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Abstract: With the decomposition method of Petri net by assigning an index of the transition set, a structure-
complex net system can be decomposed to a set of structure-simple subnets, named T-net. There is a projection

relation of the reachable marking set and languages between the original net system and the subnet systems
decomposed. However, some unnecessary states and languages are also added in the subnet systems. This
study presents the deep research results on the decomposition method of Petri nets based on the mdex of
transitions. A set of necessary and sufficient conditions for keeping the states and languages invariant between

the original system and the subnet systems is obtained. Based on the simplified reachable marking graph, an
algorithm 1s given to decide the states and languages mvariant.

Key words: Petri net, index of transitions, invariant decomposition, reachable marking graph, petri net language,

reachable states

INTRODUCTION

As tools of modeling and analyzing physical
systems, Petri nets have been widely applied in a large
number of areas to moedel, analyze and manipulate real
systems, which provides users with an mtegrated
modeling, analyzing and manipulating environment, so
as togive a reliable basis for the analyze of real system
(Sun et al., 2011, Zeng et al., 2008a; Zeng and Duar,
2007, Wang and Zeng, 2008, Meng et al, 2011,
Du and Guo, 2009; Liu and Du, 2009; Liu et al., 2009).
The greatest obstacle to the application of Petri nets in
real systems is the state space explosion, which arises
while analyzing the structural properties of Petri nets.
Because of the complexity of the real system, this problem
has not been solved properly. To deal with the state
space explosion of Petri nets,
researchers have done much work. They have presented
the idea of Petri net reduction, Petri net operation,
Petri net composition, stepwise refinement and so on
(Tiang, 1997, 2000, Wang, 2001 a, b; liang and Wu, 1992,
Zeng, 2004; Lee-Kwang et al., 1987, Suzuki and Murata,
1983; Wang, 1999, Zeng and Wu, 2002, 2004). These
works can be divided into two methods. One method is to
compose structure-complex net system using a set of
structure-simple nets so as to obtain the property of the
complex system by analyzing the property of simple nets
(Tiang, 1997, 2000, Wang, 2001 a; JTiang and Wu, 1992;

large numbers of

Zeng, 2004). The concept of synchronous composition of
Petri nets and analyzes some conditions to keep states
and behaviors invariant during the process of
composition was given (Jiang, 1997, 2000). Wang (2001b)
introduced @ modeling method for FMS (Flexible
Manufacture System) based on the synchronous
composition of Petri net, with which divides physical
objects into work type and resowce type. Jiang and Wu
(1992} defined an algebraic operation, named net
operation and tried to build large net system via this
algebraic operation. The structural properties during the
process of net operations were also discussed (Jiang and
Wu, 1992). Zeng (2004) extended the concept of
synchronous composition to more then two Petri nets,
which was used to express the language behavior of a
structure-complex  Petri  net.  Another method
(Lee-Kwang et al., 1987, Suzuki and Murata, 1983) 1s to
decompose a structure-complex net system to a series of
structure-simple nets, hoping the original properties of the
net can be reflected in the subnets. The method of the
sum decomposition and the union decomposition were
presented (Wang, 1999, 2001la). However, only the
structural properties between the original net system and
the subnets were discussed in details while the state and
behavior relations, which are more widely used in the
process of a real system, were mnot discussed
(Wang, 1999, 2001b). To solve this problem, the
decomposition method for petri nets by defining the index
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of places and transitions was given, respectively
(Zeng, 2007, 2011, Zeng et al, 2008b) which can
decompose a structure-complex Petri net mto a set of
S-nets (Zeng, 2011, Cw et al, 2011) or T-nets
(Wu, 2006). A new decomposition method for Petri net by
defining the index of places is given, with which the
decomposed subnets are all S-nets (Zeng and Wu, 2002).
They also give a deep research on this decomposition
method and a necessary and sufficient condition for
keeping the state and language invariant between the
original system and the subnet system has been obtained
(Zeng and Wu, 2004).

In this study, we keep on the research of the
decomposition method based on the index of transitions
(Zeng, 2011, 2006), especially on the projection relation of
the reachable marking sets and the languages between the
original system and the subnet systems. A necessary and
sufficient condition for keeping the states and languages
mvariant between the original system and the subnet
system has been obtained Based on the simplified
reachable marking graph, an algorithm is given to decide
the states and languages invariant.

