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Abstract: A fast mamfold leaming algorithm was proposed which only preserved the similarities or
dissimilarities between each point and some objects. The embedded coordinates were obtained through
optimizing the part stress function with the deepest gradient descent method. Experiments showed that the
method could find the true structure of the manifold and had lower complexity. At the sanie time, we discussed
the effectiveness of the number of far points and the initial value to the embedded results.
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INTRODUCTION

The goal of dimensionality reduction 1s to map the
high dimensional data into a low dimensional space and
compress the data in size. PCA and MDS are classical
linear techmques. Recently, mamfold learning algorithms
have been developed to perform nenlinear dimensionality
reduction, such as ISOMAP (Tenenbaum et al., 2000),
LLE (Roweis and Saul, 2000), LTSA (Zhang and Zha,
2004), Laplacian Figenmaps (Belkin and Niyogi, 2003),
Multilayer autoencoders (Hinton and Salakhutdmov,
2006) and so on.

TSOMAP is a generalization of MDS. Tt is becoming
more and more difficult for MDS and ISOMAP to solve
the full eigenvector problem with the increasing sample
size. To overcome their fault, LMDS (Landmark MDS)
(De Silva and Tenenbaum, 2003) only preserves distances
or geodesic distances between some landmark points.
However, random landmark point sets often lead to worse
results.

In this study, we proposed a fast manifold learning
algorithm which only preserved the similarmties or
dissimilarities between each pomt and its k nearest
neighbors as well as some random far points. Experiments
showed that the method was effective.

OVERVIEW OF MDS AND ISOMAP

Classical MDS is realized by matching the
ordinal level of similariies or dissimilarities among
all objects in two spaces. For the goal, Kruskal (1964)
proposed a measwe called the stress function which
shows that how much the embedded data express the
original data:

stress = (d; - AJJ)E/E dfj @
i B

where, d, and A; are respectively the similarity or
dissimilarity mn the original space and in the embedded
space.

ISOMAP replaces Euclidean distances with the
geodesic distances on the base of MDS. The algorithm
contains three steps. Firstly, the neighborhood graph 1s
built. Then, the geodesic distances between all pairs are
estimated by calculating the shortest path distances in the
neighborhood  graph. Lastly,
coordinates are found by applying MDS to the geodesic

the low dimensional

distance matrix. The detail can be referred to
Tenenbaum et al. (2000).
THE FAST ALGORITHM

The basic idea: ITn MDS and ISOMAP, solving the full
eigenvector problem leads to higher complexity.
Contrarily, LLE, Laplacian Eigenmaps and LTSA have
lower complexity because the eigenvector problem is
sparse in these methods. If MDS and ISOMAP also solve
a sparse eigenvector problem, its execution will greatly
speed up. Therefore, it 1s very necessary to construct a
spare similarity or dissimilarity matrix. How can we build
such a matrix? We can only preserve the similarities or
dissimilarities between some points but all pairs.

LMDS has lower complexity through only preserving
the distances between some landmark pomts. But random
landmark sets don’t often represent the true topology of
the manifold and lead to worse results. Then how to
reduce the complexity on the premise of guaranteemng the
embedded quality? The problem can be solved by

Corresponding Author: Luku Shi, Schoal of Computer Science and Engineering, Hebei University of Technology,

Tianjin 300401, China



Inform. Techrol. 1, 11 (3): 380-383, 2012

combining the local structure and the global structure of
the mamfold We can preserve the similarities or
dissimilarities between each point and some points
mncluding its nearest neighbors and some far points.

Let X contain N samples. The goal of dimensionality
reduction 1s to force A, to match d; for each possible pair
(1, ). To do that, the stress function is used to measure the
error between the pairwise distances in two spaces in
MDS. The embedding 1s carried out by minimizing Eq. 1.
Because only some similarities or dissimilarities are
preserved in the new method, Eq. 1 can be changed to:

[z (@)
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part_ stress =
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where, () is the set containing the nearest neighbors and
some random far points. We call Eq. 2 as the part stress
function.

According to the part stress, we can introduce the
part energy function:

E—%El:%‘;(d“ Ay 3)
where, A is a learning rate parameter. Let:
E, _712 (d; - A
n
Equation 3 is rewritten as:
E= Z E, (4

The minimization is made through the deepest
gradient descent method. Let VE 1s the gradient with
respect to y,, then:

Ay, )]
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Equation 5 gives the method to update the
embedding coordinates for each step.

