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Abstract: Applied harmonic analysis plays an important role in engineering such as signal processing, image
processing, digital communications, medical imaging and so on. This study has present an overview of all kind
of reproducing systems which are obtained by applying a combination of dilations, modulations and
translations to a finite family of functions. Five reproducing systems and their applications are mainly

introduced as the following: Gabor systems, wavelet systems, wave packet systems, composite dilation wavelet
systems and shearlet systems. Present study reviewed their definitions, history and existing known results,
respectively. Furthermore, it also discussed their advantages and shortcomings in the engineering applications.
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INTRODUCTION

This study presents an overview of all kind of
reproducing systems of functions developed durings 30
years. By reproducing systems of functions, we refer to
those families of functions in L (R*) which are obtained
by applying a countable collection of operators to fimte
functions.

Today we are living in a data world. On the one hand,
people have to develop the methodology to process
various types of data. On other hand, they are challenged
to analyze the accuracy of such methods and to provide
a deeper understanding of the wunderlying structures.
There 1s a pressing need for those tasks deriving from
various fields signal image
processing, digital communications, medical imaging and
so on. In general, these data are usually modeled as the
functions (f): X = Y or just collections of points.

The first task which we confront with is how to
measure data in the most efficient way, especially where
time 1s a main factor such as collecting MRI data. Since,
data may be polluted by the noise, the next task 1s to
denoise the data which needs to establish a suitable
model for the noise. If data are missing, we encounter the
task of inpainting. Then the data need to be analyzed
depending on the application requirements which could
involve feature detection and extraction, separation
of different substructures and so on. Finally, we need to
store the data which requires optimal compression

algorithms.

such as processing,

As mentioned before, the general task now consists
in not only providing the good methodologies, but also in
analyzing their performance and effectiveness.

In the late 18th century, the fourier transform is the
first tool to analyze the data. When the Fast Fourier
Transform (FFT) was developed, it achieved the greatest
achievements. Today, FFT is still one of the most
fundamental algorithms and can be found in various
applications. However, the Fourier Transform itself has a
serious disadvantage. A local perturbation of f leads to a
change of all fourier coefficients simultaneously, since 1t
merely analyzes the global structure of a signal. However,
in many signal processing we have to detect the location
of the signal and this indicates a defect in an engineering
process.

This deficiency led to the birth of the new fields of
applied harmonic analysis, which 13 nowadays , already
one of the major research areas i1n applied
mathematics. Tt exploits not only methods from harmonic
analysis, but also borrows from areas such as
approximation theory, munierical mathematics and operator
theory.

One fundamental idea m applied harmonic analysis
15 the decomposition of data or signals using
representation systems with prescribed properties for
a given class of mathematical objects. Given a closed
subset X of a Hilbert space H we will search for a
representation system {@; I € [} so that each signal s € X
admits a representation:

§=3. <8y, =,
1€l
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This allows us to analyze the signal s by considering the
mapping to its coefficients {<=w =iel}

Furthermore, we want to design the representation
systems 1n such a way that for all elements s € X only a
few coefficients are large and others are enough small.
When, reconstructing the elements, we will omit small
coefficients. This leads to the notion of a k-sparse
representation, i.e., k coefficients are non-zero. Tt becomes
clear that such a representation should be optimal for
compression, since only large coefficients need to be
stored.

In this review, we will only consider a representation
system consisting in the collections of fimetions which
are obtained by applying a combmation of dilations,
modulations and translations to a fimite family of
functicns in L’ (R,). In need of stable reconstruction, we
also require the representation system forming an
orthonormal base, a Riesz base or a frame of L? (R®).

Let us now establish some basic notations. We use
the fourier transform in the form:

()= | £(x) e

where, < .,. > denotes the standard inner product in R
The expanding matrices mean that all eigenvalues have
magnitude greater than 1. For matrix A, we denote 1its
transpose by B".

Let GL(R) denote the set of all n*n mvertible matrices
with real coefficients. We consider three fundamental
operators on L’ (R™).

The translation operator T :Tuf(x)=f(x-AK)  where,
AeGL (R)keZ".

