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Abstract: Sequence alignment has become a fundamental process in computational biology as it helps in
finding similarity regions between biological sequences that may indicate the common properties across the
sequences. Global Multiple Sequence Alignment (MSA) 18 a way to align the entire group of biological
sequences. The exact solution of the global MSA 13 an NP-complete problem and iterative sequence alignment
is among the main heuristic methods used for solving this computationally expensive problem. This approach
realigns and evaluates initial biological sequences repeatedly through a number of iterations. The iterative
approach 1s mostly used 1 conjunction with other computational optimization approaches and the total number
of iterations as well as the iteration time maimly affects the overall alignment time. In this study, a parallel Particle
Swarm Optimization (PSO) algorithm is presented for solving the global MSA problem based on iterative
sequence alignment. The algorithm has been implemented using the massage-passing interface (MPT) library
and tested over a Linux cluster and over the EUMed Grid. Experimental results are presented that demonstrate
the performance of the proposed algorithm using different proteins from the SABmark and BAIBASE
benchmark databases, different substitution matrices and different gap penalty models.

Key words: Sequence alignment, parallel programming, particle swarm optimization, message-passing interface,
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INTRODUCTION

Sequence alignment 13 the procedure by which an
attempt 1s made to infer which positions (sites or regions)
within biological sequences are homologous, that is,
which sites share a common evolutionary history
(Rosenberg, 2009). When DNA (deoxyribonucleic acid),
RNA (mibonucleic acid), or protein sequences are aligned,
new gaps are inserted in the middle of the sequences so
that homologous sites are identified but there is no
change in the ammo acids order.

Sequence alignment 1s generally classified nto two
types; global alignment and local alignment. Entire
sequences are considered in the former type, while only
proper subsets are considered m the latter type. Global
alignment 1s used when a whole species 15 to be
characterized and when sequences are similar in length.
Local alignment is used when a specific trait or property
15 sought and when sequences are dissimilar in length.
Pairwise sequence alignment and more generally multiple
sequence alignment (MSA) in which a group of two and
more than two biological sequences, respectively, are

aligned are fundamental for biclogical research and
applications. For example, using sequence alignment has
been reported for sequence analysis (Tambunan et of.,
2007, Nur Fariza et al, 2008; Qasem et al, 2010,
Hassanain et al, 2011), ir silico (Rahim, 2010,
Opabode et al., 2011), gene expression (Joshua et al.,
2010), phylogenic tree construction and analysis
(EI-Kholy et al, 2005, Kuracha et al, 2006,
Suneetha et al, 2008; Elkalamawy et «l, 2011) and
molecular characterization (Elbeshehy and Sallam, 201 2).

In this study, an iterative parallel Particle Swarm
Optimization (P30) algorithm 1s presented for solving the
global MSA problem. The fundamentals of the sequence
alignment are described and recent developments in using
parallel computing for sequence alignment are discussed.
The experimental results for the performance of the
proposed algorithm are reported and analyzed.

SEQUENCE ALIGNMENT

Here, the fundamentals of the sequence alignment are
described. The section starts with general classifications
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for sequence alignment algorithms. This is followed by an
introduction of the concept of alignment score and the
gap penalty model. The section ends with a review on
recent progress n using parallel computing for sequence
alignment.

Algorithm classification: There are several classifications
for any sequence alignment algorithm. Each algorithm
may fall under one or more of the following categories:
Exact, progressive, or iterative algorithms and block-
based, consistency-based and/or heuristic based
(Mohsen and Abdullah, 2011).

Exact algorithms can provide optimum seolutions but
take long processing times and need high memory
resources. The memory required to align two sequences
of length m and n 18 O(mn). The maximum number of
sequences that can be aligned simultaneously using this
method is less than 20 (Notredame, 2002). The exact MSA
problem 1s known to be NP-complete and 1s not feasible to
be solved in reasonable processing time with the
continuous growth of the biological sequence databases.

