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Abstract: In the dynamic wireless power supply system for electric vehicles, the output current is influenced
by factors, including primary rail current, relative position between pick-up unit and track, capacity of battery
packs. Negative effect of those factors may lead to unsteady output. Aimed at the question of accurately
modeling and output control caused by higher-order switch nonlinear behavior and multi-disturbance factor.
An output current-stabilizing control strategy based on back-propagation (BP) neural network 1s proposed,
making heavy use of nonlinear function approximation character and powerful generalization capability for
neural network. With this strategy, the system was robust enough to unknown disturbance and parameter
variation and output current can keep constant unswervingly. Finally, smnulation results show that this
control strategy has obvious advantages both in overshoot and setting time over conventional PID control

method.
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INTRODUCTION

With soaring need of wireless power transfer
(Green and Boys, 1994; Boys and Green, 1995;
Kurs et al, 2007, Aristeidis et al., 2008) and green cars
(Bai et al., 2003), electric vehicles and wireless dynamic
power supply techmique (Covic et al, 2007,
Madawala and Thrimawithana, 2010; Seungyoung and
Joungho, 2011) have become hot research areas in
recent years. In the electric vehicle wireless dynamic
power supply system, on the one hand, the relative move
between power emission umt (primary part) and power
pick-up unit (second part) leads to change of coupled
parameter which results in output fluctuation; on the
other hand, the nonlinear and higher order and
characters of system which result from the existence of
vast nonlinear switching and energy-storage devices,
make it hard to build the accurate system model and
control. Neural network (NN) 1s an algorithm that can deal
with higher-order, nonlinear, strong-coupled, uncertain
and complex matter very well (Abdalla and Deris, 2005;
Edriss et al, 2008, Reddy et al., 2008; Mahi and
Tzabatene, 2011; Alsaade, 2011). With powerful ability in
nonlinear mapped, it 18 good at self-learming and self-
organizing (Venkatachalam et al., 2008; Guo et al., 2011).
Under NN control, a higher-order, nonlinear and model
hard to build system can be robust.

There are two ways to regulate output power, primary
control and secondary control. Phase-shuft control
(Yugang et al., 2008; Yue et al., 2009), primary detuning
control (Ping et al., 2008) and primary power injecting
control (Xin et ai., 2011) are the several common methods
which ask to send second part output perameter to
primary controller via added communication device such
as infrared, radio frequency and so on. In the dynamic
wireless power supply system for electric vehicles,
obviously it is difficult to build an effective
communication system between primary part and second
part. In addition, the real-time transfer of signal cannot be
insured. Therefore, for the dynamic wireless power supply
system for electric vehicles, the latter one 15 more feasible.
Some previous studies have proposed the principle of
second part power regulate (Hu et al., 2000, Sallan et al.,
2009) but an effective control strategy has not been given.

From the above analysis, a constant current control
strategy based on BP neural network, used in electric
vehicles dynamic wireless power supply is presented in
this paper. Using the nonlinear function approximation
ability of neural network keeps the output current
constant via regulating the duty ratio of power control
switch as the pickup and track become misaligned which
leads to the coupling parameter change. Then, a
simulation model 13 built in the Simulink to verify that this
control strategy 1s much better than conventional PID
control method both in overshoot and setting time.
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DYNAMIC WIRELESS POWER SUPPLY SYSTEM
FOR ELECTRIC VEHICLES

Principe: The wireless power supply system for electric
vehicles mainly employs inductive  coupling
(Chaoui et al., 2005; Hmida et al., 2007), magnetic
resonance and microwave, replacing wires and connectors
to transmit electric energy from power supply to load.
Figure 1 shows the fundamental structure of electric
vehicle power supply system based on inductively
coupled power transfer technque (EVPS-ICPT). Primary
power convertor takes power from a conventional single-
phase or three-phase power supply to generate a high
frequency current in the primary energy emission unit
(underground track or coil array), around which high
frequency magnetic field 1s formed. In the pick-up umt
which is located in the high frecquency magnetic field, high
frequency current is induced and conditioned by the
onboard converter and controller to produce stable
supply to battery charging or motor driving.