The dilation operator:
1
D,:D,f(x)=|det A]P f(AxX)

where, A 1s an expanding matrix and A € GL, (R).

The modulation operator E,, :E,f(x)=¢"f(x) where,
AeGL,(R)keZ".

Then, we will introduce mainly five reproducing
systems and their applications: Gabor systems, wavelet
systems, wave packet systems, composite dilation
wavelet systems and shearlet systems.

Gabor systems: The Fourier transform is only able to
retrieve the global frequency content of a signal, the time
mformation 1s lost. This shortcoming 1s overcome by
Gabor systems which are obtained from a finite family of
functions by shifting it in time and frequency over certain
lattices.
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More specifically, let G = {g,, g,, ... g.} = L* (R) be
fixed functions and let B, C € GL, (R). Gabor systems are
the collections:

{E.Ligi{xymkeZ, 1=12,.-- L}

Sometimes, Gabor systems are also called Weyl-
Heisenberg systems.

The Gabor system was first mtroduced by Gabor
(1946), with the Gaussian window for the purpose of
constructing  efficient,  tume-frequency
expansions of finite-energy signals. However, later it was
observed that the Gabor system with a Gaussian window

localized

function yields unstable expansions. To obtain stable
expansions, it is required that Gabor systems form at least
a frame.

The fundamental problems of Gabor theory are: How
should we choose functions G={g.g,. g }cT’(R") such
that Gabor systems possess the spanning properties.
When do the Gabor systems span a dense subspace of
L* (R®? When do Gabor systems constitute frames or
linearly independent families for I.? (R™)? The investigation
about these problems is nowadays referred to as Gabor
analysis.

Gabor analysis m dimension one has been studied
from 1970 and the fundamental questions have been
solved with a fascinating mixture of harmonic analysis and
complex analysis. The groundbreaking characterization of
Gabor frames 15 due independently to Lyubarsk: (1992)
and Seip (1992). They proved that, in dimension one,
Gabor system is a frame if and only if the lower Bewling
density is more than one. This result solved a conjecture
of Daubechies and Grossmamm. The sufficient conditions
in time domain for the Gabor system to be a frame have
been known (Christensen, 2003; Ron and Shen, 1997,
Grochenig, 2001).

Czaja (2000) gave characterizations of orthogonal
families, tight frames and orthonormal bases of the Gabor
systems via fourier transform. In particular, Daubechies
(1992) mentioned a sufficient condition in frequency
domain for the Gabor system to be a frame. In paper by
Lietal (2011) presented two new sufficient conditions for
Gabor frame via fourier transform. The conditions they
proposed were stated in terms of the fourier transforms of
the Gabor system’s generating functions and the
conditions were better than that of Daubechies.

Gabor systems give the time-frequency content of a
signal with a constant frequency and time resolution due
to the fixed window length. This is often not the most
desired resolution. For low frequencies often a good
frequency resolution 1s required over a good time
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resolution. For high frequencies, the time resolution is

more 1mportant. This leads to a birth of wavelet

analysis.

Wavelet systems: Wavelet systems are obtained from a
fimute family of functions by shifting and dilatirg it.

More specifically, let ¥={y,y,,. -y }c*®R") be fixed
functicns and let A.BeGL.(R). Wavelet systems in L> (R")
are the collections {D,’ T, wix):keZ",jeZ}.

Wavelets were introduced in the beginning of the
19808 and were founded in 1990s. The advantage of
wavelets over standard fourier transform is their ability to
localize harmonic analysis both within spatial and
frequency boundaries.

Mallat (1989) gave wavelets an additional jump-start
through his work m digital signal processing. He
discovered some relationships among quadrature mirror
filters, pyramid algorithms and orthonormal
bases. Inspired by these results, it is constructed the first
non-trivial wavelets. Unlike the Haar wavelets, the Meyer
wavelets are continuously differentiable. However, they
do not have compact support. Later, Daubechies (1988)
and Daubechies {1990) used Mallat’s work to construct a
set of wavelet orthonormal basis functions that are
perhaps the most elegant and have become the corner
stone of wavelet applications today. Though, people have
given an algorithm for constructing the mother wavelet by
multiresolution analysis (MRA), not every wavelet 1s
generated from an MRA as Journe (1992) demonstrated
by his celebrated example (Daubechies, 1992).