One of approximate methods for sequence alignment
1s the progressive method; which performs alignment on
two sequences. The output 15 then aligned with a new
sequence and the cycle continues till all sequences are
aligned. Although this method is efficient but it has a
drawback that there 1s no way to refine the errors in the
mitial alignments and hence these errors may propagate
and increase in the subsequent cycles (Salam et al., 2005).
This results in the method reaching a local optima and
getting stuck there.

Iterative methods work similarly to progressive
methods, but repeatedly realign the initial sequences and
are mostly used m conjunction with other methods.
New randomly generated or mutated sequences are
added to the set of sequences, hence avoiding getting
stuck in local optima. Tterative methods usually rely on
stochastic algorithms, such as Genetic Algorithms GAs,
that optimize a scoring function to search for the best
alignment. This scoring function produces a metric
that reflects biological events and optimizing this
score leads to a correct alignment (Da Silva et al.,
2011).

Consistency based algorithms focuses on reducing
early alignment errors to avoid refinement stage for the
final aligrmment. Block-based algorithms produce the
alignment on two stages. In the first stage, they try to
identity the conserved regions (blocks) that have no
change in the amino acids. Then in the second stage, the
regions between the successive blocks are aligned to
produce the final alignment (Mohsen and Abdullah,
2011).
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Progressive and iterative methods usually employ
heunistic optimization approaches that work on optimizing
an objective function and try to improve a candidate
solution. This approach includes Genetic Algorithm, Ant
Colony, Swarm Intelligence and Simulating Annealing.
Examples of the heuristic algorithms that are presented
in the literature recently include Liu et al (2007),
Da Silva et al. (2008) and Joo et al. (2008).

Alignment score: A group of sequences may be aligned
in many different ways. Consequently, it is mandatory to
evaluate these alignments so as to determine the best
possible alignment. One of the evaluation methods is to
calculate the total alignment score using a substitution
matrix (scoring matrix). The substitution matrix describes
the probability that amino acid changes to another one. It
represents implicitly a particular theory of evolution.
Scoring matrices appear in all analysis involving
sequence comparison. The available scoring matrices
include PAM (Point Accepted Mutation) (Dayhoff et af.,
1978), BLOSUM (Block Substitution  Matrix)
(Hemkoff and Henikoff, 1992) and many other matrices.

There are also different schemes to calculate the total
alignment score. Two schemes are used m this research
work: The Sum-of-Pairs Score (SPS) and the Identity Score
(IS). SPS represents the sum of scoring that each
sequence has with all other sequences using a
substitution matrix and 1s more of a relative metric among
groups of sequences. IS represents the sum of the number
of matched characters between each two sequences and
is perceived as an absolute metric.

Gap penalty model: As mentioned earlier, the amino acid
residues are kept as they are when two sequences are
aligned, but shifted as gaps are inserted in the middle
between the residues. Gaps accourt for some
evolutionary events that caused one character or more to
be misaligned and/or mutated among sequences.

Having the least number of Gaps is the ultimate goal
during the alignment of sequences. Due to this
misalignment, a gap is weighted as a penalty during the
alignment. Three models are currently used to evaluate
the effect of gaps inserted within a sequence:

Constant gap model: Tn this model a negative score is
added to the alignment score whenever a gap 1s
opened

Linear gap model: This model has only one parameter
(d) which is the penalty per unit length of gap. This
1s always negative, so that the alignment with fewer
gaps is favored over the alignment with more gaps.
Under a linear gap penalty model, the overall penalty
for one large gap is the same as for many small gaps
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+  Affine gap model: The affine gap model penalizes
insertions and deletions using a linear function in
which one term is length-independent (Gap,,.,.) while
the other 1s length-dependent {Gap,.s * GaP )

Gappenaty = Gapopen + Gaplength * Gapextend (1)

The affine gap penalty model i1s considered more
appropriate for aligning DNA and protein sequences
(Chao and Zhang, 2009). This model is based on the
notion that having gaps grouped together 1s more likely
what happens during biological evolutionary events,
resulting in better alignment among closely related
sequences than having gaps widely distributed. When
Gap,,., 1s higher than Gap ;.. this model favers extending
the gap length over opening a new gap.

