http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 11 (1): 76-84, 2012
ISSN 1812-5638 / DOL 10.3923/1).2012.76.84
© 2012 Asian Network for Scientific Information

Enabling Contimuous Quality Improvement with Quantitative Evaluation in
Incremental Financial Software Development

'Bin Xu, Meng Chen, *Cun Liu, *Juefeng Li, *Qiwei Zhu and *Aleksander J. Kavs
'College of Computer Science and Technology, Zhejiang University, 310027 Hangzhou, China
“State Street Technology (Zhejiang) 310030 Hangzhou, Peoples Republic of China
*State Street Corporation 02111 Boston, MA, USA

Abstract: While software play more critical roles in business, the quality of financial software systems become
extremely important as the enterprises rely more on their software applications. Incremental software
development enables the development team to yield the functionalities step by step so as to satisfy the
changing business requirement and enable the high quality releases as well However, efficient quality
management is essential to make the best tradeoff between schedule, effort, cost and quality so as to reduce
the potential risks in the business. In this study, the authors suggest a continuous quality improvement
framework on the basis of quantitative quality evaluation in incremental financial software development. A set
of evaluation, analysis and improvement approaches are described and designed. Related practice in a global
IT corporation shows that the approaches have significant business value to support the best tradeoff making.

Key words: Quantitative quality management, incremental software development, quality evaluation, root
cause analysis, quality management framework, statistics defect analysis

INTRODUCTION
While software applications are becoming
increasingly large and complex due to the improvement of
software development techmiques, financial enterprises
rely more than ever on some core software systems.
Software quality 13 extremely important m financial
systems with the goal to handle business transactions
quickly, accurately and reliably, to protect the business
privacy and successfully deal with kinds of exceptions.
Though the delivery date, budget and resource effort can
be negotiated most of the time, software quality is a very
umportant criterion for the customer to accept the product
and must not be jeopardized. Bad quality software
applications frequently results in revenue loss, hurts the
user confidence, unable to provide competitive advantage
to business and creates additional
(Original Software, 2010).

Incremental development model (Mills ef al., 1987) 1s
adopted to handle requirements gradually and develop
the system in steps that accumulate the functionalities. It
allows partial utilization of product, shortens the
development time and helps ease the traumatic effect and
risk of introducing completely new system all at once
(Sommerville, 2001). While it takes advantage of flexibility
in resource utilization (Ruhe, 2005), incremental software
development model also brings forth some problems. First

workload

because each increment 1s developed and mntegrated mnto
the application consequently, much effort is required if
the previous increments were poorly designed, hard to be
understood and difficult to be enhanced (Xu, 2005).
Defects slip from former increments may be mixed and
amplified which may introduce new problems to the
following increments and thus increase the effort to fix
them (Xu, 2010). Second, the turnover of human resource
requires knowledge sharing effort and further mcreases
the effort in subsequent increments development across
different increments (Xu and Pan, 2006). Third, more
requirement changes are expected in incremental
development and if not properly managed or controlled,
development will be definitely led into chaos (Xu, 2005;
Xu et al, 2004). Quality management (Rose, 2005) after
each increment or even during one increment is necessary
to solve these problems.

There are four main components
management: Planning, control, assurance and
improvement (Rose, 2005). Tt is not only a principle that
ensures the high quality m software products and
services but also the meaning to control processes.
Quality management therefore uses quality assurance
in software product and controls processes as well
as products to achieve more consistent quality. Quality
management is important to companies to Thave
higher product performance,

in quality

mcreased revenues,

Corresponding Author: Bin Xu, College of Computer Science and Technology, Zhejiang University, Hangzhou Zhejiang, 310027,

China Tel: +86 13666636919

Inform. Techrnol. J., 11 (1): 76-84, 2012

better customer satisfaction and smaller waste
(Ahire, 1997). A survey conducted by Original Software
(2010) revealed that the importance of quality management
has nisen while most managers are not satisfied with their
current quality management solutions.

The objective of this study is to clarify the special
quality related problems in the incremental financial
software development and then enable the management
to understand and oversee the quality status of the
increments so as to make the best tradeoff in quality
management and avoid the msufficient testing and
optimize the quality assurance tasks.