In the previous studies (Walter, 1992; Xia and
Zhang, 1993; Wu et al., 2007), researches considered the
sampling theorems in the wavelet subspaces
classified cardinal orthogonal scaling functions, which
provided

wavelet

and

theoretical foundations for wavelet
applications mn signal processing, image processing and
digital commumications. Furthermore, some researchers
(Wu et al., 2010, Wu et al,, 2009a) generalized above
results to the cases of M-band wavelet and higher
dimension, respectively. Recently, Li and Wu (2009)
classified the orthogonal mterpolating balanced
multiwavelets and obtained the sampling theorem in the
multiwavelet subspaces. In a paper Guochang et al. (2010)
presented an account of the current state of sampling
theorem after Shannon’s formulation of the sampling
theorem.

In study by Chen and Wei (2009), has provided some
characteristics of orthogonal trivariate wavelet packets.
Later Chen and Lv (2011), gave an algorithm for designing
biorthogonal multiple

obtained their properties.

vector-valued wavelets and

668

Since wavelet theory came into the world, it has
attracted considerable interest from the mathematical
community and from members of many diverse disciplines
in which wavelets had promising applications.

The wavelet transform and multiresolution analysis
are now considered standard tools by researchers in
engineering technology. The most known application
fields of wavelet transform are signal processing and
image processing such as image compression and video
imaging. This tool is included in the new norms JPEG and
MPEG instead of the classical Discrete Cosine Transform
(DCT) For example. Afshari (2011), obtained an algorithm
to analyze and synthesize a two dunensional signal by
using two-dimensional wavelet method and mvestigated
some relationships between wavelet coefficients. In a
study by Phadikar et al. (2007), authors proposed a high
capacity novel digital color image watermarking
scheme 1n wavelet domain. Experimental result showed
that the proposed scheme is imperceptible and also
robust to common image processing operations. In study
Ying and Li (2011), a cascade filtering method, based on
Wavelet Neural Network Blind FEqualization, was
proposed. Compared with existing methods, the cascade
filtering method has faster convergence rate and
convergence precision. Acoustic channel simulations and
pool experiment proved that their method has better
performance in underwater commumcation In a study
by Gu et al. (2011), a new hybrid intelligent forecasting
approach based on the integration of wavelet transform,
Genetic algorithm optimization and fuzzy neural network
was proposed for the short time traffic flow prediction. By
doing so, the forecasting rate could be improved much
higher than traditional ways. In a study (Rizz et af., 2009),
a real-time fast parallelized processing technique adopting
a multiscale wavelet transform was used for impedance
cardiography signal processing. Experimental results
showed the method’s reliability and sensitivity. Also,
authors Zheng et al. (2005) provided a new method of 2D
shape representation by making full use of the ability of
time and frequency localization of wavelet transformation.
This techmique could be applied in workpiece boundary
noise reducing. Khalaf et al (2011), considered to
optimize dimensionality of feature space for a speech
signal with Wavelet Packet upon level three features
extraction method. Their method had a less computational
complexity for speaker verification system. In a study by
Sharma and Agarwal (2012), authors used wavelet neural
network approach for temperature prediction.

However, even if promising practical results in
machine vision for industrial applications have recently
been obtained, wavelet transform in industrial products
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is still rarely used and a lot of ideas are still to be involved
in industrialist imaging projects. Thus, it seems more than
ever necessary to propose opportunities for exchanging
between practitioners and researchers about wavelets.
Recently, persons found that wavelets do not perform
optimally when representing and analyzing amsotropic
features mn multivariate data. This promotes people to
search for better mathematical tools.

Wave packet systems: In a study Cordoba and Fefferman
(1978), mtroduced wave packet systems by applymg
collections of dilations,
to the Gaussian function in the study of

certain modulations and
translations
some classes of singular integral operators. Labate et al.
(2004), adopted the same expression to describe any
collections of functions which are obtained by applymg
the same operations to a finite family of functions.