Recent Progress: Biological databases have recently
grown to humongous sizes and are still m continual
growth. This led the global multiple sequence alignment
problem to become increasingly expensive in terms of the
required memory and alignment time.
Researchers have made a lot of effort to find new and
efficient solutions for this problem. Consequently, many
algorithms and platforms have been developed and
reported recently in the literature. The central idea in these
solutions 1s to employ parallel computing to be able to
obtam the results within an acceptable time with sufficient
accuracy. The reported solutions can be classified into
hardware specific specific

resources

solutions and software
solutions.

Hardware solutions depend on new developed
hardware platforms and architectures and try to reduce
the alignment time by executing different parts of the
algorithm in parallel using the available hardware
resources. The recent solutions include FPGA-based
reconfigurable hardware platforms, Graphics Processing
Units (GPU) (Ligowski and Rudnicki, 2009), Cell BE from
IBM (Sarje and Aluru, 2008), general purpose Multi-Core
processors (De Almeida and Roma, 2010) and Network-
on-Chip (NoC) platforms (Sarkar et al., 2010).

Software solutions depend on the libraries and
applications programming interfaces (API) as they usually
target the general-purpose platforms. These APIs include
new parallel programming techniques like Pthreads (from
TEEE Portable Operating System Interface POSIX),
OpenMP (Open Multi-Processing) for shared memory
platforms and MPI library for distributed memory
processing. New paradigms are trying to cross this gap
between software and hardware; for example OpenCL
framework (Lee et al., 2010), CUDA (Luebke, 2008),
MultiProcessor JTava (Nordin and Rahman, 2009) and even

parallel programming languages like Cilk (Joerg, 1996),
Brook (Buck et al., 2004), NESL (Rlelloch, 1995), 7ZPL
(Chamberlamn et al., 1998) and UPC (UPC Consortium,
2005).

In the past few years, software solutions used the
parallel programming intensively to implement different
multiple sequence alignment tools and algorithms using
the MPI library and target cluster computing. This 15 due
to the ability of parallel programming to achieve good
scalability and speedup without affecting the accuracy as
reported m different studies (L1, 2003; Boukerche et af,
2007).

PARALLEL PSO ALGORITHM

The success of the iterative PSO algorithm reported
(Rodriguez et ol., 2007) in improving the accuracy of the
initial alignment generated by the Culstal X MSA tool
motivated the development of the parallel PSO
algorithm presented in this section which 13 a novel
parallelization  of  the algorithm presented by
Rodriguez et al (2007) with modifications in the
crossover point determination.

The iterative PSO algorithm 1s a population-based
evolutionary algorithm that was inspired by the social
behavior of birds flocking or fish schooling. The PSO
algorithm 13 suitable for solving the alignment problem as
1t can be used to realign and evaluate the 1mtial alignment
to achieve more accurate results. In addition to that, it can
support different objectives functions. So, the final
alignment can be changed according to the need. For
example, it may be desired in some cases to find the
regions of high number of matched residues. Tn such a
case, the objective function may be chosen to maximize
the identity score.

In the iterative PSO algorithm, a set of imtial solutions
called particles are continuously improved in an iterative
approach until an acceptable solution is met. In each
iteration, particles are evaluated using a fitness function
and the most fit particle 1s selected as the new leader. Thus
fitness function represents the solution to the problem
that should be solved. After selecting the leader particle,
each particle moves towards the leader in a speed
proportional to the distance between the leader and the
particle.

In every iteration of the PSO algorithm, one (or more)
random crossover point(s) 1s selected based on that
distance and a mutation occurs with the current leader,
resulting in the swarm moving towards the leader at
different speeds without getting stuck in a local optimal
solution point. The goal of iterative methods 1s to explore
the search space and improve the alignment results.
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Though the direct approach on parallelizing the
iterative PSO algorithm on cluster computing platforms
partitions the data over the cluster to improve the
speedup, this approach has several drawbacks. First, it
limits the search scope of each node which would most
likely affect the quality of overall results. Second, it has a
high communications cost among nodes due to the nature
of the iterative P3O algorithm which results in scalability
issues, load balancing (or task mapping) problem among
nodes with different sequences of different lengths and
the overhead of distributing the work over the cluster.

