http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 11 (6): 707-712, 2012
ISSN 1812-5638 / DOL 10.3923/t).2012.707.712
© 2012 Asian Network for Scientific Information

New Agile Testing Modes

'N. Ganesh and *S. Thangasamy
"Department of Computer Science and Engineering,
Anna University of Technology, Coimbatore, India
‘Research and Development, Kumaraguru College of Technology, Coimbatore-641049, India

Abstract: Software 1s considered to have high quality, only if it has undergone a series of good test cases. Test-
driven development is a software Development practice that leads to better quality and fewer defects in code.
The purpose of study of this paper is to evaluate the difference between a traditional testing and agile testing,
the testing techniques involved in agile projects, the different modes of testing, the do’s and don’ts of testing
and also about the set of activities an agile tester needs to keep in mind while working on agile projects. A
study has been conducted in a software firm in Chennai, India. Two different testing modes have been
proposed. Based on the testing modes that is projected in this article, the do’s and don’ts of a software tester
and their activities has been formulated. A simple yes/no type questionnaire 1s included in this article which
1s given to the testers before testing. Answering the simple ves/no questions makes a tester to be an efficient
tester in his job. By following the do’s and don’ts guidelines and the activities of a tester given in this article,
it is found that the efficiency of an employee involved in agile testing has been improved considerably. Tt is
concluded that testing plays a vital role for any project. Testing would be more efficient if a parallel testing
could be done m par with the development team. Better quality could be achieved if the project team follows
a continuous integration with a continuous delivery and a continuous feedback from the customer.

Key words: Test driven development, testing techmques, testing modes, test strategy, quality assurance,

extreme programming,

INTRODUCTION

Test-driven development (TDD) was one of the key
practices that was followed in extreme programming (XP)
(Beck, 2003) and was also used in the stand-alone process
(Astels, 2003). The idea behind TDD is to write test cases
before coding m small iterations. In agile projects, first the
developer writes a test case to define the next
functionality. Second, he writes the code, wherein the
primary motive of the code written is to pass the test.
Third, the code is re factored, if required (Reily and
Gocher, 2009). These steps are iterated in short cycles
through the whole development process. More the
number of test case generated and the bugs rectified,
better the product achieved where there is a dynamic
change m the business environment, wherein the service
oriented architecture is used by organizations for
becoming more agile (Thsan and Dogerlioglu, 2011).

Originally, TDD was introduced as a developmental
practice and not as a testing method (Astels, 2003;
Beck, 2003). The TDD vields better quality with fewer
defects in code. Assessment of software testability can
help in predicting the testing effort required for a given

product (Singh and Saha, 2010). TDD is a simple practice,
but developers sometimes do not apply all the required
steps correctly. In agile software development, the TDD
encowages communication between customers and
developers and raises software quality thereby decreases
bug density considerably. The global software
development processes have reframed the traditional
software approaches resulting in the changes on the
preferences and the priorities between the developer and
the client (Akbar et al., 2011).

The purpose of the literature study was to evaluate
the current available theories on TDD. The review process
was designed using the well-known guidelines for
systematic literature review (Kitchenham and Charters,
2007). TDD has been suggested to provide a variety of
different benefits, such as better productivity
(Erdogmus et al., 2005; Janzen and Saiedian, 2006), better
quality and high test coverage (Edwards, 2004,
Nagappan et al., 2008). Some studies also suggest that
TDD may improve program design (Kaufmamn and
Tanzen, 2003).

Always, small test suites that retain high fault
detection are desirable as given by Roongruangsuwan

Corresponding Author: N. Ganesh, Department of Computer Science and Engineering, Anna University of Technology,

Coimbatore, India

Inform. Techrnol. 1, 11 (6): 707-712, 2012

and Daengdej (2010). Tt has been proved from the
available literature that software testing phase takes
around 40-70% of the effort,
(Kosindrdecha and Daengde), 2010).
TDD applies at two levels in XP (Mugridge, 2003).
The first level adapts the evolving design within an
organizational context, with iterations and the planmung

time and cost

game:

The customer writes stories that will lead to the
system development

The developers estimate the cost for developing the
user stories

The estimates will help the customer to prioritize the
stories that will fit into the next iteration

Customer tests are developed for the stories that
were chosen for iteration. They are used to determine
whether a story 1s complete

As the system evolves, the wvalue of different
possible aspects of the system will become clearer as it
begins to be fitted into its developmental culture.

