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Textural Fabric Defect Detection using Adaptive Quantized Gray-level
Co-occurrence Matrix and Support Vector Description Data
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Abstract: A new defect detection algorithm base on Support Vector Data Description (SVDD) is proposed. A
fabrie texture model is built on the gray-level histogram of textural fabric image. Two Gray-level Co-occurrence
Matrix (GLCM) features are used to characterize the fabric texture. And an adaptive quantization scheme base
on the texture mode 18 proposed to reduce the size of GLCM and reduce the computational complexity of feature
extraction. Besides, two new features are proposed to characterize the continuous property of the fabric defects.
The SVDD classifier is used as a detector for defect detection. Experimental results of real fabric defects are
provided to validate the effectiveness and robustness of the proposed detection algorithm. And a prototyped
detection system 1s built to evaluate the real-time performance of the detection algorithm.
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INTRODUCTION

Fabric defect detection is one of the most important
procedures effecting the manufacturing efficiency and
quality in fabric industry. So far, most factories
accomplish this study by human vision which makes the
quality of fabric devoid of consistency and reliability. Tt is
found that even a highly trained mspector can only detect
about 70% of the defects at a speed of 15-20 m min™'
(Sari-Sarraf and Goddard, 1999). As the development of
umage processing technology, many methods base on
texture analysis were proposed for defect detection.
Several statistical methods using texture features, such as
fractal dimension (Conci and Proenca, 1998; Bu et al.,
2009), morphological feature (Mallick-Goswami and Datta,
2000; Chandra et al., 2010) and co-occurrence matrix
(Latif-Amet et al., 2000, Lin, 2010) were proposed to
discriminate defects from normal texture. Cohen et al.
(1991) used the Gauss Markov Random Field (GMRF) to
model the texture pattern of non-defective fabric image
and the defect 13 detected by the rejection of the model
using hypothesis testing theory. Because of the high
degree of periodicity of the fabric texture, the spectral
approaches are also used for fabric defect detection.
Chan and Pang (2000) used Fourier transform for this task
which tuned out to be only suitable for global defect

detection because of its poor local resolution i the
frequency domain. Defect detection methods with
multiresolution decomposition using a bank of Gabor
filters were proposed by Bodnarova et al. (2002) and
Kumar and Pang (2002). As Gabor filter banks will lead to
redundant features at different scales, the orthogonal
wavelet transform (Nadhim, 2006) are also used for texture
characterization (Loum et al, 2007), classification
(Raju et af., 2008) and fabric defect detection (Yang ef al.,
2002; Mingde and Zhigang, 2011).

The defect detection can be considered as a
one-class classification problem. Ohaman and Dubes
(1992) and Randen and Husoy (1999) provide some
occasions that, in the viewpoint of texture classification,
GLCM outperforms other features such as Gabor filters
feature, fractal feature, MRF feature. However GLCM 1s
still degraded for its high computational complexity. In
this study, an adaptive quantization method is proposed
base on the textwe model of mixtwe of two Gauss
distribution. The quantization method reduces the
gray-level from 256 levels to several levels which greatly
reduces the computation complexity of GL.CM features.
The SVDD classifier is used as a detector for defect
detection. Several machine learming based texture
classification methods have been proposed using neutral
network (Kumar, 2003; Jianli and Baogi, 2007,
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Chandra et al., 2010, Nagarajan and Balasubramanie, 2008;
Mahi and Izabatene, 2011), Support Vector Machine
(SVM) (Kumar and Shen, 2002; Chu et ai., 2011) and
SVDD (Bu et al, 2009, 2010). The neutral network and
support vector based methods considered the defect
detection as a two-class classification problem which
required both defective and non-defective samples for
training. However, the requirement of large quantities of
defective samples is usually not desirable for online
ingpection in industrial occasions. Similar to SVM, the
SVDD classifier i1s also a kernel function based classifier
which does not suffer the problem of local minima.
However, it is a one-class classifier which requires only
the non-defective sample for training, thus it is adopted in
owr algorithm.

FABRIC TEXTURE MODEL

that the plain and twill texture are, respectively, made up
of one and two gray tones which 1s also indicated in their
histograms in Fig. 1c and d by solid lines. The fabric
texture model is built on the histogram of gray-level image
of fabric texture. The histogram of the plain fabric texture
tends to obey the Gauss distribution and the histogram of
the twill fabric textwre tends to obey a mixtwe of two
Gauss distributions. So, the Probability Density Function
(PDF) of gray-level in the plain fabric image can be
modeled as:

(1)

£ ()= e O

where, 1 and o are the mean and standard deviation of the
Gauss  distribution, respectively. And the PDF of
gray-level m the twill fabric image can be modeled as:

Figure la and b show two samples of non-defective f ()= D cwwied P2 ewied (2)
texture of plain and twill fabrics, respectively. It can be see Va0, 2no,
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Fig. 1(a-d) Non-defective samples of (a) plain, (b) twill fabrics and (¢, d) comresponding histogram and fitting

results
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where, P4P,=1 and pu,<p,. P, u,, 0, and P,, y,, 0, are the
proportions, means and standard deviations of two
Gaussians in the mixture, respectively.