The proposed parallel PSO algorithm 1s an optimized
parallel implementation of the iterative PSO algorithm
using the MPT library that enables running simultaneously
in parallel pieces of the large sequential iterative PSO
algorithm. This proposed parallel approach led to some
modifications in the design of the PSO algorithm. A Timux
cluster with configurable computational nodes is used as
the runming environment for parallel computing. The
objective function of the PSO problem is to maximize the
SPS score or the identity score. Each particle represents
a possible alignment and it contains all the sequences.
First, an imitial alignment 1s obtained using any alignment
tool like Clustal X (Jeanmougin et af, 1998). This
alignment is then used as the input to the PSO algorithm
and used to generate the other particles by making
random space msertions m this initial alignment. The
number of spaces to be mserted 15 the user’s choice and
when it is set to zero, the original spaces are changed
randomly so that they have new positions. The proposed
parallel PSO algorithm 1s shown in Fig. 1.

When sequences are aligned, the amino acid residues
in each sequence are kept in the same order, but are
shifted so that homologous sites are in the same positions
as in the aligned sequences. This means that sequences
mn all particles are similar in the residues, but are different
in the positions of gaps and there is no need to save the
whole sequence. Only gap positions are saved for each
sequence. Theses gaps form a matrix as shown in Fig. 2,
where each row represents the gaps saved in one
sequence.

To have a load-balanced parallel processing, the total
number of particles 13 divided over the available
processes m the parallel computing system. Each process
in such system has its own particles and works on them
independently. Also, each process stores a copy of the
current leader particle. Thus at the end of each iteration,
all processes communicate to determine the new leader
and exchange its sequences. The data representation is
shown in Fig. 3 for the proposed parallelization of the
iterative PSO algorithm with K sequences, m processes, n
particles.

Yes _ | Get input sequences
from the user

No

\
Broadcast sequences
to other processes

Recelve sequences
from process 0

y < |

Generate populatio;

Determine the leade

Exit

Measure the distence

between the leader and
each particle

v

—|Update particle’s positiod

Fig. 1: Proposed parallel PSO algorithm

Particle 1 Seq 1 B-TS--M H
Seq 2 B-TSD -M-
Seq 1 B-TS-M-H
Particle 2 Seq 2 B-TSD--M
. 256 . 2 57
= 9 =
Particle 1 2 6 8 Particle 2 56 7

Fig. 2: Data saved per particle

" Process m*., \

e Total No. of processes (here m) is the user's choice
e Particles are divided over the available processes in the system
‘\Each particle contains all the sequences (K sequences in this exam@

Fig. 3: Data representation for the PSO algorithm

The particles are evaluated each iteration using either
the SPS objective function or the IS objective functions
and a new leader particle based on this metric is chosen.
The mathematical formulas of the two objectives
functions are illustrated below:
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8PS = nzl “El S(seq,seqj) (2)

=1 =il

8 = iiilldentical(seql,seq,) (3)
i=l j

=i+

Leader determination is performed in two steps. In the
first step, each process scans its own particles to
determine the local leader. Then in the second step,
processes communicate together to determine the global
leader. This mechanism happens as follows. Each process
broadcasts its ID and local leader best score to all other
processes and by comparing the other processes” scores,
the global leader process is determined and it begins to
broadcast the leader sequences to the other processes.
When the number of processes is small, the described
broadcast algorithm 1s efficient and there 1s no need to
divide-and-conquer approach for
determination. The leader determination process is shown
mn Fig. 4. After determimng the leader, the other particles
have to move towards the leader in a speed proportional

use a leader

to the cumrent distance between the particle and the
leader. This distance is measured as follows:

Distance = (Unmatched gaps)/(Total number of gaps)
4

For example, the distance between the particle and the
leader for the two particles in Fig. 2 1s calculated as
follows:

¢ The total number of gaps 1s 12
*  Number of unmatched gaps are 4 and they are (6,7)
and (8,7)

Therefore, the distance 15 4/12= 0.333. The movement
towards the leader takes effect by replacing a part from
the particle’s sequence by another part from the leader’s
sequence. Double crossover points are used to determine
the parts of the sequence that should be replaced as
follows:

s  Calculate the distance between the leader and the
particle

¢ Determine the length of the fixed part (I.) that will not
be replaced by the leader sequence as follows:

X = Distance * Sequence Length (5

L= min (X, Sequence Length -X) (6)

rocess) Local leader
m { *| particle 2
Particle
L |Gdoal leader

——|particle x in

—>| process m
b Local leader]
’ particle x
Particle

Fig. 4: Determimng the leader

?

Generate random
point

v

Pointis
generated
at?

v

\

v

Sequence start |

Sequence end |

Middle of the sequence |

v

v

v

Replace the whole
sequence except the
part (0 to L)

Replace the whole
sequence except the
part (SeqLen-L to seqLen)

Replace the whole
sequence except the
part L that starts at the

randompoint

Fig. 5: Determining the crossover points

»  Replace the whole particle’s sequence by the leader’s
sequence except for the part of length L. that begins
at a random point within the sequence length. The
flowchart used to determine the crossover point is
shown in Fig. 5

Due to the replacement, the sequences may become
longer or shorter. Hence, some adaptation is needed each
iteration to equalize the length of all particles. It may
happen also that a column of spaces is generated in all
sequence. This column is useless and not considered in
the calculation of SPS score.

The proposed P3O algorithm has some configuration
parameters that affect the final alignment accuracy and
alignment time. These parameters include the population
size (number of particles), munber of iterations, gap
penalties, number of mserted spaces, the scoring matrix
and the number of parallel processes. There is tradeoff
between accuracy and alignment time for some of these
parameters. For example, mcreasing the population size
increases both the algorithm accuracy and alignment time.
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EXPERIMENTAL RESULTS

In this study, the proposed parallel PSO algorithm
was developed using the MPICHZ (Gropp, 2002), an
implementation of the MPT library. The Amazon Elastic
Compute Cloud (Akioka and Muracka, 2010) was used to
create a High-Performance Computing (HPC) Limuix cluster
with configurable number of computational instances for
executing the proposed parallel PSO algorithm and
investigating its accuracy and scalability.

The algorithm was also tested on the EUMed Grid
(Andromico et al., 2007). It was possible to increase the
number of used particles in the tests via utilizing the
available resources on the Grid. In this section, a
comparative analysis between the EUMed Grid results
and the Linux cluster results is presented.

Accuracy results: Accuracy tests were done using
different proten families from SABmark (Van Walle et af.,
2005) and BALIBASE (Thompson ef al., 1999) databases.
SABmark currently contains two sets, each consisting of
a number of subsets with related sequences. The first set,
the Twilight Zone set, contains sequence with very low
similarity, between 0-25% identity and a common
evolutionary origin cannot be established between most
pairs even though their structures are (distantly) similar.
This set therefore represents the worst case scenario for
sequence alignment. The second set, the Superfamilies
set, contains sequences with a (putative) common
evolutionary origin. However, they share at most 50%
identity which 1s still challenging for any sequence
alignment algonithm. Two protein families were used from
each set to test the proposed algorithm, as described in
Table 1.

The different protein families are firstly aligned using
Clustal X. Ther, the Clustal X’s output 1s used as an input
to the proposed parallel PSO algorithm. Tn order to cover
much of the alignment search space for each protein
family, two types of tests were performed. The first test is
to start with 125 particles and successively double the
number of particles until it reaches 16000. The second test
is to keep the number of particles constant at 8000, but to
start with 1 inserted gap and successively double the
number of gaps until it reaches 128. In each of these two
tests, the test is repeated 15 times and the average score
and maximum score values are calculated, so as to obtain
statistically sound results.