MOTIVATIONS

There are not many works that focus on quality
management in incremental software
Hewett (2011) suggested mining software defect data to
support software testing management. A method 1s
proposed on how to order requirement in incremental
development to improve quality —management
(Wohlin, 1994) and Unified Process is chosen as the
embedded framework perform the quality
management (Jacobson et al, 1999, Norbjerg, 2002;
Kroll and Kruchten, 2003; Shuyja and Krebs, 2007).

Unfortunately, quality is often been ignored when the
project 1s short of schedule or budget. The requirement on
a specific release date often overrules quality objectives,
for example reliability. A software product may be
delivered on time but not thoroughly tested or verified
before release due to delays. In other words, testing effort
15 cut off because of the tough schedule which
results in poor quality software released to client
(Original Software, 2010). In order to ensure the high
quality in the incremental software development,
quantitative quality management 13 essential to measure
the quality and the risk of low quality. However, the
quality characteristics defined in the TSO/TEC (2001) is not
practical to be measured directly, lower-abstraction
attributes of the product should be accessed from
ISOMEC (1998).

With the vears of incremental financial software
development, the authors found that the poor quality
mcrement resulted endless quality risks, brought more
rework effort and continually hurt the team confidence in
the following increments before the related defects in the
former mncrements had been finally fixed. A poor-quality-
delivery of an increment brings forth lots problems
because:

to

* Defects inside former increments may be amplified in
the following increments

development.

77

s After-increment defect removal requires much more
rework effort and impact a serial of tasks across
requirement, design, coding and testing phases

» Worse quality status gives critical pressure on the
schedule management of consequent increments and
would make the following quality status even worse

In this study, the authors argue that quantitative
management techniques should be adopted in software
quality management and suggest a series of practical
solutions to evaluate, analyze and improve the software
quality in incremental financial software development.

QUANTITATIVE SOFTWARE QUALITY
EVALUATION

Quantitative quality management framework:
Quantitative quality management framework is a dynamic
framework which could be improved during the
incremental software development practice. It starts at
evaluation phase, within which the quality and the quality
management will be evaluated with some defined rules
and criteria. After the evaluation, some further analysis
could be done on mcrements with potential 1ssues. The
rules, criteria and the factors could be calibrated and
improved to reduce the total effort in quality management.
The whole framework generates a loop which enables the
contimuous quality improvement (Fig. 1). All these four
steps could be overlapped in practice, for example, the
evaluation can be made during the practice and the
improvement can be suggested after the practice has
started.

Indicate the possible quality issues after increment: Bug
density can be a good metric to measure the quality of an

increment by comparing the subsequent increments in an
incremental software development project. Generally, a

Fig. 1. Quantitative quality management framework

Inform. Techrnol. J., 11 (1): 76-84, 2012

lower bug density means High quality while a higher one
means Low quality which will be the subject of later
analysis.

In this study, bug density i1s viewed in another view
and used to indicate the possible quality issues after
increments. Bug density will be estimated according to
some historic project from the benchmark repository. The
estimated bug density will be calibrated with the average
value during the progress of the incremental software
development. We assume that there are some problems in
those extremely High or extremely Low quality increments.
For example, the testing team had much more tume to test
the increments and found more defects than the average
for some Low quality increments. For the High quality
increments, maybe the testing team didn’t have sufficient
time to test the increments and found far too little defects
than the average.

TIn this study, we focus on the extremely High quality
increments. Several criteria are set to indicate the possible
quality 1ssues:

¢ Scale is large but complexity is not lower. Line of
source code (ESLOC) 1s used to evaluate the scale
and scorecard 1s used to measure the complexity

¢ Test duration is short

¢ Product management is highly efficient and does an
excellent job for resource allocation and schedule
planming

Root cause analysis: Causal analysis and resolution is a
CMMI process at level 5. It contains two Specific
Goals which 1z split mto five Specific Practices
(Buglione and Abran, 2006).

Root cause analysis enables the team to find out the
weakness of the development so that the team could
unprove the quality of the mcrements m the futwre by
avoiding to the similar cause.

An analytical tool from Total Quality Management
(TQM) (Deming, 1986, Juwan and Gryna, 1993
Crosby, 1979) named the Fishbone diagram (Yu, 1998) 1s
useful for detecting the root causes of a software
defect/problem and for classifying and prioritizing issues.