In order to build a consistent model for both plain
and twill fabrics, only Eq. 2 15 used and Eq. 1 is considered
as a particular case of Eq. 2withP,=1,P, =0, p, = p, and
0, = 0,. And parameters of mixed Gauss distribution in
Eq. 2 can be estimated by curve fitting. The fitting results
of both plain and twill fabric image histograms are
illustrated in Fig. 1¢ and d with dash lines, respectively.

GRAY-LEVEL CO-OCCURRENCE MATRIX AND
ADAPTIVE QUANTIZATION

Spatial gray-level co-occurrence estimates image
properties related to second-order statistics. It turns out
that GLCM has become one of the most well-known
texture features and is widely wsed for texture
characterization (Shang et al,, 2011, Sheng et al., 2010). A
co-occurrence matrix 1s a square matrix whose elements
correspond to the relative frequency of occwrrence of
pairs of gray level values of pixels separated by a certain
distance m a given direction. The GxG gray-level
co-occurrence matrix P, for a displacement wvector
d = (dx, dy) is defined as follows. The entry (I, j) of Py is
the mumber of occurrences of the pair of gray levels I and
j which are a distance d apart. Formally, it is given as:

Pyl 1) = (G vy, G, )l (v = L LG yo) = 11
3

where, I denotes an image of size UxV with G gray values
(x;, ¥1) (x5 y2), UxV (%, yy) = (x+dx, y+dy) and || is the
cardinality of a set. The co-occwrence matrix reveals
certain properties about the spatial distribution of the
gray levels in the texture image.

Generally, for a gray-level image whose pixel is
represented by an 8-bit integer (1.e., G = 256), its GLCM 1s

@

Fig. 2(a-¢): Comparison of quantization methods

a matrix of size 256x256. Extracting features from such a
large matrix 1s quite computational expensive. An
intuitive way to reduce the size of GLCM 1s to reduce the
gray level G of original image by equal quantization
(Latif-Amet et al, 2000). However, during the equal
quantization if the gray level of the defect is close to the
normal texture, it 13 probably quantized to the same level
as the normal texture which makes it hard to distinguish.
Figure 2a and b illustrate a defective fabric image and its
equal quantization result with 16 levels, respectively. The
quantized image is histogram equalized for wvisual
convenience. It can be seen that the defect in Fig. 2b
becomes ambiguous and hard to detect.

In this study, an adaptive quantization method 1s
proposed based on the fabric texture model elaborated in
earlier. As shown in Fig. 1, the histogram of gray-level of
normal texture obeys a mixture Gauss distribution which
contains two Gaussians. Due to the randomization of
texture intensity, to which Gaussian a single pixel belongs
and the distance between its gray-level and the center of
its belonging Gaussian which i1s considered as Gaussian
Central Distance (GCD), 18 of more importance than in
which exact gray-level the pixel is. The pixel in the image
1s quantized by exammning its GCD. Prior to the calculation
of GCD, we should decide wiich of the two Gaussians the
pixel belongs to. We consider that if gray-level g<p,, then
it belongs to the first Gaussian and if g1, then it belongs
to the second Gaussian. For the gray-level p,<g<p,, the
following probability criterion is used to determine its
belonging Gaussian:

P(gle)P(n)
2

> P (gle)P(o)
i=1

Plm]eg)=

(4)

where, w, I = land 2, denote first and second Gaussian,
respectively, P (w) 13 the prior probability of each
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Gaussian, ie., P(w,)=P, and P{w,) =P, in Eq. 2. If
P (w|g)>P (w,|g), then g 15 considered to belong to first
Guaussian, otherwise it belongs to the second Gaussian.
This  classification method Bayes
classification which mimmizes the misclassification rate.

