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Sparse Underwater Acoustic Channel Estimation Based on Compressive Sensing
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Abstract: An algorithm of channel estimation was proposed based on the theory of Compressive Sensing (CS)
by analyzing the sparse characteristic of underwater acoustic chamnel for Orthogonal Frequency Division
Multiplex (OFDM), Comparing with conventional Least Square (L3) estimation algorithm, the algorithm had
good performance with less pilots, which improved the spectral efficiency of communication system. The result
of simulation has analyzed the performance of the algorithm.
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INTRODUCTION

Since the high spectrum efficiency and high
endurance for multi-path fading, OFDM has a
promising future in underwater acoustic communication
(UWA). However, due to the high delay-spread and
Doppler-spread of underwater acoustic channel , OFDM
used in UWA also face several challenges: (1) The guard
interval of OFDM must be greater than the delay spread
(the delay of underwater acoustic channel can achieve
dozens or even hundreds of milliseconds), which reduce
the transmission efficiency of system, (2) OFDM 1is very
sensitive to carrier frequency offset and Doppler effect,
the orthogonality in subcarriers of OFDM system can be
easily destructed by time-varying underwater acoustic
charnel. For above problems, an efficient solution 1s that
estimate channel information accurately to correct and
recover the received data. In order to estimate underwater
acoustic channel more accurately, we should take
advantage of the structure features of the chammel By
analyzing the structure feature of underwater acoustic
channel-most of the channel energy is localized around
several delay-spread and Doppler-spread, in other words,
there are lots of zero taps in the channel coefficients. So,
underwater acoustic channel has sparse character. This
property can be used to improve the algorithm.

Conventional underwater acoustic channel estimation
method of OFDM meainly includes blind channel
estimation and Pilot Symbol Assisted Modulation
(PSAM). Considering the simple computation, fast
convergence and easy implementation performance,
PSAM has been widely applied. The method first uses
Teast Square (1.8) (Chen et al., 2010) or mean square error
(MMSE) (Zhang et al., 2008) acquires the channel impulse
response of pilot symbol, which mserted m the
transmitted signal, then recovers the whole channel

impulse response by interpolating method. Since, the
conventional method doesn’t utilize the sparse character
of underwater acoustic channel, the estimators have poor
performance even with lots of pilot symbols, which lead
to low spectral efficiency. For UWA, since the bandwidth
is very low, the conventional method is unfavorable.
Therefore, it 1s very important to propose a better channel
estimation method to improve the spectral efficiency.

The new theory of compressive sensing improved in
2006 goes against the common wisdom in data
acquisition. [t can recover certamn signals from far fewer
measurements than traditional methods use, which make
it successfully applied in various areas. Doncho (2006)
and Baraniuk ez al. (2008) introduced the theory of CS and
its application. It 18 an umportant application in
communication fields for CS that combming CS theory
with channel estimation. In the case of same channel
estimation performance, the pilot symbols are far fewer
than the conventional method, which gives a new
solution for sparse channel estimation.

In this study, we consider underwater acoustic
channel estimation using a continuous time path-based
channel model and utilizing CS recovery algorithms for
channel estimation. Here, we used Orthogonal Matching
Pursuit (OMP) algorithm and Compressive Sampling
Matching Pursuit (CoSaMP) algorithm for recovery. The
simulation results indicate that comparing with
conwventional LS algorithm, the proposed algorithm based
on CS had good performance with less pilots, especially
the CoSaMP algorithm and meanwhile improved the
spectral efficiency of underwater acoustic communication.

COMPRESSIVE SENSING THEORY

S theory 1s proposed by Candés, Romberg, Donoho
and Tao, it goes against Nyquist sampling theorem and
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represents original signals at a rate significantly below the
Nyquist rate, which reduces the pressure of transfer and
storage.