More specifically, let ¥={y, v,y }c ' ®") be fixed
functions and let 4.B.C€GL,(R). Wave packet systems are
the collections {D,'F,,T.g (x):m ke 2" jeZ1=12, - L}.

A wave packet system which 1s a frame (orthonormal
basis or Riesz basis) for L*(R*) will be called a wave
packet frame (orthonormal basis or Riesz basis). In fact,
gabor systems, wavelet systems and the fourier
transform of wavelet systems are special cases of wave
packet systems. Wave packet systems have recently been
successfully applied to problems in harmonic analysis and
operator theory (Lacey and Thiele, 1997, Lacey and
Thiele, 1999).

Hernandez er al. (2004), examined in detail both the
continuous and discrete versions of wave packet systems
by uwsing a unified approach that the authors have
developed in their previous work. They gave a
classification of the wave packet system to be a parseval
frame. They constructed a very general example of wave
packet frame.

Christensen and Rahimi (2008) considered wave
packet systems as special cases of generalized shift-
invariant systems and presented a sufficient condition for
a wave packet system to form a frame. Hernandez et al.
(2002), presented certain natwal conditions on the
parameters in a wave packet system which exclude the
frame property. Then, they gave a characterization of the
wave packet system to be a parseval frame. At last, they
provided several examples in which the dilations do not
have to be expanding and the modulations do not have to
be associated with a lattice.

Czaja et al. (2006) introduced analogues of the notion
of Bewling density to describe completeness properties
of wave packet systems via geometric properties of the
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sets of their parameters. In particular, they showed
necessary conditions for the wave packet system to be a
Bessel system. Also, they obtained the necessary
conditions for existence of wave packet frames and
provided large families of new, non-standard examples of
wave packet frames with prescribed dimensions.

Since both Gabor systems and wavelet systems are
some particular examples of wave packet systems, people
ask naturally: How do we construct some examples of
packet systems such that they possess

simultaneously both Gabor systems and wavelet systems’

wave

advantages and however, overcome their shortcomings?
In need of applications, how do we develop the algorithm
1n the setting of the wave packet systems?

So far as we know, few results are known about these
problems. This impels people to make great efforts to
solve them.

Composite dilation wavelet systems and shearlet systems:
Composite dilation wavelets (Guo et al., 2006) represent
a developmg direction m the study of reproducing
systems of the space 17 (R"). They differ from the classic
wavelets in that they generate bases (or frames) using two
groups of dilations. One group is associated with an
expanding matrix and the other is a group with a special
property.

More specifically, let ¥={y,y, -y }cI*(R") be fixed
functions and let AcGL,(R) and B={beGL,(Z):|detb}=1}
Composite  dilation systemns the
collections {D,D, T, w(x):ac A,beB,ke Z", je Z}.

wavelet are

The most important example of the group B is the
shear group that gives rise to shearlets, which have found
great success in certain applications.

In Wu et ol (2009h), the notion of AB-multiresolution
analysis was generalized and the corresponding theory
was developed. For an AB-multiresolution analysis
associated with any expanding matrices, they deduced
that there exists a singe scaling function in its reducing
subspace. Under some conditions, composite dilation
wavelets could be gotten by AB-multiresolution analysis,
which permitted the existence of fast implementation
algorithm. Then, they provided an approach to design
composite dilation wavelets by classic wavelets. In each
section, they constructed all kinds of examples with nice
properties to prove their theory. Blanchard (2009a) and
Blanchard (2009b) represented composite dilation
Parseval frame wavelet systems with mimimally supported
frequency was constructed. Constructive proofs are used
to establish the existence of composite dilation wavelets
in arbitrary dimension using any finite group B, any full



Inform. Techrol. 1, 11 (6): 666-672, 2012

rank lattice and an expanding matrix generating the group
A and normalizing the group B. Moreover, such system is
derived from a Parseval frame multiresolution analysis.
Multiple examples are provided including examples that
capture directional information.