15 known as
Formally the adaptive quantization method consists of
following steps:

Divide
overlapping intervals separately formulated as
[0, w054 A 0), [ H0.5+n) b oy, 0.5+
A o) and [p(0.5N) & g, 255], where n = -(N+1),
-N, ..., N-1. A is a constant determining the width
of the interval and each Gaussian 1s divided into
2N+3 intervals

For each gray-level g from O to 255, determine

Step 1: both Gaussians into several non-

Step 2:
which Gaussian it belongs to and which nterval
of the Gaussian it belongs to, then vote for that
mnterval. The mtervals which are never voted are
discarded and the completely voted intervals are
preserved. Here, the complete voted interval
refers to the interval that all the gray-levels
within it only vote for itself

Step 3: For the rest intervals which are not completely

voted. If any of them overlaps with any other

non-complete voted intervals, then merger them
together to form a new interval. If the merged
mterval overlaps with any complete voted
mterval, then truncate the overlapping areas of
the merged mterval to make sure that all the
mtervals are non-overlapping. Finally, mdex all
the intervals with zero-based numbers and make
sure that larger gray-levels correspond to larger
index. BEach mterval forms a new quantized level

Figure 3 gives an example of adaptive quantization
procedure. Figure 3a and b illustrate the division results
of two Gaussians of a mixture distribution with A =1,
N = 2. Each Gaussian 1s divided into 7 intervals. The final
quantization result 18 illustrated in Fig. 3c. The mtervals
[0, 54), [54, 64), [64, 74) and [74, 84) of the first Gaussian
and [99, 125), [126,151), [151, 176) and [176, 255] of the
second Gaussian are completely voted mtervals. Thus
each of them directly forms a quantized level in Fig. 3c.
The intervals [84, 94) of the first Gaussian and [74, 99) of
the second Gaussian are non-completely voted intervals
and they overlap with each other. So they are merged into
[74, 99]. As [74, 84) is a completely voted interval, the
merged interval is truncated into [84, 94) which forms a
new a quantized level n Fig. 3c. Finally, 256 gray-levels
are quantized to 9 levels.
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Fig. 3(a-c): Example of adaptive quantization procedure

The pixel is quantized according to its GCD which 1s
measured by the standard deviation of the belonging
Gaussian rather than its gray-level. Pixels belonging to the
same Gaussian with similar GCD rather than similar
gray-levels tend to be quantized to the same level
Particularly, quantized level 0 and 1.-1 are two special
levels, where I denotes the total number of quantized
levels. Tt can be seen that quantized level O is out of the
confidence mterval of the first Gaussian which means, in
the sense of hypothesis testing, the pixels within this
quantized level do not belong to the normal texture. As
the pixels in this level are much darker than the normal
texture, they are called darkness exceptional pixels.
Similarly the pixels m quantized level L-1 are called
lightness exceptional pixels. The advantage of adaptive
quantization method is that it can preserve most useful
information of the original image while reduce the
256 gray-levels to several quantized levels. Besides, as the
quantization is based on GCD of the texture model, the
defective region does not obey the texture model and thus
contains more lightness or darkness exceptional pixels, so
the quantization method can also emphasize the presence
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of the defects. Figure 2¢c shows the result of adaptive
quantization of Fig. 2a with only 9 quantized levels which
1s even better than Fig. 2b with 16 levels.

SUPPORT VECTOR DESCRIPTION DATA (SVDD)

Support vector data description 1s a powerful kernel
method that has been commonly used for novelty
detection (Tax and Duin, 2004). Tt provides a solution to
the one-class classification problem without any negative
sample in training. By mapping the data into a higher
dimensional space, the objective of SVDD 1s to find, in
this space, a spherically shaped boundary around the
training dataset such that the sphere can enclose as many
samples as possible while having mimmum volume. The
sphere 1s characterized by its center ¢ and radius R>0. Let
ix3},1=1,2., M, be aset of training examples, x,cR’, d
being the dimension of the input space and M is the
number of traimng samples. The mimmization of the
sphere volume 1s achieved by minimizing its square radius
R*. To allow for the presence of outliers, slack variables
E’s are introduced so that the problem of constructing an
optimal separating hypersphere 1s converted to the
following optimization problem:

min R%i%gl
vM

)

st |0 ()~ of SR+ EL20,i=L..M

where, £, accounts for possible errors, v 1s a user-provided
parameter specifying an upper bound on the fraction of
the trade-off between the
hypersphere volume and the errors and @ is a map
function which maps input data into higher dimensional
space. The corresponding dual problem is:

outliers and controls

max 3y oK (x,x)- % oK (x;,x)
’ (6)

1 .
st =1 0=¢ =<—.i=1..,M
Z : Ly

where, o = {a;, &,,..., 0y} 18 called lagrange multiplier
vector, K(--) 1s called kemel function such that
Kix, x) = @ (x)® (x) and a most widely used kernel
function is the Radial Basic Function (RBF):

(7)

