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Abstract: In order to select best bands from the hyperspectral image with high computation efficiency, this
paper proposed a new bands selection algorithm of hyperspectral image using the hyperspectral derivative on
Clifford manifold. Tt firstly analyze the hyperspectral image in the Clifford algebra which had high efficiency on
computation and analysis. Firstly, it discusses the properties of the Clifford algebra and Clifford manifold.
Secondly, it gives the definitions of the hyperspectral derivative and the curve change rate on high dimensional
space in Clifford algebra for finding the key pomts. Based on the theories mentioned above, a new bands
selection algorithm is given with detail steps. At last, the results of the experiments are shown. Compared with
the existing algorithms, the proposed algorithm 1s lughly efficient in respect of computation and time. The study
provided a new method for bands selection algorithm of hyperspectral image with the theories of Clifford
algorithm.
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INTRODUCTION

With the development of the hyperspectral image
processing technology, this technology has been applied
to more and more fields, such as remote sensing
(Landgrebe, 2000, Mazzom et al., 2007), medicine
(Rajpoot and Rajpoot, 2004), military, etc. The main reason
15 that the hyperspectral image can provide high spectral
information which is useful for analyzing the composition
of material. However, 1t contains huge redundant data.
The redundant data not only increases the difficulty of
data processing but also reduces the efficiency of data
processing. Because the traditional image processing
methods are developed on the 2D or 3D umages, the
traditional image processing method is not feasible for the
high dimensional image. It 13 necessary to reduce the
band size of the hyperspectral image. In recent vears, the
technology of hyperspectral image processing has
become a new research hotspot of the image processing
(Miami et  al, 2009, MNianp et al, 2008,
Windham et al., 2005; Misman et al., 2010). This study
mtroduces the Clifford algebra theory for hyperspectral
image processing to provide a new way.

Bands selection 1s a very important way to reduce the
dimension of hyperspectral image besides the feature
extraction. It figures out the bands subset of
hyperspectral data. The selected bands yield the best
performance based on some criteria which are usually
linked to some measure of end-performance. Compared to
the feature extraction, bands selection has advantage of
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saving the original information of the bands. There are
many algorithms presented for feature selection. The
Teffreys-Matusita distance (IM-distance) (Swain and
King, 1973; Bruzzome ef al., 1995) 1s proposed based on
divergence and it derives two criteria, the average
separability criterion and the saturating transform of
divergence for bands election. Keshava (2001) quantifies
the distance between the spectra of two materials at
corresponding spectral bands and then analyzes the
separability of these two spectra using the Spectral Angle
Mapper (SAM) metric. The spectral bands are selected in
order to maximize the SAM metric, that is, the angle
between the two spectra. Stein ez al. (1999) apply Spectral
Matched Filter (SMF) which 1s the likelihood ratio
detection statistics for a lknown additive signal in a
Gaussian background. They then evaluate the SNR losses
and select spectral bands in order to optimize an objective
function which 15 defined in terms of probability of
detection. Kira and Rendell (1992) assign weights to
features individually to indicate their relevance to a given
task and select features with greater weights. Briefly,
these algorithms including many other bands selection
algorithms have good performance in specified tasks. The
feature selection method based on Hybrid Genetic
Algorithm (HGA) can select feature subsets which not
only contamn fewer features but also provide better
detection performance for steg-analysis (Xia et al.,
2009). However, there are still some challenges m applying
these techniques effectively, such as computational cost,
timely cost and presence of local mimma problems, etc.
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This study try to develop a new bands selection algorithm
with less computational cost and timely cost based on
Clifford algebra.

CLIFFORD ALGEBRA

Basic of Clifford algebra: Clifford algebra (Li et af., 2001,
Sommer, 1998; Pemrose and Rindler, 1984) provides an
efficient framework to conduct the computations without
coordinates. Tt can reduce the computation complexity
and iumprove the efficiency of the computation. This
algebraic approach contains all geometric operators and
permits specification of constructions in a coordinate-free
manner. Tt has widely been used in physics (Byrnes,
2006), computer vision (Schlemmer, 2004; Brackx and
Schepper, 2005; Yanshan, 2008) and so on, due to two
main advantages detailed as follows (Batard et «l., 2009):

Clifford algebra 1s generally known that Chifford
algebra provides a very efficient framework to
conduct computations without coordinates. It can be
used in the inner, wedge and geometric products as
well as the related geometric mterpretations of these
operations. More precisely, the acquisition space of
the image, i.e. the space where the image gets its
values, is embedded into Clifford algebra. The local
variations of the pixel values can be easily measured
using geometric information and transformations
Clifford algebra provides very convenient ways for
computing in high dimensional space. Clifford
algebra contains elements of different degrees
(scalar, vectors, bivector, pseudoscalar, etc.). This
allows combining information of different natures in
a single multivector which process data as a global
and concise way

Let R, be n-dimensional Euclidean space, with the
positive definite inner product {.,.). R, has an orthogonal
basis e, e,...., e, such that {e, ¢} = &,

The Clifford algebra a(R, n) i1s the free algebra
generated by R, modulo as the relation:

X=X X (1)

It can be considered as being the exterior algebra
AR", where the extra information defining the inner
product 1s included. From this point of view one has:

xy = xAy-(x, y) 2
for arbitrary vectors. Clearly, for n>1, a(R, n) i1s not
comimutative.

