore,
motion information 1s exploited mn this method. Motion
source refers to the temporal wvariations in image
sequences (Stiller and Konrad, 1999, Xu and Zi-Shu,
2011). The 3D motion of object induces 2D motion on the
image plane. In order to make the problem tractable, it 1s
assumed that the motion of object is finite. And the
disparity value varies continuously along the motion path
between consecutive frames.

Motion estimation has found various applications in
motion-compensated video compression as well as video
surnimarization and video stabilization, for the reason that
the temporal relation of intensity is high and useful
(Korah and Perinbam, 2006, Ren et al., 2010, Iffa et al.,
2011). The temporal constraint is now applied in the stereo
correspondence problem for a video sequence. To make
explicit estimate of motion at each independent pixel, a
general form of optical flow 13 exploited. Estimating the
optical flow requires inferring a dense field of
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displacement vectors which map all points in the first
image to the comresponding locations in the second 1mage.
The basic techmque for computation of optical flow 1s
based on the optical flow constraint equation:
Lou+l-v+L=0 (®)
It relates the spatio-temporal intensity changes to the
velocity (u, v). However, the solution of (8) can not
be determined because there are two unknown
variables in one linear equation. A smoothness constraint
was introduced by Horn to form a global function
(Horn and Schunck, 1981):
%)

E, = -[(mx WLV L)+l +ul +vE o+ vD)dxdy

The optical flow is computed by the non-linear
diffusion algorithm (Proesmans et al., 1994). Then each
pixel of current frame derives a motion vector pomted to
the previous cne. The computational flow is illustrated in
Fig. 3a. The final cost is decided by both the cost of
current frame and the consistency cost between
consecutive frames. Tt is calculated as follows for node g
in frame m:

by () (n=1)
=1 " . ) 10)
SR )+ A minG 0, 1)+ CoL 000 )
where,
V,(,.1,)= mindp, I, ~1,],7) (11)

C", (1) normally consists of three components.
V., (I;. 1) represents the temporal smoothness cost
function which has a similar definition to Eq. 5. b*, (1))
denotes the spatial belief cost and C*,,_ . (1,;) denotes the
normalized aggregated cost of frame n-1 at node q° which
points to the node q along the motion path. A, is the
temporal weighting coefficient. Basically, this function
can be also mterpreted as a pair-wise dynamic
programming procedure (Fig. 3b). The optimal path
between consecutive frames with mimmum cost 1s
computed to generate the final cost. The label | which
minimizes the final cost 1s selected as the output disparity
value at that pixel The aggregated process 1s
unidirectional so that any latter frame 1s not used for
reference. Note that the enforcement of temporal
consistency may deteriorate the results when optical flow
estimation fails. The temporal weighting coefficient A, is
defined in Eq. 12. When the brightness constancy is
violated, A, will be decreased adaptively to reduce the
effect by such errors:
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Fig. 3 (a-b): The final cost computation in spatio-
temporal domain. (a) Computational flow;
(b)  Equvalent pamr-wise  dynamic
programming process for solving HEg. (10).
Note: In (b), for each label 1, of pixel q, the
optimal path is determined by 1, which
minimizes V, (1., 1+C*' . . (1,). Then the

term C7, (1,) can be updated recursively

foty (12)
where, k and vy are the parameters determined empirically.

In the end, the cost was normalized as follows:

ECQM(II) =0 (13)

=0
EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the effective performance of the
proposed method, experiments are conducted on PC

(personal computer) platform with Intel Core2 Duo 3.16
GHz CPU (central processing unit). Several stereo video
test sequences from FhG-HHI (2011) (Fraunhofer Tnstitute
for Telecommunications, Heinrich-Hertz-Institute) 3DV
(three-dimensional video) data base (FhG-HHI, 2011) are
used, including ‘Book Arrival’, ‘Alt Moabit’, ‘Door
Flowers” and ‘Leaving Laptop’. The resolution of some
sequences 1s re-sampled to reduce the candidates of
possible disparity values and enhance the reliability. In
traditional stereo correspondence problem, a quantitative
way of measuring the quality of the computed result 1s
concerned. Two general approaches are mentioned
(Scharstein and Szeliski, 2002). First, compare the resultant
disparity map with ground truth data. Second, evaluate
the synthetic image rendered by the original sowrce image
and the computed disparity map.