K (x”xj) — e‘""l’xJ"z/lz“g

The optimization problem in Eq. 6 can be solved
using standard quadratic programming methods and an
optimal solutton for o can be obtained. All x
correspending to non-zero ¢; are called Support Vectors
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(SV) which usually occupy a small quantity of the training
data. Then the optimal solution for ¢ is:

c=3, @ (x)

On testing, for a new sample x, 1t 1s subjected to the
map function @ and if the distance from the mapped data
to the center of the optimal hypersphere is smaller or
equal than the radius of the hypersphere, then it is
accepted, otherwise 1t 1s rejected which can be formulated
as:

¥ (x)=sen(®? - @ () - o)
=sgn[R?- 3 auK (x,x

1, TEsY

(8)

AT

Because optimal hypersphere is found by solving a
quadratic programming problem, the SVDD do not suffer
the problem of local mimmum which means that SVDD
traiming can always find a global mimimum, thus has a
good generalization capability.

DEFECT DETECTION ALGORITHM

Detection of detects is considered as a one-class
classification problem. The defect detection algorithm is
divided mto two phases: Learmng phase and
classification phase. In the learming phase the fabric image
is quantized and a set of GLCM features, as well as some
new features are extracted from the quantized image to
characterize the fabric texture. The extracted features are
used as trammng data for SVDD training to generate a
SVDD classifier. In classification phase the same features
are extracted from the quantized testing image and
subjected to the SVDD classifier to determine whether 1t
15 defective or not.

Feature extraction: Several features extracted from GLCM
are used in the proposed detection algorithm. Generally,
for GLCM, the displacement parameter (dx, dy), by which
two highly related pixels are departed, 1s a good selection
to characterize the fabric textwre. A natural selection of
displacement parameters for texture characterization is
(0, 1H (1, 1H (1, 0yand (1, -1) which are also used for fabric
texture characterization by Latif-Amet et af. (2000) and Lin
(2010), since the neighboring pixels are considered highly
related. These four displacement parameters correspond
to 0, 45, 90 and 135°, respectively, where most defects are
present. Chan and Pang (2000) find out from the
frequency spectrum of the fabric texture image that texture
periodicities are existing in the warp (0°) and fill (90°)
direction in the fabric texture which can be calculated as
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the reciprocal of the first harmonic frequency f; and f,,
along warp and fill direction, respectively. Because of the
highly periodicity of the fabric texture, two pixels departed
by a texture periodicity are also considered highly related.
Therefore, two additional displacement parameters are
used in owr algorithm: (0, T} (T, 0), where T, and T,
denote the texture periodicities at 0 and 90°, respectively,
that 1s T,= 1/, T,= 1/, f, and £, can be obtained from
the 1-D Fourier spectrum of fabric texture at 0 and 90°,
respectively. Figure 4 shows a Fourier spectrum of a real
fabric texture at 0°, the fabric image is made zero mean in
advance to suppress the Direct Current (DC) component.
Because T, and T,, are usually floating-peints while
displacement parameters must be integers for the
computation of GLCM, the first-order linear interpolation
1s used to estimate the values of I (x+dx, y+dy) where dx,
dy are float-points. Haralick et al. (1973) proposed 14
features from GLCM for texture classification, in this
study only two of them, namely contrast CON and inverse
difference moment IDM, are used:

L-

CON=

=

)

G-i'p G.J)

(10}

1
IDM = — P
; =1l 1+{i-

where, L 1s the column (or row) number of GLCM (1.e., the
total quantized levels), p (I, j) refers to the normalized
entrty of the co-occurrence matrices. That s
p (L = P, /R, where P, (I, 1) 15 the GLCM with
displacement parameter d and R 1s the total number of
pixel pairs (I, j).

In addition, we propose 2 extra features for each
displacement parameter (dx, dy) based on following
conceptions. As discussed in earlier the pixel in the
original image 1s quantized by its GCD and the pixel with
larger GCD means more unlikely it belongs to the normal
texture and its intensity tend to be much darker or lighter
than the normal texture. It 1s found that defects, within
their boundaries, tend to have more dark pixels (e.g., oil-
stain, dirty-yarn, etc.) or light pixels (e.g., miss-pick, thin-
place, etc.) than the nommal texture. Tn turn large quantities
of dark pixels or light pixels within a local region may
indicate a defect in that region. Figure 5 shows a data
fragment of quantized image of Fig. 2a with I. = 8. All the
lightness exceptional pixels whose quantized level is
larger than a threshold UL which cormresponds to the
upper limit of 70% confidence mterval of the second
Guaussian, are marked by rectangles. There are mainly
three reasons for appearance of lightness exceptional
pixels: variation of nonmal texture, the noise and the real
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Fig. 5: Data fragment of quantized image of Fig. 2a

defects. Recause of the random property of varation of
normal texture and the noise, lightness exceptional pixels
and darkness exceptional pixels tend to scattered within
the fabric image. However, the real defects tend to be
continuous and constitute a small portion of field. Thus
it is obvious that the connected lightness exceptional
pixels in the center of Fig. 5 indicate a defect
corresponding to the mispick in Fig. 2a and other
scattered lightness exceptional pixels are caused by the
variation of normal texture or the noise. A feature is
proposed to characterize this property of defect.