For each fault fixed, quality assurance engineers and
developers choose a fault type and one or more root
causes. Based on the fault data collected from developers
and quality assurance engineers, most actual faults could
be covered. Fishbone diagram for defect cause analysis
1s suggested by Buglione and Abran (2006).

Statistics analysis on defects from root cause
perspective: Root causes described in the fishbone
diagram can be considered as the multiple-dimensions, for

78

example, SDLC original causes were used as the top
categories in this research. Some of such causes can be
Requirement misunderstanding, Requirement unclear,
Requirement faulty, Detail design failure and etc.

Statistics analysis: Defect report is generated after the
root cause analysis. In order to enable the decision
making n the quality improvement, the price in bug fixing
is estimated in the unit of working howrs according to
manual experience.

QUANTITATIVE QUALITY IMPROVEMENT

Solutions for quality improvement: There are many
solutions for quality improvement while these solutions
requires different mvest of budget or human resource. For
example, financial budget is required to purchase a better
testing tool and some training effort is also needed for the
test engineers to perform this new testing tool. Such
financial budget investment and the traming effort are
fixed cost which is not dependent on the number of
defects.

The improvement solutions include the follows, just
to name some of them.

To reduce defect of Coding:

» Enhance development test
» Involve code review
+ New technology training

To reduce defect of Requirement Misunderstood/
Unelear:

» Requirement review meeting
*» Requirement question list

To reduce defect of Faulty Requirement:

+ Involve more clients interactive
» Enhance business analysts role

The solutions for the quality improvement are not
limited to solve only one defect category. For example, the
software review may reduce the defects in the coding and
benefit the requirement understanding. Tn such case, the
related benefit and cost is different for each category.

For each root cause category, there could be several
improvement solutions with different benefit and cost.
Typically the benefit is measured in the unit of the Defect
Removal Efficiency (DRE) and the cost refers to both the
duration and effort to avoid such defects through review
or similar techmques. The values of benefit and cost

Inform. Techrnol. J., 11 (1): 76-84, 2012

should be benchmarked and calibrated for individual IT
projects according to its local historic experience.

RELATED DEFINITIONS IN THE IMPROVEMENT

Generally, Pareto analysis will be performed to find
out the possible defect category to be improved. For each
category to be improved, a suitable working plan should
be determined according to the number and price of the
defects and related benefit and cost of the solutions.

Definition 1

Summarized report of root cause analysis: Summarized
report of root cause analysis can be defined as a matrix
SRCA :: = <RC, N, P, BV> where RC 1s the top category of
the root causes, N 1s the number of the related defects, P
15 the estimated bug fix effort and BV 1s the business
value after fixing the defects.

Typically, high quality of software refers to low
defect density in the software. Here in this research, the
business value is considered as the weight of quality
when comparing defects across different categories. In
order to improve the quality continuously, the project
team should clarify the status of defects and remove the
defects efficiently, that is obtain more business value with
less bug fix effort.

Hot defect categories refer to the defect categories
which should be reduced m the mcrements so as to
enable the high software quality. Business value and bug
fix effort will be tradeoff to obtan high quality in the
increment. Most of the time, project team needs to enlarge
the business value with limited budget for the bug fix
effort.

Definition 2

TImprovement solution: IS :: = <ID, Name, FixedCost>,
where FixedCost is the cost which is independent from the
number of defects or the time of implementation. The
FixedCost 1s important for the project managers to make
the decision to try a new testing tool when the Fixed Cost
1s affordable and the related execution cost 1s small when
compared with some other solution.

Definition 3

Capacity of improvement solution: The capacity can be
defined for the quality improvement towards different
defect category. CTS i1 = <RC, IS, DRE, Cost, N, SEffort>
where RC is the root cause category, IS is the
improvement solution, DRE is the possible defect removal
efficiency to remove the defect category RC with the
solution IS and Cost 1s the execution effort for each

79

implementation, for example, the additional requirement
review effort. The execution cost varies {rom different
defect category and different improvement soluton. N
and SEffort refer to the number and summarized effort for
the defect in the category of RC which detected by the
solution IS. These two items are prepared for the
calibration of the capacity.

The capacity will be impacted by the team capacity,
the technique complexity and the project environment.
Therefore, capacity of improvement solution will be
calibrated and updated with more project experience so as
to be shared with multiple projects.