BASIC CONCEPTS OF PETRI NETS

Tt 1s assumed that readers are familiar with the basic
concepts of Petri nets (Wu, 2006, Zeng, 2008,
Murata, 1989; Peterson, 1981). Some of the essential
terminologies and notations about Petri nets used in this
study are listed as follows:

Atuple N = {P, T; F} is named as a net 1ff :

PrT =5, PuT #o 4]
Fc (PxT) u (T=P) (2)
Dom(F)uCod (F) = PuT 3

where, Dom(F) = {x € PuT|dy € PUT: (x, y)e F} and
Dom(F) = {x € PuT|dy € PUT: (v, x) e F}.

For all xePuT, theset’x={y|ye PUT A (y,x) € F}
is  named the pre-set of x and the set
x = {y |y € PUTA(x, y) € F} 1s named as the post-set of x.

A Petri net 13 a 4-tuple X = {P, T, F, M, }, where
N = {P, T; F} is a net and M,: P—Z" (Z" is the non-
negative integer set) is the initial state of X. A state M is
reachable from M, if there 15 a transition firing sequence
o such that M, [o>M. We use R(M,) to represent the set
of all reachable states from M. Let X=(P, T F, M) be a
Petri net. A 3-tuple RMG (X) = (R(M,), E, ) is defined as
the reachable marking graph, where: E = {(M,, M)M,, M,
e R(M,), 3t e t. M, [t=M}, £ E-T, £ (M, M) = t,, iff M,

as
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[te"M,, V is named as the place set of RMG (), E is named
as the arc set of RMG (). If £ (M), M), t, is the side mark

of £ (M, M).

DECOMPOSITION OF PETRI NET BASED ON THE
INDEX OF TRANSITIONS

Here, we mtroduce the method to decompose a
structure-complex Petri net based on an index function
defined on the transition set (Zeng, 2007, 2011). With this
method, a structure-complex Petri net can be decomposed
mto a set of structure-simple nets such that |p’|<1 and
[p| < 1 for all places.

Definition 1 (Zeng, 2006): Let X =(P, T;F, M)
be a Petri net. A function fz T— {1, 2, 3...k}is
an index function of T, iff ¥t,teT,ift')nt,# o or
ft) = £t f£{t) is named as the index of the
transition t.

Definition 2 (Zeng, 2006): Let X = (P, T; F, M;) be a Petri
net and f: T— {1, 2, 3,..., k} be the index function of T.
Petri net &, = (P, T, FM ) (efl, 2, 3., k}) 15 a
decomposed net of X based on f; iff ¥ satisfies the
following conditions:

T, = {teT| £ (1) = i}; Gefl, 2..k})
P,= {pe P| Jte T, pe” tt}(iefl, 2..k})
F,= {(P,<T) u(Tx P)} N F, (i € {1,2, 3. k})
Mg = pop My

Definition 3 (Wu, 2006): A Petrinet X =(P, T.F, M,)i1s a
T-Net 1ff VpeP such that ['p|<]1 and |p’|<1.

Theorem 1 (Zeng, 2006): Let X, = (P, T; F.M,) (i€ {1, 2,
3... k}) be the decomposed net of ¥ = (P, T; F, M,) based
on the function index of f; iff:

k
Vi, jell, 23 kLi= T, NT, =& and | JT, =T

i=1

Forall k=1, if ¥ie{l, 2, 3... k},3541, 2, 3.k}, i # |, then,
PP # eand |*
i i P =P

Theorem 1 indicates that a Petri net can be
decomposed into a set of structure-simple subnets, named
T-Nets. A Polynomial-time Decomposition Algorithm was

given (Zeng, 2011).
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Fig. 2: Two decomposed subnets

Theorem 2 (Zeng, 2006): Let X, = (P, T;; F.M,) (1€ {1, 2,
3... k}) be the decomposed net of X = (P, T; F.M;) based

on the function index of f; iff:
Forall & (ie {1,2, 3.k }),¥p€P, [p|zland |p7|<]

Definition 4: Let 2, = (P, T; FM,) (1€ {1, 2, 3... k}) be the
decomposed net of X = (P, T, F.M;) based on the index
function of transitions and R (M,) be the state set of ¥ and
R (M,,) be the state set of X, respectively. A projection
Tpoop R(My)—=R(M)(1=1,2, ... k) such that T'p,, (M) 1s
the states which are obtained from M by deleting all the
places that do not belong to P. I'p.p; is denoted as the
projection function from R(M;) to R(My) and I'y; 5 15
named as the inverse projection of I 'p_pp. (1= 1, 2, .. k).