The description: The method 1s an iterative procedure
where the low dimensional coordinates are gained
through preserving the similarities or dissimilarities
between each point and some points. During the iterative
process, the part stress function 1s used as the object
function. To smmplify the algorithm, Euclidean distances
are used to construct the neighborhood graph and the
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dissimilarity measure is only employed. The fast algorithm
can be described as follows:

Input: X containing N samples, the neighborhood size
k,, the number k, of far points, the embedded
dimension d, the max learning steps L, the min
part stress s and the learning rate 4

Output: The embedded coordmnates Y

Step 1: Decide k, nearest neighbors and randomly
choose k, far points for each point

Step 2: Define the dissimilarity measure

Step 3: Estimate the dissimilarities between each point
and its k, distant points

Step 4: Tnitialize Y with PCA or random method and set
1=1

Step 5: Figure out the part stress. If the part stress is
smaller than s, return Y

Step 6: Update Y. Execute the following steps for each
point 1
»  Calculate Ay, according to Eq. 5
+  Sety"!'=yA4Ay,

Step 7: Setl=1+1.1flis bigger than L, return Y, else go
tostep 5

If Euclidean  distances  are used as the
dissimilarity measure, the step 3 can be skipped.

If the geodesic distances
they
shortest path on the
shortest path
algorithm.

are as the dissimilarity
approximated with the
neighborhood graph. The
computed with Dijkstra’s

measure, can be

can be

The complexity analysis: In the method, a main
computational cost 13 the iterative process. Its time
complexity is O (¢ (k+k,) N) (¢ is a constant). Usually, the
sum of k; and k;, 1s far below N. However, a full NxN
eigenvector problem has O (IN°) complexity in MD$S and
[SOMAP. At the same time, a full NxN dissunilarity
matrix needs to be stored. The space complexity is
O (N*). But, we only store a (k+k)*N matrix. Its
space complexity 15 O((k,+k,)N). Another main cost 1s to
estimate the dissimilarities between all pairs. The time
complexity of the part is equal for the new algorithm and
MDS. Apparently, the complexity of the fast algorithm is
great degraded.

EXPERIMENTS

We tested the performance of the new algorithm and
discussed some facts influencing the performance.
The experiments included fowr parts: comparison of
the performance between the new method and ISOMAP,
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Fig. 1. Two data sets including 1000 samples. (a) Swiss
roll data set and (b) S-ciuve data set

comparison of the efficiency of two methods,
effectiveness of the number of far points and the initial
value to the embedded results. In experiments, we used
Kruskal (1964) stress to measwe the performance and
noted 1t as ks. The distance mn two spaces was,
respectively Euclidean distance and the geodesic
distance. All programs were implemented in MATLAB.

Comparison of the performance between two methods:
To compare the performance of ISOMAP and the
proposed algorithm, we tested them on two data sets:
Swiss roll data set (Tenenbaum et @f., 2000) and S-curve
data set (Roweis and Saul, 2000). Each set contained
1000 samples (Fig. 1).

Firstly, we ran TSOMAP once on each data set and
computed the stress. Then, the fast algorithm was
executed on the two sets. k, was 5, 10, 15 and 20. The
initial value was set with PCA. For each case, the
algorithm ran 50 times. We counted the min value, the max
value, the mean value and the standard deviation of ks of
50 times. The four values were, respectively noted as
min, max, mean and sd. The results were given in Table 1
and 2. Here, k, was 7 on Swiss roll data set and 20 on
S-curve data set.

From the experiments, the stress from the new
algorithm was close to or smaller than that from
ISOMAP. Namely, the performance of the fast algorithm
was close or superior to that of ISOMAP through only
preserving the distances between each pomt and some
objects.

Comparison of the executing efficiency of two methods:
Theoretically, the complexity of the new algorithm was
lower than that of ISOMAP. We compared their executing
efficiency on Swissroll data set. We figured out the time
of the iterative process for the fast method. For ISOMAP,
we computed the time of solving the full NxN eigenvector
problem. To validate the relation between the executing
efficiency and the sample size, we ran them with different
sample size. The size was from 1000 to 8000. Here, k,= 7
andk,=5,10, 15, 20. The imtial value was set with PCA.
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Table 1: Results on Swissroll data set
Fast algorithm

ISOMAP k, Min. Max. Mean SD

0.0256 5 0.0262 0.0322 0.0284 0.0014
10 0.0233 0.0237 0.0235 0.0001
15 0.0227 0.0232 0.0229 0.0001
20 0.0225 0.0229 0.0226 0.0001

Table 2: Results on S-curve data set
Fast algorithm

ISOMAP ky Min. Max. Mean 3D

0.0066 5 0.0211 0.0245 0.0223 0.0008
10 0.0195 0.0240 0.0219 0.0011
15 0.0200 0.0254 0.0218 0.0010
20 0.0198 0.0237 0.0212 0.0008