Definition 4

Quality assurance task organization: In some case, one
improvement solution may exposure the defects in
multiple categories. For example, the functional testing
may help to find out the requirement, design and coding
related defect. The organization of quality assurance task
is defined as QTO :: = <Task, IS, QTT> where Task is the
task category for quality assurance work, IS is the
improvement solution and QTT is queue of <RC, Ratio>
where RC is the defect in root cause category and Ratio is
the percentage of effort.

Definition 5

Quality assurance task execution: In the execution of
each quality assurance task, defects
categories may be detected. The execution of quality
assurance 1s defined as QTE :: = <Id, Task, IS, Effort,
DefecttFound> where Id 1s the task identification of gte.
Task is the task category for quality assurance work, IS
1s the improvement solution, Effort 1s the effort to fiush
task gte and DefectFound 1s queue of <RC, N> where RC
is the defect in root cause category, N is the number of
defects found in the execution of gte.

in different

Definition 6

Quality improvement system: The entire quality
improvement system can be defined as QIS:: = < SRCA,
I8, CIS, BV ;s Budget> where SRCA is the summarized
report of root cause analysis, IS 1s the set of improvement
sclutions, BV .4 18 the expected business value in the
improvement and Budget is the reserved budget for the
bug fixing.

Algorithms for the quality improvement: When there is
no sufficient time for the bug fixing, the defects couldn’t
be fixed within one increment. However, the quick bug fix
will benefit the product quality and reduce the
development of futwe merements. In this study, to

Inform. Techrnol. J., 11 (1): 76-84, 2012

obtain the maximal business value within the bug fix
budget 1s used as the criteria. Algorithm 1 is used to
identify the defect categories which should be fixed for
the better quality and the defects in other categories may
be considered to be fixed in the next increment.

Algorithm 1: Tdentifying hot defect categories

Input: Summarized Report of Root Cause Analysis SRCA and reserved
budget Budget.

Output: hot defect categories HDC, expected business value BV ;4.
1 sort SRCA in the descending order of BV/P

2 BVexpected =0, cost =0, HDC =@

3 FOR (each srea in SRCA) {

4 IF (cost > = Budget) break;

5TF (cost+sreaN™ srca. p <= Budget) {

6 cost= costtsrca N srcaP;

7 BVqecka = BVoypeewatstca N # srca BV

8 add srca.RC into HDC

9}

10}

Algorithm 1 walks through the summarized report of
root cause analysis and identify the hot defect categories
to be reduced m the mcrement. The defect category 1s
queued in the descending order of business value/bug fix
effort. In such way, the quality improvement could be
achieved in the most efficient way which has the largest
return on investment.

The bug fixing effort is limited by the reserved budget
and the expected business value is estimated as the
summary of the number and the business value per defect.
Of course, the bug fixing effort contamns the re-testing and
re-opening effort.

Algorithm 2: Calibrating of the capacity of improvement solution

Tnput: Quality assurance task organization QTO, Quality assurance task
execution QTE, Summarized Report of Root Cause Analysis SRCA, defect
remained DR and Capacity of Improvement Solution CIS.

Output: calibrated Capacity of Trprovernent Sohition CTS.

1 FOR (each cis in CIS)

2 cis. N =0, cis.SEffort = 0;

3 FOR(each drin DR)

4 dr.defect_found = 0;

5 FOR(each srca in SRCA)

G srcaN=10;

7 FOR (each qte in QTE) {

8 Fetch qto from QTO where qto.task = gte.task;

9 FOR (each qti in qto. QT {

10 Fetch cis from CIS where cis.RC = qti. RC and cis.IS = gte.IS;

11 cis.SEffort = cis.SEffort+qti. Ratio* qto.Effort;

12}

13 FOR (each defectfound in gte. DefectFound) {

14 Fetch cis from CIS where cis.RC = defectfound. RC and cis.IS = qte.IS;
15 cisg.N = cis. N+defectfound.N;

16 Fetch dr from DR where dr.RC= defectfound. RC;

17 dr.defect_found = dr.defect found+defectfound . N;

18}

19}

20 FOR (each cis in CI8) {

21 Fetch dr in DR where dr.RC=cis.RC;

22 cis.DRE = cis.N /(cis.N+dr. defect_remained);

23 cis.Cost = cis. SEffort / ¢is.N;

24}

80

Algorithm 2 initializes the capacity of improvement
solution CTS, defect remained DR and root cause analysis
report SRCA at first, then update the summarized defect
mnto CIS, SRCA and DR as well. The effort for the defect
detecting is fetched from the quality assurance task
execution QTE. Finally the DRE and Cost are calibrated in
CIS.