Given a displacement parameter (dx, dy), let Q be the
quantized image, u,=xtkdx, v, =ytkdy, if for all
k=0,1,...,C-1,Q (u, v,) are larger than UL, and for k=-1
and C, Q (u, v,) are not larger than UL, then points in
position (u,, v) (k =0, 1,..., C -1) are considered as a
Lightness Exceptional Run (LER). C denotes the length of
the LER. The feature Long Lightness Exceptional Run
Emphasis (LLERE) is defined as:
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(1)

LLERE = Z[Cf-?zj(sck)—UL)]

=

where, S, denotes a set containing all the LERs whose
length 18 larger than 1in quantized image matrix. C, and
s (k) denote the length and the k-th element of the LER s.
The feature LLERE is similar to the feature long run
emphasis of Gray Level Run Length Matrix (GLRLM)
(Galloway, 1975) which has been widely used for texture
characterization and classification. They are both built on
the statistic of consecutive pixels with the same
attribution. However, in Eq. 11 the LERs whose length is
smaller than or equal to 1 which are probably caused by
the variation of normal texture or the noise, are not
involved in the computation so that LLERE can emphasize
the presence of real defects. 1 is set to the 95th percentile
of the order statistics obtained from non-defective image
samples. Similarly, another feature called Long Darkness
Exceptional Run Emphasis (LDERE) which is the
counterpart of LLERE 1s also used as a feature:

-1
LDERE = Z [Ci 3 DLz ]
ford ]

(12)

where, 7, denotes a set containing all the Darkness
Exceptional Runs (DER) whose length is larger than 1 in
quantized image matrix. The definition of DER is similar to
LER except that the values of its elements are smaller than
a threshold DL which corresponds to the lower limit of
70% confidence interval of the first Gaussian. C, and z (k)
denote the length and the kth element of the DER z.
Compared to the features extracted from GLCM, feature
LLERE and LDERE also characterize the relationship of
pixels separated by a certain distance in a given direction
but they put more emphasis on the continuousness of
exceptional pixels along that direction which makes them
suitable to detect tiny directional defects. In summary &
displacement parameters are used and 4 featwes are
extracted for each displacement parameter. Tn all 24
features are extracted to form a feature vector.

Learning phase: Images of non-defective texture are used
in the learning phase. All these images are divided into
non-overlapping subregions. The feature vectors V,,
m =1, 2, ..., M are extracted from subregions using the
feature extraction method proposed earlier, where M
denotes the total number of non-defective subregions.
Then the feature vectors are normalized as:

I\]-Vm (r) = (Vm (r)_nr)/Br (1 3)

Where:

M= min (Vi (1)} a4
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Br= max {(Va(r)- 0} (15)

m=12.M

r=0,1, 2, ... 1s the feature index of the feature vector, NV
denotes the normalized feature vector, 1, and 3, are called
offset coefficient and scale factor of the normalization,
respectively. The objective of the normalization s to
set the values of all the features in the feature vector
within interval [0, 1] and make sure that all the
features 1n the featiwe vector have nearly the same
weight. Then these feature vectors are subjected to the
SVDD traimng. During the tramng, there are two
parameters should be decided: the trade-off parameter v
in Eq. 6 and the RBF width parameter 0 inEq. 7. A large v
allows more outliers of the hypersphere m the traming
dataset which corresponds to larger rejection rate and
larger fraction of support vectors. Tax and Duin (2004)
find out that the fraction of support vectors relates to the
false alarm rate, so the parameter v can be decided by the
expected false alarm rate. To choose the optimal value of
parameters g, the cross validation method 15 used m the
SVDD training.

Classification phase: All the fabric images under
inspection are divided mto non-overlapping regions of
the same size as i learning phase. From each subregion,
a feature vector E 1s extracted using the feature extraction
method proposed earlier. Then the featuwre vector E 1s
normalized using 1), and B, which have been computed in
the learning phase:
NE (1) - (B (11, 16)
Different from the normalization in learning stage, the
values of normalized features NE (r) can be less than zero
or greater than one. The normalized feature vector NE is
then subjected to the SVDD classifier and the final
classification result can be acquired by Eq. 8. If its output
15 1, then the subregion 1s considered as non-defective
otherwise 1t 1s considered as defective.