XP is well suited when the scope and value of a
computer system are not well understood, where the
design of the system has to evolve along with the
requirements. As a concrete system evolves, the customer
determines the value and makes his decision. The souwrce
code based testing techniques can be used to identify the
test data, test sequence and the dependencies available
for each test case as given by Kosindrdecha and
Daengde; (2010).

The second level of TDD is as described by Beck
(2003), which 1s at the level of micro-iterations in
completing a task:

An area of design or task requirement has to be
chosen to test drive the development

Design a concrete test that 1s as sinple as possible
while driving the development as required and check
that the test fails

Alter the system to satisfy the test and all other tests

Principles of test driven development:

Test as early as possible: The potential impact of a
defect rises exponentially over time and in such a
case of this sort a test first approach like TDD is
highly recommended

Test as often as possible: The chance of impinging
on a defect 1s higher when the frequency of testing 1s
increased

708

Test just as much is needed for the situation:
Intensity of testing should be based on the busmess
criticality of the software being developed

Pair testing: Pair testing involves testing the software
as a duo

The objective of testing 1s to understand the risk of
putting software in to production as given by
Mustafa et ol (2007). By and large, testing is done in both
the models, but the methodology adopted and the naming
convention differs. Some of the traditional model includes
the waterfall model, spiral model, the rapid application
development model, the prototyping model and so on
(Zhang et al., 2010). Some of the agile models are XP,
scrum, feature driven development, crystal and so on
Identifying the bugs and generating the test cases 1s one
of the most time consuming and costly step in software
testing phase (Keyvanpour, 2011).

Problems: The problems here in this study illustrate the
generic common queries that the agile team has when it is
working on a project.

They are listed as follows:

How agile testing is to be conducted?

Should the Quality Assurance (QA) team be part of
the development team?

Can the development team and the testing team be fit
in the same sprint?

Who does the QA work?

What techmques should the team employ?

Should the development team and the test teams
work closely?

The answers for these queries are explained later in
our discussion section, by using a testing model. Table 1
shows Difference between Traditional testing and agile
testing.

Table 1: Variance in traditional and agile testing
Traditional testing Agile testing

Change Should separately be Accept when it comes
managed and controlled

Planning Detailed upfiont test design Can be planned when the tearm
has to be given moves to the next functionality

Documentation Good documentation Only as much as needed
has to be maintained for the work

Handofts Should have a formal Can be collaborated with the
entrance and exit criteria existing development team
with client sign-offs
whenever needed

Automation Tt is done after the fiall All levels, built by anyone

code is been created from the tearn, forrm an integral

part of the project

Inform. Techrol. 1, 11 (6): 707-712, 2012

RESEARCH APPROACH

The research 1s based on an mterpretive case study
conducted in select Indian organizations engaged in
Information Technology (IT) outsourcing to global
clients. The case study research strategy is useful for
mvestigating phenomena that are under-researched,
complex or difficult to extract from their underlymg
contexts. We have adopted an interpretive approach since
it 1s through multiple, inter-subjective views of actors
working within the IT cultural enclave environments
where concept, theories and rich insights about the
phenomena This context-dependent
knowledge can prove useful in gaining expertise of

can emerge.
understanding a practical Indian setting, an outcome
relevant to the research objectives. There are three types
of studies using the case study method, namely; (1)
Intrinsic case study: Researcher wants a better
understanding of the particular case, (2) Instrumental case
study: A particular instance 1s examined to provide insight
into an issue or refinement of theory and (3) Collective
case study: Researchers may jointly study a number of
case studies in order to inquire into the phenomenon,
population, or general condition. Since, it
phenomenon of the usage of the combination of

15 a
methodologies such as XP and the scrum, the agile
testing plays a vital role in such software developmental
projects. Hence, we have adopted the instrumental case
study approach to provide better insights into the issue.