The main advantages of shearlet theory lie in that the
shearing filters can have smaller support sizes than the
directional filters used in the contourlet transform and can
be implemented much more efficiently. An additional
appealing point to make in favor of the shearlets approach
15 that they transiti very micely from a continuous
perspective to a discrete perspective. In addition, the
proposed framework is suitable to many variations and
generalizations.

Shearlets allow a unified treatment of the continuum
and digital world similar to wavelets, while they provide
almost optimally sparse approximations within a cartoon-
like model. Shearlet systems can be designed to efficiently
encode anisotropic features. In order to achieve optimal
sparsity, shearlets are scaled according to a parabolic
scaling law. They parameterize directions by slope
encoded in a shear matrix.

Shearlet systems are studied in two ways: One class 1s
generated by a unitary representation of the shearlet
group equipped with a nice mathematical structure.
However, this kind of structure causes a biasedness
towards one axis, which hinders their applications. The
other class is generated by a quite similar procedwre
restricted to a horizontal and vertical cone in frequency
domain to ensure an equal treatment of all directions. For
both cases, the continuous shearlet systems
associated with a 4-dimensional parameter

are
space
consisting of a scale parameter measuring the resolution,
a shear parameter measuring the orientation and a
translation parameter measuring the position of the
shearlet. Sampling of this parameter space results in
discrete shearlet systems, which consist of regular
shearlet systems and irregular shearlet systems.

The first class of shearlets was band-limited with a
wedge-like support in frequency domain specifically
adapted to the shearing operation (Labate et al., 2005).

This particular class of cone-adapted shearlet frames
was already explored for analyzing sparse approximation
properties of the associated shearlet frames.

Shortly afterwards, a different way was undertaken by
Kutynmiok and Labate (2007), where a first attempt was
made to derive sufficient conditions for the existence of
iregular shearlet frames. Tn addition, this result was stated
for shearlet frames which came directly from a group
representation. In some sense, this path was continued
(Dahlke et al., 2009), where again sufficient conditions for
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this class of irregular shearlet frames were studied. A
more extensive study of these systems was performed by
Guo and Labate (2007) with a focus on necessary
conditions and a geometric analysis of the irregular
parameter set.

Now, we retumn to the situation of cone-adapted
shearlet frames. The question of optimal sparsity of a
large class of cone-adapted compactly supported shearlet
frames was very recently solved by Kutyniok and Lim
(2011). Taking applications into account, spatial
localization of the analyzing elements of the encoding
system i3 of very importance both for a precise
detection of geometric features as well as for a fast
decomposition algorithm. Hence, Kittipoom et al. (2011a)
and Kittipoom et af. (2011b) provided a comprehensive
analysis of cone-adapted discrete shearlet frames
encompassing in particular compactly supported shearlet
generators. Their contribution was two-fold: they firstly
provided sufficient conditions for a cone-adapted
irregular shearlet system to form a frame for 1.} (R") with
explicit estimates for the ratio of the associated frame
bounds.  Secondly, results, they
introduced a class of cone-adapted compactly supported
shearlet frames, which were even shown to provide
(almost) optimally sparse approximations of cartoon-like
images, alongside estimates for the ratio of the associated
frame bounds.

based on these

CONCLUSIONS

This study overviews all kind of reproducing systems
which are obtained by applying a combination of
dilations, modulations and translations te a finite family of
functions. We discuss five reproducing systems by
reviewing their defimitions, history and existing known
results as the following: Gabor systems, wavelet systems,
wave packet systems, composite dilation wavelet systems
and shearlet systems. We also consider their applications.
Furthermore, discuss  their advantages and
shortcomings the engineering  applications,
respectively. We lay emphasis upon wavelet systems and
shearlet systems because they have obtamed huge
success in engineering such as signal processing, umage
processing, digital communications, medical imaging and
50 on.

we
in

REFERENCES

Afshari, M., 2011.
two-dimensional

An
function

algorithm to analyze of
by using wavelet
coefficients and relationship between coefficients.
Asian I. Applied Sci., 4: 414-422.

i



Inform. Techrol. 1, 11 (6): 666-672, 2012

Blanchard, J.D., 2009a. Minimally supported frequency
composite dilation Parseval frame wavelets. I.
Geometric Anal., 19: 19-35.