Here, DRE 1s calculated as ZXDefect found/
(EDefect foundt+Defect remained) for each defect
category. The number of defect remained is the feedback
from business side after the increment.

For each phase, there are a serial of development and
Quality Assurance tasks. From the perspective of quality
assurance, development tasks introduce the defects and
Quality Assurance tasks help to explore the defects.

After the benchmark has been prepared, the defects
numbers of a new increment can be estimated according
to some predict approach. In Algorithm 3, we suggest an
approach to schedule the improvement solutions to the
coming increment. E-SRCA is a matrix E-SRCA_ , which
is estimated according to the historic data, where rc is the
defect category identified by root cause, ph is the phase
number stated from 1 to 4, refer to Inception, Elaboration,
Construction and Transition. E-DR 1s a vector E-DR,_,
which is estimated according to the historic data as well
where rc and ph have same meamng as in E-SRCA but E-
DR, refers to the number of defects in the categery of ro
will be remamed after phase ph. The structure of
scheduled improved solutions is defined as a vector SIS,
and each item refers to a queue of improvement solutions
<[S=.

Algorithm 3: Scheduling improvernent solutions

Input: Quality assurance task organization QTO, Quality assurance task
execution QTE, estimated Summarized Report of Root Cause Analysis
E-SRCA and defect remained E-DR and calibrated Capacity of Improvernent
Solution CIS.

Output: 8cheduled improvement solutions 8T8, estimated effort E-Effort.

1 E-Effort =0;

2 8ORT (I8 in the descending order of CIS.COST;

3FOR (eachphin 1..4) {

4 8ISy, .initial();

5 qir =B-SRCA;

6 While (gtr.totalnumber() > E-DRy. totalnumber())

7 FOR(each is in CIS.IS)

8 TF (E-SRC A0 270) {

9 8ISy, .add(is);

10 FOR(each rc in CIS.RC where CIS.IS=is) {

11 E-Effort = E-Effort + CIS.COST * gtr, *(1- CIS.DRE);

12 gtr,, = qtr,. **(1- CIS.DRE);

13}

14 ELSE continue;

15}

Algorithm 3 1s briefly demonstrated with some vector
access, such as the line 5. The member method total
number () 1s used to calculate all the defects number of a

Inform. Techrnol. J., 11 (1): 76-84, 2012

vector. For each phase, the total removed defects number
should be no less than the predefined number m E-DR.
SIS, Initial () at line 4 is used to initial the vector as a
empty queue. SIS,. add (is) at line 9 is used to append the
improvement solution is to the vector SIS,. The
scheduling improvement solution in SIS together with the
E-Effort will be output for the quality assurance task
scheduling.

CASE STUDY IN GLOBAL IT CORP

We applied our approach in a financial software
company which provides advanced IT solutions to a top
financial organization.

As usual, we collected bug density mcrement by
increment as shown in Fig. 2. We found that the increment
RO03’s bug density was fairly lower than the average bug
density, even lower than the average minus one sigma.
Therefore, we checked the criteria:

The scale 1s LARGE but the complexity 1s NOT lower.
The features in the increment R003 were more
complicated than the average based on the scorecard
from development and testing teams

Test dwration is very short comparing with other
merements

As a surprise there was no sufficient product
management for ROO3

As a result, the increment RO0O3 was indicated to have
quality issues: Test cycle was not sufficient based on the
stable testing resources across the multi-increments and
the short testing duration.

S-Curve which has been introduced m Section 2.3
was used to validate our assumption. S-Curve was
generated as in Fig. 3 to demonstrate the expected and
exposed defects number. There was a big gap between
expected and exposed defects number for the increment
RO03: Only half of the expected defects had been found.
This was an 1important evidence to support our
assumption.

We verified this assumption with the project team and
got the confirmation that the testing for the increment
RO03 was insufficient. Due to the tight schedule of the
increment RO03, testing duration was cut short which
caused more after-release defects. It was really a good
example of improper cutting testing efforts under tight
schedule as many defects were found on clients’ site.