To illustrate the principle of CS, comnsider a
real-valued, finite-length, one-dimensional, discrete-time
signal X, which can be viewed as N =1 column vector with
elements x [n],n=1,2,..., N.X can be represented n terms
of an orthogonal basic of N1 vectors:

N
{@}1:1
Le.

il
X=Y ap orX="a (D

i=l

where, ¢ 15 the Nx1 column vector of weighting
coefficients ¢, = X = @7 X, ¥ =[¢,, ¢, ... ] 15 the NxN
basic matrix. T denotes transposition. Clearly, X and ¢ are
equivalent representations of the signal in different
demains, X 1n the time domain and ¢ in the ¥ domain.

The sighal X is k-sparse if only K (K<<N) of «
coefficients in (1) are nonzero. For the K-sparse signal X,
using an M*N matrix @, which has Restricted Isometry
Property (RIP) (Ymg and Zou, 2009), acquining M (M<<N)
measurements from N, then reconstructing the original
signal X from M at the receiver. The process can be
expressed by matrix:

Y=0X=0%x (2)

where, Y 1s the Mx1 measurement vector, whose elements
are the M measurements acquired from N. @ is an NxM
measurement matrix. The signal reconstruction 1s that
utilize the M measurements in Y recover the length-N
signal X by Eq 2. Since, M=<N (the unknown munber
15 more than equations), tlis problem appears
ill-conditioned However, since X is K-sparse and K<M,
the problem can trade-off get the signal's sparse
coefficient vector ¢ by sparse recovery algorithms, thern,
recover the original signal by X = Pa.

OFDM CHANNEL MODEL

In this study, we adopt a continuous time path-based
channel model, considering the OFDM system has K
subcarriers, channel length is L. The channel impulse
respense in time domain can be expressed as:

h(t):i o, 8(t-1,T,) (3

Discrete sampling result of h (1) is:

i, sin (1- 1, /K)

—————1=01-L-1 (4)
sm(lfo'UF/T)

4
h, = Zmpe
=1

where, T, is the time delay of pth, &, is the amplitude
decay of pth, T, is the sampling intervals of OFDM
system, d describes the dominent physical multipath
components, f, is the carrier frequency of underwater
acoustic channel.

So, the received signal X obtained at the output with
noisy and continuous time path-based chammel h 1s given

by:
R =XH+7Z =XFi+7 (3

where, X 1s an NxN diagonal matrix with the elements
of user data and pilot symbols on its main diagonal, i.e.,
X=diag (x (0), x (1), .x(1),1=0,1,. N-1 R=[r (O), r (1), ...
r (N-1)] 1s the Nx1 vector of sampling values; H = Fh
describes the channel frequency response vector by
taking DFT transform of h. h = [h (0), h (1),..h (L-1)],
which only have d (d<L.) nonzero elements and reflects
the sparse character of chammel; F 1s an N xL DFT matrix:

w 0 0L-1y

Wy Wy Wy
10 11 1(L-1)
Fo| Wa o Wy Wy (6)
(N-130 (M1 (H-1)(L.-1)
W Wy N
where:
al —jamd
W,=¢ "

Z 1s an Nx1 vector of Gaussian white noise.

CHANNEL ESTIMATION ALGORITHM
BASED ON CS

The principle of the algorithm is that the receiver uses
sparse recovery algorithms recover the whole channel
impulse response from the channel mmpulse response of
pilot symbols, which inserted in the transmitted signal.

Sparse model based on pilot symbol: Consider S is a PN
selection matrix, which 1s used to select the position of
pilot symbols from N*N identity matrix. For example, an
OFDM symbol with 8 subcarriers, 4 pilot symbols, if the
pilot symbols inserted uniformly, we can get S:
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So, the received pilot symbols can be derived from
Eq 5

R, = XFht 2, (7)

where, R,;= SR is the Px1 vector of received pilot symbols;
X, = SX8’ is the PxP matrix with the elements of pilot
symbols; F, = SF is a P>N DFT matrix; 7, = 37 1s the noise
in the position of pilot symbols. Thus, R, can be regard as
the observation of h by measurement matrix T =X F ,
now, R, X  F, 7 are know, only h is unknown at the
receiver, s0, we can recover the h vector by recovery
algorithms, then, get H by H = F h, the channel estimation
of OFDM system 1s completed.