Theorem 3: Tet 2, = (P, T; F.M,) (ie {1, 2,3... k}) be the
decomposed net of % = (P, T; F.M,) based on the index of
transitions, such that:
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Ppopi RIMp))=R(My), (el 2. 3, . k})

Irop(MOEY) e T(E), Gefl, 2, 3. k}) (I'ro (0) represents
the projection of 0 on T))

A Petri net example is shown in Fig. 1. The index
function f: T—{1,2... k} is defined as: f(t) = f(t,)
=) = 1 i) = i) = () = £(t;) = 2

Obviously, f; satisfies Definition 2. Using the
decomposition method based on the index of transitions,
the Petr1 net shown in Fig. 1 can be divided mto two
subnets X, and X, which are illustrated in Fig. 2.

NECESSARY AND SUFFICIENT DECOMPOSITION
CONDITIONS FOR KEEPING THE PROPERTY
INVARIANT

Tt can be known from Theorem 3 that the projection
of the original net system on the subnet systems is only
a subset of the subnet’s states and behaviors. The
subnets add some unnecessary states and behaviors
while keeping the properties of the original Petri net. Here,
we present the necessary and sufficient conditions
for keeping the property invariant while the
decomposition.

Firstly, the defimtion of the property invariance while
the decomposition is given.

Definition 5: Let 2, = (P, T, FM,) (1€ {1, 2, 3... k}) be the
decomposed net of X = (P, T;; F.M,) based on the index
of transitions, If:

(1) Tooy (L(Z)) = L(Z) (1€{l, 2, 3... k}) , then the
decomposed subnets keep the behavior property of
the origmal net

Toip RIM)) = RMy), (efl, 2, ... k}), then the
decomposed subnets keep the state property of the
original net

(2)

If (1) and (2) are satisfied together, the
decomposed subnets keep the property invariant of
the original net.

From the second conclusion of Theorem 1, we know
that if there are more than one decomposed subnets, for
any X, there necessarily exists ancther subnet %, (i # j),
such that P, #o, where P, = PnF, and P, and P, is the place
set of X, and %, respectively.

Theorem 4: Tet X = (P, T,, FM,) (i€ {1, 2, 3. k}) be the
decomposed net of X = (P, T; F.M,) based on the index of
transitions. For all 1, je {1, 2, 3. k}(i # j), if P, #& such that
P,=PnP, Thop RIMy) = R(M,). Gefl, 2, . k), iff v,
Jef1, 2, 3.4 (i #), Tppops (ROM) = Ty gy (ROM,))
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Prool:
=)
Firstly, we prove ', (R(Mg)) = Ty ps (R(My)).
For ¥M,; €D’y py (R(M,y)), then SMeR (M),
such that 'y, ,p, (M) = M, because I'g, Lo, R(Mp) =R(My) (i = {1, 2... k})
and then for Me R{My), TM eR(M_),
such that satisfies I, ., (M) =M
50, My = I ypp oo (M) =T, pp (M) € Tp, pp (R(Miy).
Therefore, I's 55 (R{My)) = I'ipp ROy
Similarly, we can prove that ', (RQOM) = I’y s (RQV)).
As aresult, Ty _py (ROMo) = Iy py (ROM).
(=)
WM, & R (My) denote M, = 'z (ROMy,).
Since, I, ARM) =gy pr(RIM)), Maieyypa (RIOM;)),
that is to say IM; € R(My;), such thatTy. s (M) = My,
Denote M={M°[M°eP"A's_p(M°)y=MAT's_p(M°)= M}
Based on the Definition 4, we can obtain that
Me T7p (R(Mg)) (1 Trbp (R(M ) = R(My) - A Tpam (W) =M

R(My) and FP‘PJ(M) =M, ER(MDJ)s RMp)=l'pL g ROMy)).
Similarly, we can prove that R (M) < T'e.p; (R(My)).
Thus, ROMp) = I'pp (R(OM), (1 =1, 2, ...k ).

On the other hand, I's, 5 R(My) sR(M;), (1={1,2, .. k}).
S0, I'pLp RMp) = ROMy), (1={1,2, ..k}).

According to (1) and (2), the theorem is proved.