7.000 7 g Bug denisty —— Average bug denisty — Poly. (Bug denisty)
B 3917665619
6.000 s.g\zrf IBO 5577
5.000
4.8550
4.000 - 3.6356
3.000
Nl 25762 _ 1 _L__l_1_ 25686
2.000 7 1.5330
1.000 | |
0.000 T l T 1 T T T
ROO1 R002 R0O03 R0O04 R0O05 R0O06 R0O07
Fig. 2: Bug density analysis on the increment (released to client)
® Cumulative found defects O Total remainig defects Expected exposureDefects
Expected exposure defects-c - — Poly. (Cumulative found defects) ---- Poly. (Total remaining defects)
240 - 232
200 4
179
160 - Y =0.003x" +0.101x" + 4.878x + 24.76 ="m 11
R’=0.987 -
120 1 u
80 T Y= 0.000% +0.128x" +3.837x +30.07
L) R*=0.681
40
k.

\\\ RS \\ \\\\\\\\ \\\\\

N AN \\\\\\\ R \Q\\

Q Q
RN A R R R
W%\ \ \W \«\\‘b\\“ S %\\%\\%\ S f»\%\\% ,?\w SRR

Fig. 3: 8-Cwrve analysis on the increment R003

81

Inform. Techrnol. J., 11 (1): 76-84, 2012

0.85%
0.42% 0.42%
48.73% B Requirement misunderstand/Unclear
32.20% @ Requirement change/Enhancement
@ Sytem design
B Deatil design
8 Coding
B Technology/communication
o Configuration/Infrasturature
O Performance
7.63%
1.27%
* 847%
Fig. 4: Defects distribution by root cause
100.00%
1 0,
1405 2 Defect No. -# Cumulative No.% - 100.00
120 30.41% 97.03% 98.31% 99.15% 99.58% 2888
100 80.93% 70.00
80 60.00
50.00
60 40.00
40 30.00
20 O 210
0 - S - = .T P — S 0.00
5 Q N - - o © S
Qo\c C)ob& p 6@ @(_ﬁo bo%\qo @O@* é&o '@,&\\
t@ & &> o £ &L &
S NG ¥ & & 2 &
é\q’ \GQ 9) & 0&
¥ & o N
N ~Q‘§ ‘Z}\ 003
9 < & &
x& &> g@o “§
< A S &
Fig. 5: Pareto chart for the root cause report
After we had indicated the mcrement with high DISCUSSION

quality 1ssue (though it looked like an extremely High
quality increment), root cause analysis was used to clarify
the defects m the distribution of root cause, as 15 shown
m Fig. 4.

Pareto chart was used to identify the most important
root causes that must be eliminated or diminished to
improve the quality to an acceptable level. As shown in
Fig. 5, it 1s clear that Requirement Misunderstand/Unclear
and Coding were the mam two causes for the mcrement
R0OO3.

According to the possible
mnprovement solutions to reduce the requirement
misunderstand/unclear related defects are enhancing the

our experience,

requirement review and establish requirement issue list.
We suggested to the project team to enhance the
requirement review in the following increments and host
additional requirement review meetings for the previous
increments to reduce the impact of the quality issue from
R0O03. The decision making for the quality improvement
should be made according to the feature of the project
and the capability of the project team.

82

Many software quality metrics have been developed
to verify the traceability (Singh and Saha, 2010), the
efficiency of object-oriented technique (Parthasarathy and
Anbazhagan, 2006; Borom and Clausse, 2011;
Changchien et af., 2002) and to validate special
applications (Pan and Xu, 2010, Vinayagasundaram and
Srivatsa, 2007, Bedi and Gaur, 2007). However, a single
metrics means little sense and additional mformation or
metrics are required to determine the status of quality. As
demonstrated in Fig. 2, the bug density of R003 is far
below the average of the other increments. Typically it will
be regarded as the high quality of the increment. In this
study, we found that the bottom boundary of the bug
density 1s 2.5686 and wondered if there was some quality
issue in ROO3. With the survey from the team, we found
that the test duration was too short and the product
management was not sufficient. Therefore, we concerned
that the testing on R0O03 is insufficient. Late, some
feedback from production testing verified that there were
much more defects remained than other mcrements. The
S-cwrve in Fig. 3 showed that the speed (efficiency) of the

Inform. Techrnol. J., 11 (1): 76-84, 2012

testing was much higher than other increments. Both
defect distribution diagram in Fig. 4 or Pareto chart in
Fig. 5 showed that the requirement misunderstand/unclear
and coding accounted for too much ratio of the total
defects. This could be considered as another low quality
evidence of this increment.