Additional measures are required to evaluate the
quality in temporal domain. In fact, most of the ground-
truth maps for the test sequences are unavailable.
Meanwhile, the ground truth data should not be the
unique criterion when considerng the whole 3DTV
system. The disparity map can be recognized as an
intermediate product which will be discarded after virtual
view synthesized. Not only the intrinsic quality of sigle
depth map but also the consistency of intra and inter
frames is critical for the DIBR process. A smooth depth
map can improve the synthesized view with less hole
regions. To sum up, an overall assessment of the
experimental results is taken in the following two aspects.

Subject evaluation: At first, a comparative result of ‘Book
Armmival® sequence 1s shown in Fig. 4. Figure 4a shows the
source images from five consecutive frames which contain
apparent motion objects. The result of the proposed
method (Fig. 4d) is compared with other existing methods
in the related literatwre. Fig. 4b 1s obtamned from the
Hierarchical BP algorithm (Yang et al., 2006) which has no
temporal improvement. Another local method based on
adaptive windows (Veksler, 2003) is temporally improved
by smoothing filter (Smirnov et al., 2010) and the result is
shown in Fig. 4c.

Some consequence can be inferred during the
comparison. The regions close to left border of the depth
map can be ignored since they are mvisible i the
reference view. The observed results show that the
proposed method has a greater stability than other BP
method without temporal mmprovement. Results i Fig. 4d
also perform a conspicuous nsusceptibility in the static
scenes where the disparity value should not vary. With
respect to the temporal method using filter, the proposed
method is also outperformed. No blwr can be detected and
motion objects still maintain their outline.
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Fig. 4 (a-d). Disparity map results of different methods of frame 27 to 31 (from top to bottom) on the “book arrival’
sequence. (a) Source sequence; (b) Hierarchical BP method without temporal improvement; (¢) adaptive
window-based method with temporal smoothing filter and (d) Proposed method

Since, it 15 difficult to present the visual results of
whole sequence directly, only a few frames are selected to
show the improvement in temporal domain (Fig. 4).
Actually, m the propoesed method, smooth disparity map
sequence and rendered virtual view sequence can be
observed obviously during playing. On the contrary, the
result of Hierarchical BP (Yang et al., 2006) dealing with
each independent frame has fluctuant disparity value and
finally causes flickering artifacts.

The improvement by adopting motion information in
the proposed method is also illustrated. Tn the regions of
motion objects between adjacent frames, the method
based on regular 3D grid model 1s prone to generate
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mismatch (Fig. 5a). After incorporating the motion
information of optical flow, the matching errors are
reduced (Fig. 5b).

Quantitative evaluation: Here, two basic measures
are introduced focusing on the objective evaluation of
the  depth  map First, the temporal
consistency 1s checked between consecutive frames.
Second, the quality of each separated disparity map 1s
tested.

To check the temporal consistency, motion objects
need to be separated from the test sequence. It 1s evident
that only the background and static objects maintain the

sequences.