Theorem 4 shows that in order to keep the state
property of the decomposed subnets during the
decomposition based on the index of tramsitions, the
projection of subnets on the public intersection must be
equal with each other, vice versa. Theorem 5 presents the
conditions to keep the behavior property during the
process of decomposition.

Theorem 5: Let 2, = (P, T, FM,) (1€ {1, 2. 3... k}) bethe
decomposed net of X = (P, T, F, M) based on the index of
transitions.

P (LX) = L(E), iff Tpp R (M) = R (M), (1€l, 2,
3.k

Prool:

(=)Firstly, we prove I'p_,;, R (M;) = R (Mp).

WM, e ROM,), let My [ 050, then o) & T2,

because I'ror; (L(Z)) =L(Z) and JoeL () such that T'r.r; (o) =0,

If, we denote M, [0>M, the corresponding vector of o is X, then
M = M,+AT X, M, = M;;tA", X, where X, is the corresponding vector of
O, Since, My Tosg (M), WpeP such that
M) =M,(p)+ 3, #t/a)— 3 #(t/c) where, #{t/o) demonstrates the

te" g tey (T

times of transition t appearing in o.

Thus,

To g M(p) =Ty M () + T, (D #t/o)= 3, #1/o))

te" g tep™ (T
This is to say U'p_p (M(P) =M, (p)+ 3, #tia)— 3 #t/o)
BT e T

Since peP,, I'pL g (M) = Me R(My,),

that is to say I'n, 5 R (M) < R (Myy), (ie{1, 2, 3..k}).

On the other hand, R (My) <= I'pLp R My, (ie{1,2,3..k})
can be easily proved while I'p_(L{Z))= L(Z).

Thus, T'p,p B (Mp) = R (M),

Similarly, we can prove that: (<)

Ag a result, the theorem is proved.

From Theorem 4 and 5, Corollary 1 can be obtamed.
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Corollary 1: Let £, = (P, T; FM,) (i€ {1, 2, 3...k}) bethe
decomposednet of X = (P, T, F, M) based on the index of
transitions, Vi, je{1, 2, 3, .k}, (=), if P, 2o, [,y (LX)
=L (Z) iff Ty pu(ROM,)) = Fr—j -»Pa(R(Mu]))-

ADECISIONALGORITHM FORDECOMPOSITION
PROPERTY INVARTIANCE

Here, we have presented the sufficient and necessary
conditions for keeping the state and behavior property
during the process of decomposition. Here, an algorithm
to decide the property invariant is given based on the
simplified reachable marking graph.

Definition 6: Let RMG(X) = <V, E;f>(1=1, 2, .. k) be the
reachable marking graph of X, = (P, T; F.M,) (i€ {1, 2, 3...
k1), the subnets decomposed from Petri net 2 based on
the index of transitions. SRMG, (%) =T, (RMG(X))
is defined as the simplified reachable marking graph
of RMG (%) based on the place set P,, where
SRMGa(2) = <V, B £, it the following conditions are
satistied:

Vv, €V, v, €V, such that v, =T", . v,

Ve, €Ey e, ={(v,,. v, )|V, v, eV}

PTRRE"

fu 1By = T Ty ={tu [t = pu Upu »Pu €B}

Definition 7 given a formal definition of isomorphism
between two reachable marking graphs of Petri nets based
on the public place setP, # o.

Definition 7: Let RMG(2) =<V, E;f>(1=1,2, .. k) be the
reachable marking graph of %, = (P, T;; F.M,) (1€ {1, 2, 3...
k}) , the subnets decomposed from Petri net ¥ based on
the index of transitions and SRMG;,(Z,) be the simplified
reachable marking graph of RMG(Y) based on the place
set P, where, SRMGp.(2) = <V, B, .. RMG (2) and
RMG (%) is isomorphic on P, iff:

[V, FV,| and v, €V, 3v,, €V, suchthatv, =v,,
|EiA ‘:l EjA ‘

Denote @p, (RMG(E)) = @, RMG(Z) if RMG(Z;) and
RMG(,) are isomorphic on P,.

Theorem 6: Let RMG(Y) = <V, E f>(i=1,2,. k) be
the reachable marking graph of % =P, T; F.M;)
(ie {1, 2, 3... k}), the subnets decomposed from
Petr1 net X based on the index of transitions. If P, #e,
FpHPA (R (M) = Faam (R (MDJ)) iff @y, (RMG(E)) = Op,
(RMG{EN.
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Proof: The conclusion can be easily obtained
based on Defimtion 6 and 7, and Thecrem 5
and 6.