In this study, we made an assumption that the
solution adopted in the testing phase would remove the
defects in fixed ratio regardless of the priority or order of
the adoption. Suppose that there are two improvement
solutions, QA and QA,, the defect removal efficiency of
QA, is DRE, and QA, is DRE, The defect removal
efficiency of testing queue <QA,, QA,> is same as that
testing queue <QA, QA> which equals to 100%-
(100%-DRE,) *(100%-DRE,).

Assume DRE, of QA 15 80% and DRE, of QA 15 70%
and there are 100 original defects. If QA is done at first,
then it could explore 80 defects and QA, could only
explore 20*70% = 14 defects. If QA 1s done after QA,
then QA, could explore 70 defects and QA | could only
explore 30*80% = 24 defects. There are 6 remain defects
for both scenarios. However, the improvement solutions
unplemented in different orders result m different
evaluation on the mmprovement solutions and waill
definitely yield different optimization results.

Pareto technique has been suggested to value the
conditional dependence (Barro, 2009), optunize the service
composition and to enhance the evolutionary algorithm
(Zhihuan et al., 2010). In this study, we used Pareto chart
to identify the most significant defect category as in
Fig. 5. However, the solutions could not be limited to only
those most sigmficant categories if we consider the
related implementation cost. Currently we don’t have
enough evidence to validate this suggestion but we will
continue to gather the project data and it will be further
studied with plenty of project data in our future work.

The framework and approaches suggested in this
study can also be used in some other quality-critical
mcremental software development. The historic project
data should be prepared and be used to calibrate the
benchmark. This will be the future work of the authors.

CONCLUSION

In this study, we suggested a quantitative quality
management framework with a series of analysis and
evaluation approaches. It has been used m a real project
and the experience showed its value in identifying the
quality issue which may not have been easily found
manually with some traditional approaches. In such way,
the poor quality mcrement may be reworked in time so as
to avoid the possible problems, such as the amplified

83

defects number, more rework work due to late defect
identifying and fixing and low team confidence because of
low quality status.

ACEKNOWLEDGMENTS

This work 1s part of “Global Collaborative Software
Development™ research project which 1s an attempt to
improve the dual-shore software development with
integrated best practice, software engineering technology
and project management methodology. The research
project 1s funded by State Street Corporation, USA. The
project is collaboration between Zhejiang University,
China and State Street Corporation, USA.

REFERENCES

Ahire, S.I., 1997. Management science-total quality
management interfaces: An integrative framework.
Interfaces, 27: 91-105.

Barro, D., 2009. Conditional dependence of trivariate
generalized pareto distributions. Asian I. Math.
Stat., 2: 20-32.

Bedy, P. and V. Gaur, 2007. Trust based quantification of
quality in multi-agent systems. Inform. Technol.
I, 6:414-423,

Borom, G. and A. Clausse, 2011. Object-oriented
programming strategies for
applied to continuous simulation. T. Applied Sci.,
11: 2723-2733

Buglione, L. and A. Abran, 2006. Introducing root-cause
analysis and orthogonal defect classification at lower
CMMI maturity levels. Proceedings of the
International Conference on Software Process and
Product Measurement, November 6-8, Cadiz, Spain,
pp: 29-40.

Changchien, SW., JJ. Shen and T.Y. Lin, 2002. A
preliminary correctness evaluation model of
object-oriented software based on UML. I. Applied
Scl., 2: 356-365.

Crosby, P.B., 1979. Quality Ts Free: The Art of Making
Quality Certain. McGraw Hill, New York, TUSA.,
[SBN-10: 0-451-62585-4, Pages: 270.

Demmg, W.E., 1986. Out of the Crisis, 1st Edn., MIT
Press, Cambridge, ISBN: 0911379010. pp: 98.

Hewett, R., 2011. Mining software defect data to support

numerical solvers

software testing management. Applied Intell.,
34: 245-257.
ISOAEC, 1998, International standard, information

technology: Software product evaluation, Part 5

Process for evaluators. Internmational Standards

Organization.