Blanchard, 1.D., 2009b. Muumally supported frequency
composite dilation wavelets. I. Fourier Anal. Appl.,
15: 796-815.

Chen, Q. and B. Lv, 2011. An algorithm for designing a
sort of biorthogonal multiple vector-valued
wavelets and their properties. Inform. Technol.
J,10:1170-1177.

Chen, Q. and 7. Wei, 2009. The characteristics of
orthogonal trivariate wavelet packets.
Technol. T., 8: 1275-1280.

Christensen, O. and A. Rahimi, 2008 Frame properties
of wave packet systems in LA(R%Y). Adv. Comput.
Math., 29: 101-111.

Christensen, ©., 2003. An Introduction to Frames and
Riesz Bases. Bukhauser, Cambridge, MA., USA |
ISBN-13: 9780817642952, Pages: 440.

Cordoba, A. and C. Fefferman, 1978 Wave packets
and fourier integral operators. Commun. Partial
Differ. Equ., 3: 979-1005.

Crzaja, W., 2000. Characterizations of Gabor systems
via the fourter transform. Collectanea Math.,
51: 205-224,

Czaja, W., G. Kutynick and D. Speegle, 2006. The
geometry of sets of parameters of wave
packet frames. Applied Comput. Harmon. Anal,
20: 108-125,

Dahlke S., G. Kutymiok, G. Steidl and G. Teschke,
2009. Shearlet coorbit spaces and associated
banach frames. Applied Comput. Harmon. Anal,
27:195-214.

Daubechies, I., 1992. Ten Lectures on Wavelets. 1st Edn.,
SIAM., Philadephia, ISBN: 0-89871-274-2, pp: 1-52.

Daubechies, 1., 1988. Orthogonal bases of compactly
supported wavelets. Commun. Pure Applied Math.,
41: 909-996,

Daubechies, I., 1990. The wavelet transform, time-
frequency localization and signal analysis. IEEE
Trans. Inform. Theory, 36: 961-1005.

Gabor, D., 1946. Theory of communication. J. Inst. Electr.
Eng., 93: 429-459.

Grochemg, K., 2001. Foundations of Tune-Frequency
Analysis. Birkhauser, Boston, MA., TJSA., ISBN-13:
9780817640224, Pages: 359.

Gu Y.,Y. L, I XuandY. Ly, 201 1. Novel model based on
wavelet transform and GA-fuzzy newal network
applied to short time traffic flow prediction. Inform.
Technol. 1., 10: 2105-2111.

Guo, K. and D. Labate, 2007. Optimally sparse
multidimensional representation using shearlets.
SIAM J. Math. Anal., 39: 298-318.

Inform.

671

Guo, K., D. Labate, W.QQ. Lim, G. Weiss and E. Wilson,
2006. Wavelets with composite dilations and their
MRA properties. Applied Comput. Harmon. Anal.,
20: 202-236.

Guochang, W., 7. Yadong and Y. Xiachui, 2010.
Sampling theory: From shannon sampling theorem
to compressing sampling. Inform. Technol 7.,
9:1231-1235.

Hemandez, E., D. Labate and G. Weiss, 2002 A
umfied characterization of reproducing systems
generated by a fimte family IT. . Geometric Anal.,
12: 615-662.

Hemandez, E., D. Labate, G. Weiss and E. Wilson, 2004,
Oversampling, quasi affine frames and wave packets.
Applied Comput. Harmon. Anal., 16: 111-147.

Khalaf, E., K. Dagrouq and M. Sherif, 2011. Modular
arithmetic and wavelets for speaker
I. Applied Sci., 11: 2782-2790.

Kittipoom, P., G. Kutymiok and W.Q Lim, 201la
Construction of compacted supported
frames. Constr. Approximatior, 35: 21-72.

Kittipoom, P., G. Kutyniok and W.Q. Lim, 2011b. Irregular
shearlet frames: Geometry and approximation
properties. J. Fourier Anal. Appl., 17: 604-639.