Inform. Technol. J., 11 (1): 30-39, 2012

Fig. 5 (a-b): Improvement of disparity map at the boundary of motion objects. (a) Result of regular 3D grid model and
(b) Result of the proposed model with motion compensation
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Fig. 6 (a-d). Comparative results of temporal consistency. (a) Book arrival, (b) Alt moabit, (¢) Door flowers and
(d) Leaving laptop. The pixel whose disparity value is inconsistent with the one in the next frame is identified
as an error pixel. The total error percentage of each frame is compared among different methods marked by

different colors

disparity value and viewers mostly feel flickering artifacts
at these regions. The static regions are manually
segmented for each test sequence. Then each disparity
map of current frame 15 compared with the following one.
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If the difference of any pair of pixels in the static regions
exceeds a threshold, the pixel is marked as an inconsistent
pixel. The percentage of total error pixels 1s calculated and
the results are compared with other methods in Fig. 6:
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Fig. 7 (a-d). Comparative results of PSNR of synthesized virtual views. (a) Book arrival, (b) Alt moabit, (¢) Door flowers
and (d) Leaving laptop. Note: The virtual view is synthesized by the sowrce view and the disparity map.
PSNR of Y component is computed by comparing it with the original view taken at that location. The PSNR
result of each frame 1s compared among different methods marked by different colours

(14)

Error = 00 ¥ qd(p)—a(p)‘> 8)

Iotal PERyms

On the other hand, accurate disparity map straightly
brings on a good-quality synthesized image. Since the
ground truth maps for these test sequences are
unavailable, the experiments are made by means of
evaluating the synthesized view. The left sowrce view 1s
projected to the corresponding position in right view
using the disparity map. Then the obtamned view 1s
measured via PSNR of Y component in contrast with the
original view. The pixels in the exposed regions with void
value are set to 255. The regions close to right border of
the mmage are ignored since they are nvisible in the
source view. Fig. 7(a-d) shows the comparative result of

different methods:

255N

PSNR, =10xlog(m )
Yl -1
P

(15)

The results of objective measwres are analyzed. The
figures of the first experiment distinctly illustrate the
temporal consistency m different sequences (Fig. 6a-d).
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The error percentage on static regions is about 3% in the
proposed method while the “spatial BP” and “Hierarchical
BP” methods present more than 10% errors. As it can be
inferred, by employing temporal coherency in the BP
optimization framewaork, the proposed method presents
lower error percentage in most of the datasets than other
BP methods without temporal improvement. The temporal
smoothing method with filter (Smimov et al., 2010) also
has a relatively low error percentage which is between 5%
and 10%. However, it fails to gain high performance in the
experiment of image PSNR (Fig. 7). The result 15 3 to 6 dB
lower than the proposed methed. It 15 because that the
smoothing filters such as Gaussian filter deteriorate the
intrinsic featwres of images. The proposed method is also
compared with spatial BP method without temporal
component 1n the same framework. Consequently they
have comparable PSNR results with expectation. The
proposed method also performs better than the
Hierarchical BP method on ‘Book Arrival” and “Alt
Moabit’ sequences in the second experiment. And they
achieve similar PSNR results on the rest sequences. As
shown in Fig. 7, the PSNR result of the proposed
method 1s about21.24, 25.81, 21.20 and 21.50 on average,
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respectively on the test sequences. While the Hierarchical
BP method achieves about 20.89, 19.27, 21.35 and 21.52,
respectively.

In brief, the experimental results demonstrate that the
purpose of enhancing temporal consistency can be
achieved at no loss of image quality and less additional
operation is required in the implementation. The generated
depth maps results are promising to be applied for the
depth-image based rendering in 3DTV (three-dimensional
television) system as well as other applications that
require  depth information for three-dimensional
reconstruction.

CONCLUSIONS

Depth estimation plays a crucial role m three-
dimensional video systems. This paper have presented a
novel method for generating dense depth maps from
stereo video sequences. Not only the quality of separate
depth map but also the temporal consistency is
concerned. The proposed method first applies BP
algorithm for each frame. The obtained belief message 1s
utilized as a measure of matching cost. Then, optical flow
15 used to comnect consecutive frames and address the
correspondence problem in form of a joint spatio-temporal
function. It 1s defined as a recursive process. The cost 1s
accumulated forward along the time axis so that any
unnecessary information of the former frames can be
released. The experimental results manifest that the
proposed method can convincingly produce temporally
consistent disparity maps without degradation of
synthesized image quality.
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