DISCUSSION

Case description-the background: The answers for the
problems listed earlier are explained with the help of a case
study that is conducted in an Indian software company.

The case study 1s framed based on the author’s
invelvement in an agile software project that has been
developed in a software company located in Chennai,
India. The software company which the author is referring
to is one of the pioneers in handling projects on image
and video optimization. As an extension of this work, the
software team has developed logic and is developing the
beta version of the product to compress the image and
retrieve 1t back without any loss on the orginal image.
They are also leaders in creating solutions for correcting
the online competitive examimations. The company has its
offices in various locations across India and has its global
operations in countries like USA, Japan and Philippines.
As per the policies of the organization, the company name
and the project names are to be kept anonymous.

709

Requirement Product manager

analyst

v

Project team

Developmental
team

Quality assurance
team

User experience team

Project manager

Fig. 1: The project team of the firm where the study has
been made

Table 2: Type of testing and execution status of the concerned

Type of testing Responsible When to execute

Unit testing Developer Coding

Functional testing Tester Throughout the sprint

System testing Tester Throughout the sprint
Integration testing Developer/Tester ~ Throughout the sprint
Regression testing Tester Throughout the sprint
Performance testing ~ Tester Stabilization sprints/last sprint

in the release cvcle

The project team: The below illustration shows the
agile cross-functional development team which includes
a product manager, developmental team, QA team,
user experience team and a project manager. The project
team of the firm where the study has been made 1s
presented in Fig,. 1.

The project manager supervises the release schedule
and helps resolve logistical issues, but otherwise does
not participate n the development process. The
developmental team, consisting of three to eight
developers, implements and delivers to QA a feature or
set of features per sprint based on a prioritized backlog
determined by product management.

Test strategy: During the test strategy design, decision
on the scope of testing such as unit, integration and
system testing and types of testing such as performance,
load, regression, etc is taken. The acceptance criteria
should generally define upfront for each story and should
be available in the beginning of each sprint. Based on the
skill set available and time, decision on level of
automation for the project is also decided. The decision of
which testing 1s done in the sprint and which one s done
outside the sprint is also taken. Table 2 shows the types
of testing and the responsibilities of the agile team in
executing the tests.

Inform. Techrol. 1, 11 (6): 707-712, 2012

Scrum team
Developers Testers

Fig. 2: Scrum team in the linear embedded testing model

Testing techniques: The acceptance testing, unit testing
and the TDD are classified under the category of
confirmatory testing, these are the
mandatory testing that has to be performed under a single
sprint. The exploratory-based testing, session based
testing and the scenario based testing 1s classified under
the broad category of mvestigative testing, winch means
certain mining aspects have to be performed while testing.
It also denotes testing out of the box.

Apart from testing, the project may be highly
successful only if it makes continuous integration with
continuous delivery and also gets continuous feedback

which means

from the customer end.

Testing modes: The testing modes are broadly classified
n to two different groups. They are the linear embedded
testing model and the other is the rotational embedded
testing model.

Linear embedded testing model: This model is a common
model that 13 been used in many of the software projects,
wherein the developer will be involved in coding and the
testers will be embedded along with the development team
and they work on generating several test cases and
executing them. But in this scenario, people that are the
developer whoever is involved in coding will always work
as the coder till the end of the project and the persons
whoever is involved as a tester will act as a tester till the
project gets completed. Figure 2 illustrates the scenario.

In such a scenario, there are several chances for both
the developers and testers to get fed up with their roles of
coding and testing, respectively.