Kutyniok, G. and D. Labate, 2007. Construction of regular
and irregular shearlet frames. J. Wavelet Theory
Appl, 1: 1-10.

Kutynick, G. and W.Q. Lim, 2011. Compactly supported
shearlets are optimally sparse. J. Approximation
Theory, 163: 1564-1589.

Labate, D., G. Weiss and E. Wilson, 2004. An approach to
the study of wave packet systems. Contemp. Math.,
345: 215-235.

Labate, D., W.Q. Lim, G. Kutyniok and G. Weiss, 2005.
Sparse  multidimensional representation  using
shearlets. Proc. SPIE, 5914: 254-262.

Lacey, M. and C. Thiele, 1997. L* estimates on the
bilmear Hilbert transform for 2 < p <8 Ann Math,,
146 693-724,

Lacey, M. and C. Thiele, 1999. On Calderon's conjecture.
Amn. Math,, 149: 475-496,

Ly, DF., G.C. Wu and X.J. Zhang, 2011. Two sufficient
conditions in frequency domain for Gabor frames.
Applied Math. Lett., 24 506-511.

L1, R. and G. Wu, 2009. The orthogonal interpolating
balanced multiwavelet with rational coefficients.
Chaos Solitons Fractals, 41: 892-899.

Lyubarski, Y.I., 1992. Frames in the Bargmann Space of
Entire Functions. In: Entire and Subharmomec
Functions, Levin, B.I. (Ed.). American Mathematical
Society, Providence, RI, TUSA ISBN-13:
9780821841105, pp: 167-180.

verification.

shearlet

3



Inform. Techrol. 1, 11 (6): 666-672, 2012

Mallat, S8.G., 1989. A theory for multiresolution signal
decomposition: The wavelet representation. TEER
Trans. Pattern Anal. Mach. Intell., 11: 674-693.

Phadikar, A., B. Verma and S. Jain, 2007. Region splitting
approach to robust color image watermarking scheme
in wavelet domain. Asian J. Inform. Manage., 1: 27-42.

Rizzi, M., D. Matteo and C. Beniamino, 2009. High
sensitivity and nowsse immune method to detect
impedance cardiography characteristic points using
wavelet transform. J. Applied Sci., 9: 1412-1421.

Ron, A and Z. Shen, 1997. Weyl-Heisenberg systems and
Riesz bases in L? (R%). Duke Math. J., 89:; 237-282.

Seip, K., 1992, Density theorems for sampling and
interpolation in the Bargmann-Fock space T. I. Pure
Applied Math., 429: 91-106.

Sharma, A. and 3. Agarwal, 2012. Temperature prediction
using wavelet neural network. Res. T. Inform.
Technol., 4: 22-30.

Walter, G.G., 1992. A sampling theorem for wavelet
subspaces. IEEE Trans. Inform. Theory, 38: 881-884.

Wu, G.C., Z.X. Cheng and X.H. Yang, 2007. The cardinal
orthogonal scaling function and sampling theorem
m  the wavelet subspaces. Applied Math
Comput., 194: 199-214.

672

Wu, G., Y. Zhang and 7. Cheng, 2009. The cardinal
orthogonal scaling function in higher dimension.
Inform. Technol. T, 8: 393-397.

Wu, G.C,, Z.Q. Liand Z.X. Cheng, 2009b. Construction of
wavelets with composite dilations. Chaos, Solitons
and Fractals, 40: 2447-2456.

Wu, G.C., DF. L1 and HM. Xiac, 2010. The M-band
cardinal orthogonal scaling function. Applied Math.
Comput., 215: 3271-3279.

Xia, X.G. and Z. Zhang, 1993. On sampling theorem,
wavelet and wavelet transforms. IEEE Trans. Signal
Process., 41: 3524-3535.

Ying, X. and Z. Li, 2011. Wavelet neural network blind
equalization with cascade filter base on RLS in
underwater acoustic commurcation. Inform. Technol.
1., 10: 2440-2445.

Zheng, X., X. Huang and M. Wang, 2005. Object edge
smoothing by wavelet transformation.
Technol. I., 4: 451-455.

Inform.



	ITJ.pdf
	Page 1