Channel estimation based on CS: According to the
sparse model based on pilot symbol, this study utilizes
OMP and CoSaMP algorithms to estimate the underwater
acoustic channel.

OMP algorithm: OMP is a greedy pursuit algorithm,
which invokes this idea iteratively to select the best
matching column with the measurement vector from
measurement matrix to approximate the sparse channel.
The algorithm takes advantage of the sparsity of channel,
avolds a NP-hard problem and improves the convergence
rate.

In Eq. 7, consider y = R, is the measurement vector,
T = XI, is the measurement matrix, the Eq. 7 can be
rewritten as:

y=Th+7, (®)

Cai and Wang (2011) gave a short description of
OMP algorithm:

Step 1: Tnitialize the set of non-zero elements as empty,
the measurements are set as the residual, r=y

Step 2: Correlate all columns of measurement matrix T
with the residual, T"r, cheose the largest element
by magnitude and add its index to the set of
nonzero elements

Step 3: With the constraint that only elements of h are
nonzero that have been added to the set
previcusly, find an estimate h that using least-
squares minimization |y-Th

Step 4: Update the residual as r=y-Th

Step 5: Repeat steps 2-4 until either a known h is
reached or the norm of residual |t falls below a
predetermined threshold

The algorithm has been popular mainly because it can
be easily mnplemented and it never selects the same
column twice since the residual 13 orthogonal to the
columns that have already been chosen, which reduce the
computational complexity.

CoSaMP: Tropp and Needell (2009} studied the CoSalMP
algorithm to recover original signals, in the study, we will
recover the sparse channel by this algorithm. The
CoSaMP algorithm 1s at heart a greedy pursuit, but the
difference to ordinary greedy pursuit is that the algorithm
would find the largest k (k is the sparsity level)
components to approximate the target signal at each
iteration, while OMP algonthm finds the k components by
many time 1iterations.

The sparse channel estimation based on CoSaMP
uses an approach inspired by the RIP. Suppose the
measurement matrix T has the RIP. For a k-sparse channel
h, the vector u = T*T h can serve as a proxy for the
channel h because the energy in each set of k
components of u approximates the energy in the
corresponding k components of h. In particular, the
largest k entries of the proxy u pomt toward the largest k
entries of the channel h. Since, the measurements have
the form u = Th, we can obtain the proxy just by applying
the matrix T* to the measurements.

During each iteration, the underwater acoustic
channel based on CoSaMP performs the following major
steps:

Initialization: The iteration time 1 = O, residual 1, = y:

Step 1: Tdentify the large components of channel.
Consider u, = T*1, 1s the proxy of the residual
and locate the largest 2k components of the
prexy, add their indexes to the set Q,

Use LS algorithm computes the current channel
estimators:

h,, :argminHy - Tﬁw

o)

2

Choose the largest k estimators from the results of (9)
and add their indexes to the set Q, .:

Step 2: Merge the main components and add the
indexes to the set (O, Le, O, = QU
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Step 3: In the set Q, from step 2, we estimate the channel
use LS:

fli b =Ty (10)

where, T' = (T*T)™", T is the pseudo-inverse
matrix of T.