RESULTS AND DISCUSSION

Three datasets containing one plain and two twill
fabrics of different texture background are used to
evaluate the performance of the fabric detection algorithm.
All the three fabrics and defects on them are produced in
factory practice. All of the umages are acquired by line
scan CCD camera with a spatial resolution of 0.2 mm/pixel
against a backlighting illummation and digitalized mto
256x256 pixels with a gray level of 256. Detailed
information of the three datasets 1s presented m Table 1.
Each image 13 divided into non-overlapping subregions of
size 64x64 pixels and each subregion is considered as one
sample for defect detection
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In the training phase, for each dataset, 1000 non-
defective samples are used for SVDD training. The
traiming parameter v 1s set to 0.01 and ¢ 13 decided by
10-fold cross validation. Figure 6a and b illustrate the
cross validation accuracy and the proportion of support
vectors with various values of ¢°, where 0 =27°,2% ..., 2"
are selected as candidates which 13 suggested by
Hsu et al. (2003). It can be seen from Fig. 6a that both too
small and too larger values of ¢* result in low cross
validation accuracy. Large value of ¢° will create a simple
decision boundary with small proportion of support
vectors which 13 unable to separate the defective and
non-defective samples and leads to high miss rate. While
small value of o will create an excessive complex decision
boundary with large proportion of support vectors which
leads to over-fitting and high false alarm rate. o> = 27, 2°
and 2* with highest cross validation accuracy are selected
for the three dataset, respectively and their corresponding
support vector proportion are 1.3, 2.3 and 1.3%,
respectively which only occupy a very small portion of
total training vectors. Tt can be seen from Fig. 6a that the
values of cross validation accuracy nearby the optimal
value of ¢° are nearly stationary, so the cross validation
method for finding optimal ¢° is robust.

Figure 7 illustrates the adaptive quantization and
detection results of several typical defective samples of
three datasets with quantization parameter 4 = 1, N = 2.
Dataset 1,2 and 3 are quantized to 8, 9 and 10 levels,

Table 1: Information of experimental datasets

Attribute Dataset 1 Dataset 2 Dataset 3

tabric type plain twill twill

Ty 55 9.4 0.8

To 9.7 11.6 14.1

Non-defective 1936 964 1548

Defective 155 (miss-pick) 65 (dirty-yam) 342 (miss-pick)
464 (migs-yarm) 42 ¢hole) 250 (thinplace)
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respectively. We can see that after the quantization all the
defects are still clear and intact but the mumber of
gray-levels 1s decreased from 256 to 8, 9 and 10,
respectively which greatly reduced the computational
load of GLCM and its features.

Quantization parameter selection: As mentioned earlier,
there are two unportant parameters affectng the
procedure of quantization. One is the interval width A, the
other one is N which relates to the total number of
quantized levels. The interval [pu~(0.5+N) 4 @), p+(0.5+N)
A 0] constitutes a confidence iterval of the I-th
Gaussian. Gray-levels out of this interval are considered
either dark exceptional or light exceptional. Large value of
N corresponds to more computational load, while small
value of N may loses some detailed mformation of the
defects and makes them hard to detect. In order to find the
optimal parameters, several pairs of (A, N) are used to the
three datasets. The detection results of the three datasets
of different parameter pairs of (A, N) are presented in
Table 2-4, respectively. 4 is set inversely proportional to
N so that the confidence intervals of all parameter pairs
are nearly the same. As the false alarm relates to the
trade-off parameter v in Eq. 6, it does not have large
variation for different parameter pairs. For N =0 to 2, the
miss detection rate decreases intensively which means the
detection performance 1s getting much better, whule for
N = 3 to 6 the miss detection rate does not have great
improvement and it changes inversely to the false alarm
rate which means the detection performance does not
greatly improved but adding more computational load. As
the mcrease of value of N, more detailed mformation of
fabric textwre is preserved. For defects miss-yamn of
Dataset 1 and dirty-yarn of Dataset 2 only small value of
N is sufficient to defect most of them, because they

20/
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Fig. 6(a-b): The cross validation accuracy and the proportion of suppoert vectors with various values of ¢”
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Fig. 7(a-1):(a, b) Miss-pick and miss-yarn of Dataset 1, (¢, d) dirty-yarn and hole of Dataset 2, (e, ) miss-pick and thin-
place of Dataset 3 and (d-1) respectively; corresponding quantization images and detection result