Based on the Theorem 5 and 6, Corollary 2 and 3 can

be obtamned.

Corollary 2: Let 2, = (P, T; F.M,) (1€ {1, 2, 3... k}) be the
decomposed net of X = (P, T, F, M) based on the index of
transitions and RMG(Y,) be the reachable marking
graph of % I' o0 (R (M) = D' (R (M) iff Dy,
(RMG(E)) = @p, (RMG(E)) for Vi, je {1, 2, 3. k} such that
P.# o

Corollary 3: Let &, = (P, T; F.M,) (1€ {1, 2, 3... k}) be the
decomposed net of X = (P, T, F, M) based on the index of
transitions and RMG(X) be the reachable marking
graph of % I' o0 (R (M) = D' (R (M) iff Dy,
(RMG(E)) = @ (RMG(E)) for Vi, je {1, 2, 3. k} such that
P, #o.

According to Corollary 2 and 3, Algorithm 1 presents
an algorithm to decide the property invariant of the
decomposed subnets based on the simplified reachable
marking graph.

Algorithm 1: Tet X, = (P, T; FM,) (i€ {1,2,3...k}) bethe
decomposed net of % = (P, T, F, M,) based on the index of
transitions and RMG(Z) be the reachable marking graph
of .

Input: P, and RMG (%))

Output: If the properties of the decomposed subnet are invariant,
then output True, otherwise output False.

Step 1: mark-True

Step 2:
Fori-1tok
For j-i+1 to k
IfPy=o, then
If RMG(Z;) and RMG(Z) is
not isomorphic on PA, then mark+False
Endif
Endif
j-itl
Endfor
i-itl
Endfor
Step 3: returu mark.
AN EXAMPLE

Here, the example shown in Fig. 1 is used to verify the
decision algorithm shown in Algorithm 1. The reachable
marking graphs of the decomposed subnets are shown n
Fig. 3, respectively.

*  InRMG(X), P, = {pp. P, pat> My = (1, 0, 0,), M, = (0,
1,0),and M, = (0,0,1)

»  InRMG(E)), P, = {p;, ps Ps P Ps> Pst»> My = (1,0, 0,
1L,0),M,=(0,1,0,0,1),M,=(0,0,1,0,1) M;= (0,1,
0,1,0,M;=(1,0,0,0,1), M;=(0,0,1,0, 1)

Since, P, = {p, p.}, the simplified reachable marking
graphs comresponding to the decomposed subnets 1s
given in Fig. 4, where:

* In SRMGy, (B)), My = I'yp M) = (1, 0), M', = FpHPa
(M,)=(0,0), and M, = FpHPA (M;)=(0,1)

* In SRMGr, (%), My = Trpps (M) = Ty (My) = (1,
0), M, =Ty (M) = Thp (M) = (0, 0), and
M, =Tppp M2) = Ty (M) = (0, 1)

From SRMGy, (X)) and SRMGy, (%)) in Figure 4, we
can see:

[V)| = |V, and ¥v, €V,, Jv, €V,, such that v, = v,
E| =[E,|

Thus, RMG(%) and RMG(Z;) 18 isomorphic on
P, = {P, P,}. Tt indicates that the decomposed subnets

BMG (Z)

RMG (%)

Fig. 3: The reachable marking graphs of the decomposed

subnets
.= L .
t, L,
1,
1, t,
SRMG,, (£ SRMGy, (Z)

Fig. 4: The simplified reachable marking graphs
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keep the state and the behavior property of the original
Petri net.

CONCLUSIONS

In order to analyze properties of structure-complex
Petri nets, the decomposition based on the index of
transitions is a very convenient and useful approach.
With this decomposition method, a structure-complex net
system is decomposed to a set of structure-simple
subnets, named T-Nets. There is a projection relation of
the reachable marking sets and languages between the
original net system and the subnet systems. However,
some unnecessary states and languages are also added in
the subnet systems. This study presents the deep
research results on the decomposition method of Petri
nets based on the index of transitions. The necessary and
sufficient conditions for keeping the property mvariant
between the original system and the subnet systems are
obtained. At the same time, a decision algorithm for the
property invariant decomposition of Petri net based on
the simplified reachable marking graph has been
presented. The conclusions and algorithms proposed in
this paper have contributions for Petri nets used to model
and analyze many real physical systems.
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