Rotational embedded testing model: Tn agile projects that
deploys a combination of both XP and
methodology, the developers whoever is involved in
coding can be converted to play the testing role after one
particular sprint is completed. Nomally, a sprint lasts long
for a period between 1 week to 15 days. In this case, both

scrum

the tester and the developer will be happy in playing
multiple roles. As well, the developer as he would have

710

-

Scrum team (SPRINT 1)

~

G

2

GO0E

£

Developers

Testers

J
7/

Scrum team (SPRINT 2)

~N

@@@@@@

Developers

Testers

Scrum team (SPRINT 3)

~N

&@@@@&

Developers

Testers

Fig. 3: Role played by scrum team members using
rotational embedded testing model

played the role of a tester in the same project, he would be
doubly careful in coding the task that is assigned to him.
Figure 3 illustrate the scenario.

The do’s and don’ts in agile testing: The below guidelines
will be highly helpful for an agile developer cuni tester in
a real-time agile developmental project.

Deo’s in agile testing:

Encourage test automation

Domam knowledge 1s crucial for the QA members
Certain degree of technical competency essential for
the QA members

Testing as early as practical and continuously
Develop acceptance test cases before the software 1s

developed
¢+ Developers have the responsibility to create
automated unit tests

Make testing and feedback a continuous activity in
a sprint rather than a phase towards the end.

Testers must be in continuous conversation
Continuous build and integration practices will aid in
testing

Don’ts in agile testing:

Expect a signed off/base lined requirements

Create an elaborate test plan

Development team and the QA team have separate
daily stand ups and separate planning and estimation
process

Follow manual testing entirely

Inform. Technol. ., 11

Table 3: Self evaluation questions
Q. No. Answer each question as Yes/No
1 Are the testers considered as part of the sprint team?

YN

2 Is the tester satisfied in writing well-docunented
incident reports?
3 Can the output of each sprint immediately usable by
the users?
4 Areyou highly productive when working alone?
5 Do you strongly believe that its unfair to question the
decisions made by business analysts
6 Do you think regression testing is a waste of time?
7 Do you find inconvenient and uncormfortable in
short deadlines
8 Are the developers willing to use test driven development
9 Is continuous integration and automated regression testing
implemented?
10 Will you consider test automation to be your own problem?
11 Can you work on code in par with a developer?
12 Will the lack of detailed specifications make you uneasy?
13 Do you stick with your plans on any situation?
14 Will you take responsibility with rest of the sprint
team for the deliverables?
15 Are you happy by following the procedures?

Disconnect from the customers and development
team

Participate only towards end of sprint

Ignore system testing since umt tests exist

Typical activities of an agile tester:

Testers should raise queries on the testing needs for
the requirements and should aptly identify the
missing door

Understand the acceptance criteria of a story and
perform testing based on the acceptance criteria

Try some negative testing within the himit of the
story

In case of failing scenarios, raise a defect on a card
Notify the status and defects that have been
identified so far during DS

In case of passing scenarios automate the story
covering all the acceptance criteria

Automate whatever defect 1s fixed if it is not covered
m any story

Perform exploratory testing to look mto some missing
functionality that has not been covered in the story
(may need mteraction with business analyst)

Tester’s agile adoption questionnaire: The answers to the
below mentioned sample questiomnaire make the
traditional tester to get converted to an agile tester.
The more the number of Yes he/she gives in
answering, the more they can adapt themselves to
agile testing. Self evaluation Questions are presented
in Table 3.

Debugging: The below flowchart in Fig. 4 explains how to
debug a test case and effectively eradicate the bug from
a Sesslon.

711

(6): 707-712, 2012

Test case
available?

Strike the
product

Know the
product?

Learn the
product

Is it critical
test case?

Identify risk
prone areas

Randomly
select and
run few test
cases

Focus on argas where
y risks arefhigh

Do exploratory]
testing

y

A

—
Focus on areas

where test cases fail g

ecord result:

End

Fig. 4: Representation of a test case debugger
CONCLUSION

Testing plays a vital role for any project. Testing
would be more efficient if a parallel testing could be done
1n par with the development team. Better quality could be
achieved 1if the project team follows a continuous
integration with a continuous delivery and a continuous
feedback from the customer.