Table 3: Efficiency comparison between two algorithins for different sample

size
Fast algorithm (sec)

Rample TSOMAP

size (sec) k,=5 k; =10 k=15 k, =20
1000 0.6240 2.7012 2.4915 2.3086 4.4760
2000 2.1100 3.3181 1.8563 1.4551 1.3879
3000 4.6570 4.6535 2.5735 1.9968 1.9421
4000 7.7360 6.0887 3.3256 2.5459 24221
5000 11.8140 7.3681 3.9369 3.0074 2.8496
6000 17.6450 83773 4.2411 2.9720 2.7502
7000 10.7493 5.6882 4.2804 4.0884
8000 11.7656 6.5814 5.5876 6.5873

The max iterative step was 100 and the min part
stress was 0.02. For
of 10 times was calculated. The results were shown in
Table 3.

From the results, ISOMAP could not run when the
sample size was more than 6000 because the matrix
was too big. For smaller sample set, the executing
efficiency of ISOMAP was higher than one of the new
algorithm. The efficiency of the fast method was higher
and higher than one of ISOMAP with the mecreasing
sample size.

each case, the mean time

Effectiveness of the number of far points to the embedded
results: In the algorithm, one needed randomly select
some far points before running the program. How
many should we select far points? Namely, how does the
number of far points affect the results? To this end,
we ran the method on Swiss roll data set with
1000 samples for various numbers of far points.
Here, k, = 7 andk,=0,1, 3, 5, 10, 20. For each case, we
computed statistic values of ks for 50 times. During
each execution, the max iterative step was 200 and the
itial value was set with PCA. The results were given
in Table 4.
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Table 4: Values of ks for different far points

k; Min. Max. Mean 3D

0 0.6303 0.6303 0.6303 0.0000
1 0.1014 0.3327 0.1992 0.0508
3 0.0268 0.0362 0.0289 0.0016
5 0.0244 0.0270 0.0252 0.00052
10 0.0232 0.0246 0.0236 0.0003
20 0.0225 0.0234 0.0227 0.0002
Table 5: Results for the initial value with PCA

k; Min. Max. Mean SD

1 0.2841 0.4314 0.3518 0.0309
3 0.0497 0.1000 0.0668 0.0097
5 0.0262 0.0322 0.0284 0.0014
10 0.0233 0.0237 0.0235 0.0001

20 0.0225 0.0229 0.0226 0.0001

Table 6: Results for the random initial value

k; Min. Max. Mean SD

1 0.2925 0.5627 0.4519 0.0720
3 0.0867 0.4839 0.2265 0.0807
5 0.0471 0.2163 0.1376 0.0444
10 0.0236 0.1654 0.0640 0.0499
20 0.0225 0.1347 0.0270 0.0199

Experiments showed that the number of far points
greatly influenced the embedded results. Without far
points, the results were worse for the global
information was ignored. The results would be greatly
improved while only selecting one far point. The more
far points were chosen, the better the results were.

However, the results were near while far points were more
than five.

Effectiveness of the initial value to the embedded results:
In the fast algorithm, we needed to give an imitial value of
the low dimensional embedding before starting the
iteration. Then, how did the initial value affect the results?
In this section, we discussed how to set the initial value.
Here, we adopted two methods to set the 1mitial value. One
was random initial value; the other was to use the results
from PCA. Here, k=7 and k, =1, 3, 5, 10, 20. For each
case, we computed the statistic values of ks for 50
executions. The results were given in Table 5 and 6 for
two cases.

As shown in the experiments, the initial value greatly
affected the embedded results, especially, far points were
less. The results were closer and closer with the
increasing number of far points for two cases. For the
initial value with PCA, the min value, the max value and
the mean value of the stress were near while far points
was more than five. The standard deviation was also very
small. However, the three values were very various and
the standard deviation was also bigger for the random
nitial value.
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CONCLUSIONS

MDS and ISOMAP which have higher complexity, are
typical mamfold learmng methods. Although LMDS has
lower complexity, random landmark point sets often lead
to worse results. A fast manifold learning method was
proposed which only preserved the similarities or
dissimilarities between each point and some pomts
including its nearest neighbors and some far points.
Experiments showed that the method could discover the
manifold embedded in the high dimensional space and
had higher efficiency. Experiments also displayed that the
better results would be gained when far points were more
than five. Moreover, the initial value also influenced the
embedded results. Then, we will check the performance of
the algorithm in the real applications.
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