Main circuit: Four basic resonant topologies of ICPT
system labeled as SS, SP, PS and PP can be employed in
the inductively coupled power transfer system (Green and
Boys, 1994), where the first S or P stands for series or
parallel compensation of the primary winding and the
second 3 or P stands for series or parallel compensation
of the secondary winding. Since the series-compensated
secondary reflects no reactance at the nominal resonant
frequency, the primary inductance can be tuned out
mndependent of either the magnetic coupling or the load
by a series-commected capacitance m the primary network.
As the parallel-compensated secondary reflects a load-
independent capacitive reactance at the nominal resonant
frequency, series tuning in the primary is dependent on
the magnetic coupling but not the load. Because the
reflected impedance contains a real component
representing the load, parallel tuning in the primary
becomes dependent on both the magnetic coupling and
the load. What’s more, 33 and SP compensation are more
advantageous for high-power transmission. At low-power
levels, where wire section is not a relevant parameter, PS
and PP compensations make possible working at a larger
with the same operating frequency.
Theoretically, SS is the best topology, as the primary
capacitance is then independent of either the magnetic
coupling or the load and 15 viable for lgh-power
transmission.  Considering  capacitor requiremernts,
however, parallel compensation implies lower voltages

distance

and higher currents than series compensation and
requires lower operating frequency. That 1s due to the fact
that the higher the required current, the lower the
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Fig. 1: Block diagram of system

Fig. 2: Main circuit topology

operating frequency (Sallan et al., 2009). Therefore, SP
topology 1s also widely used for EVPS-ICPT application.
A typical main circuit based on SP topology for EVPS-
ICPT is shown in Fig. 2. Tt shows that the main circuit
consists of power emission side (primary part) and pick-
up part (second part) settled on car. The primary
converter, composed of S,-8,, derives power from DC
source B,y and generates a track current mn L, which 1s
loosely coupled to the pick-up winding L,. The cnboard
rectifier, composed of D-D,, converts induced high
frequency ac current to dc¢ current to battery pack
charging. The power controller that consists of D, 5, and
D, can regulate the rank of charging power. C, R, R, C,
and R, are the primary compensation capacitor, internal
resistance of primary track, reflected resistance,
secondary compensation capacitor and internal resistance
of secondary pick-up winding respectively.

The mutual inductance between L, and L, is denoted
as M, whose value is given by:
(1)

M=kJLL

TR

where, k stands for the coupling coefficient between 1.,
and L.

To transfer maximum power to the load, the system
should operate at the point of natural resonant frequency,
whose value is determined by:

(2)
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Fig. 3: Equivalent circuit as switch 3, on and off (a) 5, on
(b) 8, off
where, C, 15 the value of secondary compensation
capacitor.
The value of primary compensation capacitor can be
calculate by:

p

=yt (3)

- o'(L, -M?/L,)
The real part of reflected impedance is given by:

22
R, =Re( WM

) 4
joL +R_+—m— ! ( )
POUF D jeC, +U/R,

For maximum power transfer purpose, the dc
inductance I, is normally designed to be a value
determined by Eq. 5 to ensure the continuation of the dc
current I, under the steady-state conditions:

L:R, /0 &)

where, R, is the equivalent resistance of the maximum

load.

Power regulating: Power control i1s firished by a Booster
which consists of L, S, and D.. The equivalent circuit as
S. on and off are showed in Fig. 3a and b, respectively.
Supposed t,, as the time of S, on and t.4 as the time of S,
off. Then the output power can be regulated by changing
the ration of t,, and t s

THE ARCHITECTURE AND ALGORITHM OF THE
BP NEURAL NETWORK

The BP neural network is one of the most typical
neural network models. Tt is very good at nonlinear fitting,
prediction, generalization and error tolerance (Mullai and
Rene, 2008; Yedjour et af., 2011). A BP neural network has
a layered structure (a single input layer, a single hidden
layer or multi hidden layers, a single output layer). Each
layer consists of units (neurons or nodes) which receive
their input from units from a layer directly above and send
their output to units in a layer directly below the unit.
There are no connections among units in the same layer.