As a future direction, when the bug has arrived,
before directly implementing the test cases, the criticality
of the bug has to be mspected at first and then adaptation
has to be implemented based on the criticality and priority
of the bug. It 1s the QA team’s responsibility to work in
par with the development team and bring out a better
qualitative product.

REFERENCES

Akbar, R., MF. Hassan, A. Abdullah, S. Safdar and
M A. Qureshi, 2011. Directions and advancements in
global software development: a summarized review of
GSD and agile methods. Res. J. Inform. Technol.,
3: 69-80.

Inform. Techrnol. 1, 11 (6): 707-712, 2012

Astels, D., 2003. Test Driven Development: A Practical
Guide. 2nd Edn., Prentice Hall, Upper Saddle River,
New Jersey, ISBN-13: 978-0131016491, Pages: 592.

Beck, K., 2003. Test-Driven Development: By Example.
Addison-Wesley, USA.

Edwards, S.H., 2004, Using software testing to move
students from trial-anderror to reflection-in-action.
Proceedings of the 35th SIGCSE technical
symposium on Computer Science FEducation,
(SIGCSE'0O4D), ACM, New York, USA., pp: 26-30.

Erdogmus, H., M. Morisio and M. Torchiano, 2005. On the
effectiveness of the test-first approach to
programming. IEEE Trans. Software Eng., 31: 226-237.

Thsan, B. and O. Dogerlioglu, 2011. TImpacts of
service-oriented architecture transformation on
organizational I, Applied Sa,
15:2791-2799.

Tanzen, D.S. and H. Saiedian, 2006. On the influence of
test-driven development design.
Proceedings of the 19th Conference on Software
Engineering Education and Training, (CSEET'06),
TEEE Computer Society, Washington, DC., TUSA.,
pp: 141-148.

Kaufmamn, R. and D. Janzen, 2003. Implications of test-
driven development: A pilot study. Proceedings of
the 18th Anmial ACM SIGPLAN Conference on
Object-Ortented Programming, Systems, Languages
And Applications, (OOPSLA'03), ACM, New York,
USA., pp: 298-299.

Keyvanpour, M.R., H. Homayouni and H. Shirazee, 2011.
Automatic software test case generation. J. Software
Eng., 5: 91-101.

Kitchenham, B. and S. Charters, 2007. Gudelines for
performing systematic literature reviews 1n software
engineering. Keele TUniversity and Durham
University Joint Report, Techmcal Report EBSE 2007 -
001, 2007. http: //www.dur.ac.uk/ebse/bibref.
php?id=51

structures.

on software

712

Kosindrdecha, N. and J. Daengdej, 2010. A test case
generation process and technique. I. Software Eng.,
4: 265-287.

Mugridge, R., 2003. Test driven development and the
scientific method Proceedings of the Agile
Development Conference, June 28, 2003, Salt Lake
City, UT, USA | pp: 47-52.

Mustafa, G., AA. Shah, K. H. Asif and A Al 2007, A
strategy for testing of web based software. Inform.
Technol. T., 6: 74-81.

Nagappar, N., EM. Maximilien, T. Bhat and L. Williams,
2008. Realizing quality improvement through test
driven development: results and experiences of four
industrial teams. Empirical Software Eng., 13: 289-302.

Reily, T. and A. Gocher, 2009. Beautiful Testing: Leading
Professionals Reveal How They Improve Software.
Ist Edn., O'Reilly Media Inc., USA., ISBN-13: 978-
0596159818, Pages: 352,

Roongruangsuwan, 3. and J. Daengde), 2010. A test case
prioritization method with practical weight factors.
I. Software Eng., 4: 193-214.

Singh, Y. and A. Saha, 2010. Predicting testability of
eclipse: A case study. I. Software Eng., 4: 122-136.

Zhang, X., T. Hu, H. Dai and X. L1, 2010. Software
development methodologies, trends and implications:
A testing centric Technol.
1., 8:1747-1753.

view. Inform.

	ITJ.pdf
	Page 1