Table 2: Detection results of Dataset 1 with different parameter pairs (A, N)

N A L False alarm Miss detection of miss-pick Miss detection of misg-vam
0 5.00 3 18 (0.92) 103 (66.45) 18(3.88)

1 1.67 6 20(1.03) 13 (8.39) 2€0.43)

2 1.00 8 20(1.03) 3(1.93) 0(0)

3 0.71 10 22(1.14) 3(1.93) 0(0)

4 0.56 13 22(1.14) 3(1.93) 0¢0)

5 0.45 16 29(1.29) 2(1.29) 0(0)

6 0.38 19 23 (1.19) 3(1.93%) 0¢0)

Values in brackets are percentage

Table 3: Detection results of Dataset 2 with different parameter pairs (A, N)

N A L False alarm Miss detection of dirty-yam Miss detection of hole
0 5.00 3 10 (1.05) 5(8.33) 6(14.2)

1 1.67 7 12 (1.24) 1(1.53) 2(4.76)

2 1.00 9 12 (1.2 0(0) 1(2.38)

3 0.71 12 12 (1.24) 00 1(2.38)

4 0.56 15 14 (1.45) 0(0) 0(0)

5 045 18 13 (1.39) 00 0(0)

6 0.38 20 13 (1.3D) 0(0) 0(0)

Values in brackets are percentage

contain lots of dark or light exceptional pixels whose Characteristic of features: The proposed algorithm use
gray-level are out of the confidence interval. Generally, all 24 features described, to detect different kinds of
N = 2 and 3 are optimal parameters which can be used to defects. In order to know the specific characteristic of

detect most of the defects.
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each feature, we also investigate on the discriminative
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Table 4: Detection results of Dataset 3 with different parameter pairs (A, N)

N A L False alarm Miss detection of miss-pick Miss detection of thin-place

0 5.00 3 13 (0.84) 312(91.23) 152 (60.8)

1 1.67 8 19 (1.23) 41 (11.99) 20 (11.6)

2 1.00 10 18(1.18) 11 (3.21) 20 (8)

3 0.71 13 21 (1.36) 11 (3.21) 17 (6.8)

4 0.56 15 21 (1.36) 12 (3.51) 18(7.2)

5 045 18 19(1.23) 14 (4.09) 20 (8)

6 0.38 21 20 (1.29) 15 (4.38) 18 (7.2)

Values in brackets are percentage

Table 5: Discriminative features of each kind of defects in Fig, 7

Defects Fig. No. (dx, dv) Discriminative featres U, a, Uy J

Miss-pick Ta 0,1 LLERE 0.16 0.19 11.85 60.96
0,1 CON 0.44 0.20 -0.44 4,51
(0,1) DM 0.61 0.21 1.37 3.59

Miss-yam Th (0,1) LDERE 0.16 0.19 97.47 507.30
0,1 LDERE 0.14 0.15 21.02 139.22
(0,1) CON 0.44 0.20 -2.34 14.14
0,1 IDM 0.61 0.21 4.58 18.76

Dirty-yarn Tc (1,0) LDERE 0.21 0.21 8.28 38.47
(1,0 CON 0.49 0.29 1.13 2.16
(1,0) IDM 0.42 0.28 -0.18 2.12

Hole 7d (1,0) LDERE 0.36 0.23 1.97 7.03
(1,0 DM 0.42 0.28 0.68 0.93

Miss-pick Te (Ton,0) LDERE 0.25 0.17 0.96 4.19
(Ton,0) CON 0.49 0.23 3.14 11.77
{T0,0) DM 0.47 0.21 2029 3.57

Thin-place 7t (0.Ty) LLERE 0.16 0.11 0.82 5.92

features for each kind of defects. Here, the discriminative
features refer to the normalized features, among all 24
featires which have large distances between the defective
samples and non-defective samples. A criterion function
1s used to characterize this distance which 1s formulated
as:

Jz‘Un—Ud‘ (17)

where, U, and o, are the mean value and standard
deviation of the normalized feature extracted from the
non-defective subregions in the learning phase (Eq. 13),
U, is the mean value of the normalized feature extracted
from defective subregions in classification phase (Eq. 16).
The higher magnitude of T indicates larger distance
between the feature of the defect and normal texture
which means better detection performance. Table 5 shows
the discriminative features and their values of J for each
kind of defect in Fig. 7, only the displacement parameters
and features which have large J are presented, others are
omitted. Generally, the value of T in Table 5 is consistent
with the detection rate in Tables 2-4, that 1s larger value of
T corresponds to higher detection rate. Tt also suggests
that the features LLERE and LDERE are more effective
than CON and IDM to detect tiny directional defects such
as miss-pick of Dataset 1, dirty-yarn of Dataset 2 and
thin-place of Dataset 3, because CON and TDM
characterize the global texture pattern and not quite
sensitive to the local textwral change caused by tiny