Step 4: Retain only the largest k entries in Eq. 10 and set
the others to zero. Use h, expresses the
ith iteration channel impulse response
estimator

Step 5: Update the residual as:

r=y-Th,

Those steps are repeated until the halting
criterion is triggered.
SIMULATION RESULTS

Here, we presented present results based on
numerical simulation. Both simulation parameters use the
same OFDM system with the following specifications:
Carrier frequency fc = 15 KHz, N = 256 subcarriers,
channel length T. = 60, sparsity level k = 6, 16 QAM
modulation, the position of pilot symbols selected by
selection matrix S, for convenient, the pilot symbols
mserted umformly. In this study, we compared the
estimation performance of OMP and CoSaMP with the
conventional LS algorithm. For LS algorithm, we consider
the situation of p = 64 and p = 128 (p is the number of
pilots symbols). For OMP and CoSaMP algorithms, we
just consider the situation of P = 64.

Mean Squared Error (MSE) and the Bit Error Rate
(BER) obtained with the three algorithms as a function of
the SNR are shown in Fig. 1. The defimtion of MSE 1s:

A o]
13 an

E%]HUQF

As shown in Fig. 1 that for the three algorithms, the
channel estimation MSE decreases linearly with the
increasing values of SNR. For LS algorithm, the estimation
performance is improved with the increase of the number
of pilot symbols, but 1t still inferior to the sparse channel
estimation algorithms based on CS. We find that both
OMP and CoSaMP algorithms significantly outperform
the LS estimator. Especially the CoSaMP algorithm, it
can improve MSE about 10 dB, while OMP just improve
5dB.

H (k) H(k)

In Fig. 1b, it can see that the BER performance of
OMP and CoSaMP sigmficantly mmproved than LS,
CoSaMP is ahead of the three algorithms. Tn more detail,
when the SNR is below 10 dB, the BER of CoSaMP is
similar to OMP and slightly less than LS, while when the
SNR is larger than 10 dB, the performance outperforms
OMP and L.S more clearly with the increase of SNR. Tt is
because OMP and CoSaMP take advantage of the sparse
characteristics of underwater acoustic channel, avoid the
meaningless taps estimation. So, the channel estimation
based on CS can get better performance with fewer pilots
than conventional LS algorithm. Moreover, the iteratively
idea is used to estimate the nonzerc taps in OMP and
CoSaMP, allowing the estimation error caused by noise to
be reduced. On the other hand, OMP only select an
optimal atom to update the atom set at each iteration and
once the atom added m the set will be kept all the time.
While in the practical application, the atom is considered
the best at this iteration can’t promise always be the best

01 (a) ——15,p=64

MBSE performance comparison
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Fig. 1(a-b): (a) MSE and (b) BER performance
comparison of LS, OMP and CoSaMP
algorithm
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Table 1: Time comparison of three algorithms

Algorithm Time (sec)
LS 0.0262
OMP 0.0054
CoSaMP 0.0027

at latter iterations, the atoms in the set should be removed
and added freely. CoSaMP can overcomes the
shortcommg of OMP effectively, because its atoms
selection principle invokes backtrack idea, the atoms
realized removed and added freely, which promise the
optimality of atom selection. Tn addition, the algorithm will
select 2k atoms to update the set at each iteration, the
estimation error is reduced by repeat iteration. So, the
channel estimation performance is better than OMP.

Table 1 compares the computation time of three
algorithms when the number of pilot symbols 1s 64.

From the table, we can see that the time of CoSaMP
is the shortest, 1S is the longest. Because both OMP and
CoSaMP are greedy pursuit invoking this idea iteratively,
which reduce the computational complexity. The
difference between CoSaMP and OMP 1s that the
CoSaMP algorithm would find the largest k components
to approximate the sparse channel at each iteration, while
OMP algorithm finds the k components by many time
lterations.

CONCLUSION

In this study, we have introduced two channel
estimation algorithms based on CS for underwater
acoustic OFDM channel. The simulation results indicate
that comparing with the conventional LS algorithm, both
OMP and CoSaMP algorithms have lower computational
complexity and the performance significantly mmproved,
especially the CoSaMP algorithm. The proposed
algorithms can get good performance with less pilots,
which lead to high spectral efficiency. Therefore, the
proposed algorithms are very suitable for the system with
limited system band width and unlimited transmitted
power.
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