To evaluate the algorithm under different gap penalty
models and substitution matrices, the above tests are
repeated to cover the following four cases: PAM250 with
affine gap model, PAM250 with constant gap model,
BLOSUMA4S5 with affine gap model and BLOSUMA45 with

Table 1: Used protein families description

Description
Protein Set No. of sequences Average length
Group 1 Twilight 13 145
Group 5 Superfamilies 8 89
Group 8 Twilight 3 63
Group 22 Superfarmilies 10 99

Table 2: Maximum improvement achieved using the affine model by
changing the number of particles from 125 to 16000

Avg, score improve (%) Max. score improve (%)

Protein PAM250 BLOSUMA45 PAM250 BLOSUM45
Group 1 0.04 0.02 0.05 0.02
Group 5 0.3 0.28 0.3 0.28
Group 8 0 1.02 0 14.29
Group 22 0.16 0.15 0.38 0.5

Table 3: Maxirmun improvernent achieved using the affine model by
changing the number of inserted gaps from 1 to 128
Avg. score improve (%0) Max. score improve (%0)

Protein PAM250 BLOSUM45 PAM250 BLOSUMA45
Group 1 0.29 0.05 1.06 0.17
Group 5 0.3 0.46 0.73 1.04
Group 8 0 11.22 0 16.33
Group22 018 0.13 0.58 0.35

constant gap penalty model. The PSO configuration
parameters were chosen as follows:

»  Number of iteration = 100
+ Gapopen=10
s Gap extension = 2 for affine gap model

Table 2 and 3 show the maximum improvement
obtained over all the experiments in case of SABmark
database, affine gap model and SPS objective function,
regardless of the number of particles and the number of
new mserted gaps. From these results, it was observed
that proposed algorithm improved the initial alignment in
most cases. It was also observed that adding new spaces
had better effect on the alignment score as expected.
When no spaces were inserted (only changing the
number of particles), the algorithm generates the particles
by changing the sequences’ original spaces positions. If
the initial sequences in this case are well aligned, then the
amount of improvement that could be obtained will be
small. Adding new spaces in the middle allows the
characters to change their positions more and hence there
1s a better chance to be more aligned. The algorithm also
gave almost similar results for the two substitution
matrices used. This is attributed to the fact that PAM250
and BLOSUMA45 matrices are almost equivalent.

Table 4 and 5 show the maximum improvement
obtained over all the experiments regardless of the
population size and mserted spaces with constant gap
model and SPS objective function. From these results, it

1003



Inform. Technol J., 11 (8): 998-1006, 2012

Table 4: Maximum improvement achieved using the constant gap model by
changing the number of particles from 125 to 16000
Avg. score improve (%0) Max. score improve (%)

Protein PAM250 BLOSUM45 PAM250 BLOSUM45
Group 1 0.06 0.03 0.08 0.03
Group 5 0.26 0.25 0.26 0.25
Group 8 5.08 0 15.91 0

Group 22 0.39 04 0.94 1.19

Table 5: Maximum improvement achieved using the constant gap model by
changing the number of inserted gaps from 1 to 128
Avg. score improve (%) Max. score improve (%6)

Protein  PAM250 BLOSUMA45 PAM?250 BLOSUM45
Group 1 0.44 0.19 1.49 0.92
Group 5 0.26 0.36 0.47 0.93
Group 8 0 18.87 1.14 29.25
Group 22 0.44 0.40 0.72 0.89

Table 6: Maximum improvement achieved using the identity score by
changing the number of particles from 125 to 16000 and the
number of spaces from 1 to 128

Description
Protein _ Initial score Max. score (particle case) Max. score (gaps case)
Group 1l 927 927 984
Group 5 777 T T8O
Group 8 12 35 35
Group 22 371 382 390

was observed that the constant gap model achieved
higher alignment score. This is because affine gap model
encourages grouping the gaps rather than adding many
small gaps like the constant model. So, when the gaps are
separated, there 1s more chance to shift each character
separately to achieve higher score. In some cases, this
may not be preferred, as it makes it hard to get the
sequence properties when compared to another sequence.
Also, although the constant gap model achieved higher
score, the alignment length was mcreased by about 9%.