905

For practical reasons, it can simple a(R, n) to a(n)
which then contains elements of the form a+ib.

where, a and b are from (R, n). Multiplication then
assumes that 1 commute with all elements of the Clifford
algebra. Based on ofn) we can define an anti-
automorphism by:

(3)

X=-X,i=-i,ab=ba

for arbitrary x in R, and a and b in ¢(n). There is a natural
identification of C as a subspace of the finite-dimensional
algebra «(n) and the scale part in a Clifford number 1s
clearly presented which will be denoted as [a];.

Clifford manifold: A vector manifold (Hestenes and
Sobczyk, 1984) M is a set of vectors called points of M
with certain properties to be described presently. A vector
a(x) is said to be tangent to a point x in M if there is a
curve {z(t), O<t<e} in M extended from the point
x(0) = x such that:

a(x)=a o Eidx('c) = limix(':)_x
dv [, =0 7

(4

If the chord of a curve are not null vectors, the curve
can be parameterized by the magnitudes of its chords,
0 = o(T)=[x(1T)-x/, so:

The set A(x) of all vectors tangent to M at x 1s called
the tangent space at x. At each interior point x of M, the
tangent space A(x) 13 an m-dimensional vector space and
M denotes an m-dimensional mamfold.

The tangent space A(x) at an mterior point generates
a unique Clifford algebra which we call the tangent
algebra of M at x and denote by G (x)=G(A(x)). We
assume that A(x) 13 nonsmngular in the algebraic sense
that it possesses a unit pseudoscalar I = I{x) which we call
the (unit) pseudoscalar of M at x.

HYPERSPECTRAL DERIVATIVE IN o(R, n)

Representation for hyperspectral data set: The spectrum
recorded is a combination of the actual spectrum of the
real surface, modulated by the effects of the solar curve
and the complexity of the ground. The spectrums of the
points belonged to same class are usually different, since
the effects on different points are different. Figure 1
shows the spectrums of the points selected from the water
area. It 1s apparently that the curves belonged to a same
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Fig. 1: The spectral curves of some materials. Every pomt of the hyperspectral image form a mdividual curve, one material

always forms many curves

material are different and It 1s also shown that just
only using one spectrum of one pomt or the
average spectrums value of one class can hardly
represent the whole spectral property of one class. In
our work, we represent the data belonged to one class
with a curve in lugh dimensional space, so the spectral
properties of all samples can entirely be used in the
feature selection.

Let us consider a hyperspectral image with C class
labels and n spectral bands. We represent the data from
one class with a curve in high dimensional space, so it
produces C curves in the space whose dimension is the
maximum count of the samples in classes.

Given a set of samples X = {x,, x,,..., x,}€R™, x, is the
pixel of the hyperspectral image. We define a map
funetion @:= R*>R", where m 1s the maximum count of the
samples in classes. We assume that there are C curves on
the manifold M, denoted by £, where 1 <1<C. The curve f
include the samples labeled by class i, denoted by
S = {8, Xy, 84}, Where § = B(x Je tB (% )e .. A B (X e,
and B(x_) represents the ith band of the pxel x, The
tangent space 1s denoted by A(x).

Hyperspectral derivative in &(R, n): The normal first
order derivative can be estimated by:

ds| s(A)-s()
7 v )
where, the s 1s the spectral function, A, is the wavelength
of the ith band, s(A,) is the reflectance value at wavelength
A Ah = A=A and A=A

From the hyperspectral curve m (R, n), we give the
defimtion of the first order derivative as below:

906

D050
Al

(6)

|oa

_a
drl

where, S is the high dimensional curve of some samples
with same class label, D(.) 1s the distance metric function
between the S(A,) and S(A,) and A2 = A-A,

There are many distance metric existed in high
dimensional space. In this study, we use the distance
metric function based on the Clifford algebra as follows:

D (SO, S = [(SOASANSGY (7)

Using Eq. 6, one can compute derivatives of the
hyperspectral image simply and identify the derivative
features of one target classes. These features can then be
included in the bands or feature selection operation to
improve the efficiency. It is important to remember that no
new mformation 18 created by using derivatives. The
purpose is to identify the helpful spectral features that
may be too subtle to be captured by other methods, so
that the data dimension of the inage can be kept, also was
possible and still achieve accurate classification results.