Hidden layer

Output layer

Input layer

Fig. 4: Block diagram of three-layered BP neural network

A tri-layer BP neural network, whose number of
neurons of mput layer, hidden layer and output layer are
P. q and 1, respectively, 1s shown in Fig. 4.

Mark X =[x, %,.... x,] as the nput vector,
Y =[¥i. ¥, Y] @s the output vector, w; (1=1,2....,p;
1=1,2,..., q)as the weight between the input layer node
1and hidden layernedej, v, G =1,2.....q:t=1,2,...,1) as
the weight between the lidden layer node j and output
layer node t, 6, as the threshold of hidden layer node j and
v, as the threshold of output layer node t. Then:

5= o ©
b =£(S) (7)
hzgﬁh_h (8)
yi=g Ly 9)

where, S, b, (), L,, y, and g() are the mput of hidden node
7. the output of lidden node j, the active function of
hidden layer, the input of output layer node t, the output
of output layer t and the active fumction of output layer,
respectively.

Mark e(k) as the error between actual and expected
output and it is given by:

e (k) =y, (k)y, (k) (10)
The expression for energy function 1s:

E:%e(k)g (1)

The BP neural network is a kind of learning algorithm
for error correction built on the basis of gradient descent
method which organically combined positive spread of
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the input signal with back-propagation of error ones
(Mianli et al., 2010). While learning the new sample, it
tends to forget the old ones, that is to say, it fails to take
into account the previous experience. As a result, the
local minimum problem and slow convergence speed will
exist. To solve these issues, three major methods have
been introduced:

¢ Change the learning efficiency
Add momentum factor
Appropriate transfer function

Method 1 and 2 are adopted in this paper. Thus, we
can get the following expressions:

oy,

Awy =-1-—=-n-e(k)- (12)

ij i

E dy
Avy=-m—=-n-efk)-— > (13)

! o, dwry,
w, (k + 1) = wy (k) + Aw, + a(w, (k) - w, (k — 1)) (14)
vl +Ty= v, (k) + Av, + afv, (k)= v, (k= 1) (15)

where, 1€ [0,1] and ae [0,1] stands for learmng efficiency
and momentum factor, respectively.

DESIGN OF THE BP NEURAL NETWORK
CONTROLLER

In this study, we use a 3-q-2 BP newral model, whose
number of mput layer nodes, hidden layer nodes and
output layer nodes are 3, q and 2. The error e between
actual output current and reference current, reference
current I and mutual inductance are the three nodes of
mput layer. The duty ratio vanation Ad of switch 3, and
reference duty ration d; are the two node of output layer.
The number of hidden layer nodes has a huge effect on
the ability in function approximation of BP neural network
but more lidden layer nodes 1s not always better. Usually
long learning tume, bad error tolerance and failed to
identify new sample all result from too many hidden layer
nodes. An optimized number of ludden layer 1s given by
the following empirical equation:

(16)

q=4fp+r+a, ac[Ll0]

where, q 18 the number of hidden layer nodes, p 1s the
number of mput layer nodes and r 1s the munber of output
layer nodes.

Based on Eq. 16, 10 hidden layer nodes 1s suitable.
And then, a sunulation model 1s built and its primary
configuration parameters as following:
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Fig. 5: The mean square error function curve of
simulation model
Table 1: Partial training data
L/A elA M/pH d, (%) Ad (%)
& -0.279 2.0 28 -22
& -0.24 2.0 28 -12
& -0.038 2.0 28 -2
& 0.093 2.0 28 3
& 0.238 2.0 28 8
& 0.543 2.0 28 18
& -0.633 2.2 18 -32
& -0.581 2.2 18 -22
& -0.361 2.2 18 -12
& -0.063 2.2 18 -2
& 0.098 2.2 18 3
& 0.261 2.2 18 8
& 0424 2.2 18 13
& -0.818 2.4 9 -26
& -0.53 2.4 9 -16
& -0.352 2.4 9 -11
& -0.088 2.4 9 -3
& -0.019 2.4 9 -1
& 0.049 2.4 9 1
& 0153 2.4 9 4
& 0.254 2.4 9 7
& -1.349 2.6 2 48
& -1.265 2.6 2 -38
6 -1.004 2.6 2 28
6 -0.663 2.6 2 -18
6 -0.298 2.6 2 -8
[+ -0.116 2.6 2 -3