Table & shows the maximum improvement achieved
using the identity score by changing the number of
particles from 125 to 16000 and the number of spaces from
1 to 128. From these results, it was observed that the
proposed algorithm improved the initial score and that
spaces msertion had more effect than the number of the
particles. This 1s due to the fact that if the imtial alignment
is good, it is hard to improve the alignment by just
changing the original gaps’ positions (particle case) and
spaces insertion 1s needed to achieve a better score.

As mentioned above, the algorithm was also tested
on the EUMed grid using different protein families from
the BAIBASE benchmark. By using the available
resources on the Grid, it was possible to increase the
number of particles to 32000, A comparative analysis
between the EUMed Grid results and the HPC Linux
cluster results is shown in Fig. & when the Identity score
objective function 1s used.

oCluster

10906rid
o ——
84

g 7 _

5 6

£

2 5

]

o 44

£

AWM o e Ml

T B T
Ilubi laab lesp lhavA lton  Ippn IpamA lac5

Protein
Fig. 6: EUMed grid results vs. Linux cluster results

As shown in Fig. 6, the accuracy of the alignment is

increased when the number of particles is increased, as
the search space 1s increased and a better chance exists
that a more aligned particle 1s added to the swarm. It 1s
also observed that for some proteins, the algorithm
reaches its maximum possible final alignment score by
using the 16000 particles available on the cluster.
Increasing the number of particles beyond this level by
using the ElJMed Grid has no effect on increasing the
final alignment score which saturates to this maximum
value.
Scalability amalysis: To evaluate the algorithm
performance and scalability, different types of tests were
performed. In those tests, large sequences were used (up
to 10000 residues). Also the number of used processes
was changed to cover the range (1, 2, 4, 8, 16, 32) and the
number of cluster instances was changed from 1 instance
up to 6 instances. When one cluster instance 1s used with
one process, this means that the algorithm is totally
sequential and no parallelization at all.

Tt was observed that the algorithm speedup increases
till the total number of the used processes on each cluster
instance is 8, then the speedup begins to decrease again
due to the overloading and context switching between the
processes.

The algorithm was able to achieve a max speedup of
30 when 32 processes were used over 6 cluster instances
comparing to the sequential case. In this case the
algorithm time was reduced from 24 min to 0.8 min.

CONCLUSION
In this study, a parallel PSO algorithm is presented to

solve the sequence alignment problem. The proposed
algorithm was implemented using the MPICH2 and run
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over a Limux cluster. Algorithm accuracy was tested over
4 protein families using Clustal X’s output as an initial
alignment. The proposed algorithm is not limited to the
Clustal X tool and can work with any other tool for initial
alignment.

Tt was observed that the algorithm improved the
initial alignment score for all protein families under test.
The proposed algorithm gave very similar results when
tested using the PAM250 and BLOSUM45 substitution
matrices. For gap penalty models, it achieved better score
with the constant gap model than the affine gap model,
but the alignment length increased about 9% for some
sequences. By using the EUMed Grid, it was possible to
mncrease the number of used particles and aclieve better
alignment.

The proposed algorithm also showed good scalability
vs. the number of nodes in the cluster and achieved
almost 30 times speedup using 6 nodes. Tt also proved to
work well with very long sequences (up to 10000
residues). The main advantages of the proposed parallel
PSO algorithm is its ability to explore more search space
than the sequential PSO algorithm without affecting the
processing time and its support of different objective
functions and substitution matrices.

In future research, more tests will be applied on the
proposed algorithm using different benchmarks, other
substitution matrices will be supported and other
mutation techmques will be investigated to improve the
initial generated particles.
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