BANDS SELECTION ALGORITHM USING
HYPERSPECTRAL DERIVATIVE

Key points of hyperspectral curve: Suppose pixels
belonging to one target class form a curve on the Clifford
manifold, there must be many points which can identify
the curve from other curves belonging other classes.
These points are called key points in this study. the key
points are noted by X, = {X,.1, X » Xiemed ©X. [n order
to determine whether a band pomt 13 a key pomt, a
criterion 18 defined by:
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where, CR(x, %) = |3 and ¥x,, X, x,€X) belong to cone target
class.

Equation 8 can only give the geometric features of
one class but it can not measure the separability of two
classes. In order to select out the appropriate bands, the
separability measure is necessary. In this study the
separability measure of a point x, among classes can be
computed by:

©)

Algorithm: Suppose that the traming data set contains d
classes and n bands, k optimal bands is required to be
selected. X, = {X01, Xieyzs---» Xy 2% 18 the set of the key
points and X, = {x,, X;,..., X=X 18 the selected band
pomnts. So, The detailed steps of bands selection
framework is as below.

Step 1: Assume d curves on the manifold from d classes training data.
Step 2: for i=1:d
Compute the value of Eq. 8 and pick up m key points X, .
End

Step 3: Get the intersect Xpy of Xy ; by X, = ﬁXke . The amount of
4 5
1=1

the elements in X, is k1. Get the union ¥, of Xy i by X, = LdJXkexi .
1=1
The amount of the elements in %, isk2.
Step 4: Tt m<k1 than
Compute the separability measure of a point x, in X,,, by Eq. 9
and pick up m elements with largest vahies.
Else if m<k2 than
Compute the separabiliy measure of apointx in ¥, by
Eq. 9 and pick up m elements with largest values.
End if

EXPERIMENTAL RESULTS AND ANALYSIS

Dataset description: The hyperspectral dataset used in
our experiments 18 a section of a scene taken over
northwest Indiana’s Indian Pines by the AVIRIS sensor
i 1992, From the 220 spectral channels acquired by the
AVIRIS sensor, 20 chammels were discarded because
affected by atmospheric problems. From the 16 different
land-cover classes available in the original ground truth,
seven were discarded; since only few training samples
were available for them (this makes the experimental
analysis more significant from the statistical viewpoint).
The remaining nine land-cover classes were used to
generate a set of 4757 training samples (used for learning
the classifiers) and a set of 4588 test samples (exploited
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for assessing their accuracies). The experiments were run
on a computer with Intel core 2 Dou CPU E7400.

Experimental results and analysis: Several experiments
with many different bands selection algorithms are
completed on the same hyperspectral image. Figure 2
shows the experimental result of different bands selection
algorithms including the proposed frameworlk, Sequential
Forward Selection (SF3) and ReliefF. Tt shows that all the
average recognition correct rates using the Bayesian
classification on the selected bands. The recogmtion
correct rate are raised when the number of the selected
bands is rising. The rate of our method is higher than the
SFS and ReliefF, especially when the number of the
selected bands 1s small. Figure 3 shows the time cost of
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Fig. 2: The time cost of ours, SFS and ReliefF
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Fig. 3: Average recognition correct rates algorithm, using
the Bayesian classification on the selected bands
which selected by our algorithm, SFS, and ReliefF
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Fig. 4: Distribution of the selected bands

our algorithm, SFS and ReliefF. Tt is apparent that the time
cost of our algorithm 1s smaller than the other algorithms
and with the number of selected bands rismg, the
advantage of our algorithm in the time cost is more and
more greater. When the mumber of selected band is 40, the
time cost of our algorithm 1s about 17% of the ReliefF and
about 8% of the SFS.

Figure 4 shows the distribution of the selected bands
by our method and SFS. Tt shows that the selected bands
are distributed evenly on the whole spectrum.

CONCLUSIONS

This study propoesed a new bands selection algorithm
for hyperspectral image using the hyperspectral derivative
on Clifford manifold. Firstly, the properties of the
hyperspectral image in the Clifford algebra are analyzed
and then a new bands selection algorithm for
hyperspectral mmage 1s represented. Compared with the
existing algorithm, the proposed algorithm reduces the
computational time considerably. However, there are still
many further studies worth to do, including the analysis
technologies with Clifford algebra theories, Clifford
manifold theories, bands selection algorithm in high
dimension space and so on.
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