Inform. Techrnol. J., 11 (1): 76-84, 2012

ISOIEC, 2001. Software engineering: Product quality,
Part 1: Quality model
Organization.

Jacobson, [., G. Booch and I. Rambaugh, 1999. The
Unified Software Development Process. 1st Edn.,
Addison-Wesley Longman, MA., USA. ISBN-
10: 0-201-57169, Pages: 512.

Juran, I.M. and F.M. Gyma, 1993. Quality Planmng and
Analysis: From Product Development through Use.
2nd Edn., McGraw-Hill, New York, USA., ISBN-
10: 0-07-033178-2, Pages: 629..

Kroll, P. and P. Kruchten, 2003. The Rational Unified
Process Made Easy: A Practitioner’s Guide to the
RUP, Addison-Wesley, MA TUSA ISBN-
10: 0321166094, Pages: 416.

Mills, HD., M. Dyer and R.C. Linger, 1987. Clearroom
software engineering. TEEE Software Mag., 4: 19-25.

Norbjerg, T., 2002. Managing incremental development:
Combining flexibility and control. Proceedings of the
Buropean Conference on Information Systems, June
6-8, Gdansk, Pol and, pp: 229-239.

Original Software, 2010. Application quality management
survey result. http://www.ongsoft.com/ products/
qualify/docs/agm_survey results.pdf

Pan, L. and B. Xu, 2010. Towards collaborative master
student talent development with E-CARGO model.
Inform. Technol. J., 9: 1031-1037.

Parthasarathy, 5. and N. Anbazhagan, 2006. Analyzing
the software quality metrics for object oriented
technology. Inform. Technol. T., 5: 1053-1057.

Rose, K.H., 2005. Project Quality Management: Why,
What and How. . Ross Publishing, Fort Lauderdale,
Florida, USA.

Ruhe, G., 2005. Software Release Planming. In: Hand book
of Software Engineering and Knowledge Engineering,
Chang, S.K. (Ed.). UK pp: 365 394,

Shuja, A. and T. Krebs, 2007. TBM Rational Unified
Process Reference and Certification Guide: Solution
Designer, IBM Press, UK.

International Standards

i -3

84

Singh, Y. and A. Saha, 2010. Predicting testability of
eclipse: A case study. J. Software Eng., 4. 122-136.

Sommerville, I, 2001. Software Engmeering. 6th Edn,
Addison-Wesley, USA.

Vinayagasundaram, B. and S.K. Srivatsa, 2007. Software
quality in artificial intelligence system. Inform.
Technol. I., 6: 835-842.

Wohlin, C., 1994, Managing Software Quality through
Incremental Development and Certification. In:
Building Quality into Software, Ross, M., C.A.
Brebbia, G. Staples and J. Stapleton, (Ed.).
Computational Mechanics Publications,
Southampton, United Kingdom, pp: 187-202.

Xu, B. and X.P. Pan, 2006. Optimizing dual-shore SQA
resource and activites m offshore outsourced
software projects. Proceedings of the 19th Annual
Canadian Conference on Electrical and Computer
Engineering, May 2006, Ottawa, Ont., pp: 2405-2409,

Xu, B., 2005. Extreme programming for distributed legacy
system reengineering. Proc. 29th Ann IEEE Int.
Comput. Software Applic. Conf., 2: 160-165.

Xu, B., 2010. Cost efficient software review in an
E-business Software Development Project.
Proceedings of the 2010 International Conference on
E-Business and E-Government, May 7-9, Guangzhou,
Pp: 2680-2683.

Xu, B, XH. Yang, Z.I. He and SR. Maddineni, 2004.
Achieving high quality in outsourcing reengineering
projects throughout extreme programming.
Proceedings of the 2004 TEEE International
Conference on Systems, Man and Cybernetics,
Oct. 10-13, IEEE, pp: 2131-2136.

Yu, WD, 1998. Software fault prevention approach in
coding and root cause analysis. Bell Labs Tech.
I.3: 321

Zhihwan, L., L. Yinhong and D. Xianzhong, 2010.
Improved strength pareto evolutionary algorithm with
local search strategies for optimal reactive power
flow. Inform. Technol. I., 9: 749-757.

	ITJ.pdf
	Page 1