The active function of mput layer to hidden layer:
double tangent S function “tansig™

The active function of ludden layer to output layer:
linear function “purelin”

The train function: reflected propagation algorithm
“trainlm”

Weights correct rule: momentum gradient descent
learning function “learndm”

Learning speed: 0.05

Maximum train steep: 1000

Target error: 0.05

The train sample: includes data when mutual
inductance is 2.0, 2.2, 2.4 and 2.6 uH. Partial training
data is shown in Table 1

With the above parameters, the mean square error

function curve 1s shown in Fig. 5.
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Tt is can be seen from Fig. 5 that the work meets
the need of ain emor after 77 iterations. This indicates
that the system 1s able to converge with a high
speed.

SIMULATIONS

In this section, a simulation model whose parameters
are shown in Table 2 is built in the MATLAB/Simulink
environment to verify the validity of BP neural network
control method used in the dynamic wireless power
supply system for electric vehicles.

Table 2: Parameters of the simulation model

Parameter Value
Resonant capacitor C; = Cp 2 pF
Resonant inductance Ly = Lp 31 pH
Equivalent load Ry 500
Operating frequency f, 20 kHz
Tnput Voltage By, 300V

¢M

Figure 6 shows the control block diagram. The
error ¢ between referenced current and out current,
the referenced current Iref and the mutual mductance
M are inputted in the BPNN controller which will give
out the duty ratio variaton Ad of switch 3, and
reference duty ration d;. The duty ratio d is calculated
out by d calculator and used to drive the control
circuit.

Figure 7, where, BPNN control is added at 0.02 sec
and mutual inductance varies mstantaneously from 2.4 to
2.0 uH at 0.08 sec and goes back 2.4 pH at 0.14 sec,
demonstrates the control results of BP neural network
control. To show the advantages of BP neural network
control, the results of conventional PID method are
shown in Fig. 8.

Figure 7 and 8 tell us that the regulate time of BPNN
control methed 13 only about 0.005 sec and the overshoot
is less than 0.1 A. Contrastively, the overshoot of PID

BPNN
contriller

v ¥

calculator

d

Control
cricuit

>

Driver

§

A

Fig. 6: Control block diagram of system
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control method is about -0.24 A (§=5%) and the regulate Figure 9 shows this situation: mutual inductance
time is about 0.03 sec when the mutual inductance goes varies instantaneously from 2.5 to 2.1 uH at 0.08 sec and
from 2.0 to 2.4 pH. And the overshoot 1s about 0.3 A goes back 2.5 uH at 0.14 sec. It verifies that the effect of
(8~6.5%) and the regulate time is also about 0.03 sec BPNN control 15 also very good despite the input
when the mutual inductance goes back 2.0 uH. parameter is out of the training sample.

—
.|

Ic/A
N

0.2

0.0 \Vf\ . (\ o~

-0.2

%0 VTN
A \
Y V4

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
t/s

Fig. 8: Waveforms of PID control method (M = 2.0, 2.4 pH)
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Fig. 9. Waveforms of BP neural network control methed (M = 2.1, 2.5 pH)
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CONCLUSIONS

In this study, a constant current control method
based on the back-propagation neural network 1s
proposed to solve the problem of wireless constant
current charging for moving electric vehicles. Simulation
results prove this method to be plausible, even when the
mput parameter 18 not m the traming sample. By
introducing this control method, the problem of accurately
modeling and output control caused by higher-order
nonlinear behavior and multi-disturbance factor can be
satisfactorily resolved.
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