defects. However, LLERE and LDERE emphasize the
continuousness of lightness exceptional pixels and
darkness exceptional pixels, respectively, so they are
suitable to characterize tiny diwectional defects. All of
features LLERE, LDERE, CON, IDM with displacement
parameter (0,1) have large value of T for defect miss-yarn,
because the texture pattern of miss-yarn is quite different
from normal texture and containing lots of dark and light
exceptional pixels in horizontal orientation. Particularly, for
the defect thin-place in Fig. 7e which 1s not even obvious
to the human mspector and thus very difficult detect, its
defective pixels (lightness exceptional pixels) are arranged
periodically in honzontal directiory, so featire LLERE with
displacement parameter (0, T,) can characterize it.

Real-time performance: In order to evaluate the real-time
performance of our detection algorithm, a prototyped
defect detection system 1s built in our laboratory. The
architecture of the detection system is illustrated in Fig. 8.
Lie-scan camera Dalsa SP-14 with pixel resolution of 2048
is used to capture the image of fabrics moving on a
conveyor belt. The localization resolution 1s 0.2 mm/pixel,
so each camera can cover 0.4 cm transversal and four
cameras are used to cover 1.6 m transversal. An encoder
is implemented to synchronize the scan rate of the
cameras with the movement speed of the fabrics. The
image data of the camera are transferred to the image
acquisition and processing card via camera link mterface.
The processing umt is a Digital Signal Processor (DSP) TI
TMSC6713 operating at 300 MHZ and the proposed
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Fig. 8: The architecture of prototyped defect detection system
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Fig. 9: Real time performance of the detection algorithm

detection algorithm is implemented in it. All the detection
results are uploaded to a host computer for display via
PCI bus.

Compared to the generic CPU m host computer, DSP
has better real-time performance benefiting from its
specialized architecture such as hardware multiplier and
instruction pipeline. Here, we only focus on the
computational time in the classification phase and the
time-consuming procedures in the learning phase such as
parameter evaluation of the texture model, SVDD training
and cross validation are not taken mto consideration,
because the leaming phase 1s fimished before the real-time
ingpection, thus usually not time-constrained. The
classification phase consists of two parts:
extraction and decision. The computational time of feature
extraction relates to the total number of quantized levels.
Feature extraction time for subregion of size 64x64 with
different values of L is presented in Fig. 9. For comparison
both computational time implemented in DSP and generic
CPU P4 3.0 G are presented. The computational time of
non-quantized feature extraction with 256 gray-levels is
43844 ps in DSP and 29635 s in generic CPU. We can find
out that the adaptive quantization greatly reduces the
computational complexity of feature extraction and

feature
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improve the real-time performance of the algorithm.
The decision involves classification of SVDD classifier
which 13 implemented by software LIBSVM (Chang and
Lin, 2001). According to Eq. 8, only the support vectors
which usually occupy a small quantity of the training data
(Fig. 6b), are mvolved in the computation of
classification. Moreover, LIBSVM uses a look-up table
cache for the computation of kernel function in Eq. 7, so
that the decision time is greatly reduced and only
occupies a small portion in the detection algorithm. It can
be seen from Fig. 9 that as L increases, the computational
time increases nonlinearly and according to Table 2-4,
L increases with the increase of N. However, when N 1s
greater than 3, the detection rate does not increase
obviously, so the parameter N = 2 or 3 13 a good selection
compromising between the detection rate and the real-time
performance. The detection speed can achieve as fast as

40 m min ",

CONCLUSIONS

A new approach of textural fabric defect detection
algorithm using SVDD has been demonstrated. A fabric
texture model of mixed Gaussian distribution was built on
the gray-level histogram of fabric mmage. Two GLCM
features and two novel features were used to characterize
the fabric texture pattern and emphasize the presence of
the defects. An adaptive quantization method base on the
texture model was proposed to reduce the size of GLCM,
so that the computational complexity of feature extraction
was tremendously reduced The specific property of each
feature was also discussed. User can remove unnecessary
ones to further improve the real-time performance. The
SVDD classifier was used as a detector and achieved
good detection results for three datasets in experiment. A
prototyped  defect system, with high
performance DSP as its processing umit, was built to
evaluate the real-time performance of the proposed
algorithm, experiment indicated that the detection speed

detection
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can reach as fast as 40 m min™’

, thus the proposed
algorithm 1s suitable for on-line mspection m industrial

0CCasions.
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