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Abstract: Multiscale image representation has been an area of mterest in the recent past among the image
processing society. Fast Multiscale Directional Filter Bank (FMDFB) 1s such a multiscale framework with
interesting characteristics such as perfect reconstruction, directionality, less computational complexity and
maximally decimated property. FMDFB is found suitable for a wide range of image processing applications like
feature extraction and analysis. In this study, the application of FMDEFB 1s extended to image denoising which
1s a vital pre-processing stage m almost all image processing and analysis systems. In this study, the statistical
nature of the FMDFB subbands is analyzed. Tt is observed that, unlike wavelet subbands, each of the FMDFRB
subbands carries significant information about the image content. Hence, a mere wavelet based subband
adaptive shrinkage method would oversmooth the FMDFB coefficients which in turn affects the quality of the
denoised image. To overcome this, new method of selecting the suitable subband for estimating the threshold
for noise removal is proposed. The threshold value for noise removal is estimated from the FMDFB subbands.
For analysis purpose, the subband statistics of FMDFB is compared with the subband statistics of wavelet
transform. The proposed NSS algorithm will be useful to calculate the suitable threshold value for image
denoising with adaptive thresholding.

Key words: Tmage denoising, fast multiscale directional filter bank, noisy subband selection, threshold

selection, wavelet transform, contourlet transform

INTRODUCTION

Image denoising has been a key area of interest mn the
past decade because of the growing information and
commurication techmology. The sensor and circuitry of a
scanner or digital camera in an image acquisition system
random variations of brightness or colour
mformation in mmages. Such random variations of
brightness may also originate from film grain and the
photon detector, which can be regarded as image noise
(Stroebel and Zakia, 1995). The noisy components present
in the digital images have to be removed (at least partially)
before the 1mage could be used for further analysis and
processing. Noise removal is a process of estimating the
clean image from its noisy observation. However, most of
the noise removal methods require a prior knowledge
about the noise distribution. This makes the noise
removal process a challenging one (Gonzalez and Woods,
2002; Vaseghi, 2000).

causes

Various types of noises such as Gaussian,
Speckle and Salt and Pepper etc. are addressed in
literature (Jain, 2003; Kaur et al., 2003) according to the
probability distribution of the noise function Starting
from the well-known spatial filtering methods, a munber of
denoising algorithms have been proposed in the literature
for removing various types of noises. The purpose of
filtering 15 to cancel out noisy picture elements while
preserving the integrity of edge and detail information.
Conventional linear filters such as arithmetic mean filter
and gaussian filter smoothes noises efficiently, yet they
blur edges because of local averaging operators.
Nonlinear filtering techniques remove noisy components
and preserve edges better than linear filtering
(Gonzalez and Woods, 2002). The Wiener filtering is one
such method that 15 mean square error-optimal stationary
linear filter for images degraded by additive noise and blur
(Vaseghi, 2000). However, a common drawback of the
practical use of this method is that they usually require

Corresponding Author: E. Jebamalar Leavline, Department of Electronics and Communication Engineering,
Anna University Chennai, BIT Campus, Tiruchirappalli- 620 024, Tamilnadu, India
1289



Inform. Technol J., 12 (7): 1289-1298, 2013

some ‘apriori’ knowledge about the spectra of noise and
the original signal. This information is needed to perform
the optimal choice of parameter values and/or threshold
selections (Kaur et al., 2003; Bamberger and Smith, 1992).
Unfortunately, such information is very often not
available when real time images are handled. This makes
the spatial techmques less effective for noise removal in
various applications.

Alternatively, denoising methods using various
transforms have proposed. Wavelet
transform has proved itself best swted for
several 1mage processing applications including
denoising (Boggess and  Narcowich, 2002,
Soman and Ramachandran, 2005) over Discrete Cosine
Transform (DCT) and Fast Fourier Transform (FFT)
approaches. Also there are well known shrinkage methods
for wavelet based denoising (Soman and Ramachandran,
2005; Leavline et al., 2011). Unfortunately, the denoised
images resulting from the wavelet-based denoising have
checkerboard artifacts. Natwral 1mages contain
discontinuity points (e.g.: Edges) located along smooth
curves (i.e., Contows). Separable wavelets can capture

been

only limited directional information because of the poor
directional selectivity of wavelet transform. These
behaviors indicate that representations that are more
powerful are needed in higher dimensions with directional
selectivity. Also, for the human visual system, the
receptive fields in the visual cortex are characterized as
being localized, oriented and bandpass and tuned to
capture the essential information of the natural
scene using a least mumber of visually active cells
(Do and Vetterli, 2005). This leads to development of
representations which are sparse, local, directional and
multiresolution.

There are number of such representations introduced
i the literature namely Gabor wavelets (Lee, 1996),
Brushlets (Meyer and Coifman, 1997), Bandlet
(Pennec and Mallat, 2005), Curvelet (Candes and Donoho,
1999) (Do and Vetterly, 2001), Shearlet (Guo and Labate,
2007), Directionlets (Velisavljevic et af, 2006) and
Contourlet (Do and Vetterli, 2005) etc. with their own pros

and cons. Contowlet may be regarded as a transform

which exhibits mteresting properties such as
Multiresolution,  Localization, Critical — sampling,
Directionality and Anisotropy which are much important

Further,
Contourlet representation of an image 1s overcomplete
with a redundancy ratio of 4/3 (Do, 2001). The Multiscale
Directional Filter Banks (MDFB) proposed by Kin-On
Cheng et al. (2007a) modifies the Pyramidal Directional
Filter Bank (PDFB) or the Contourlet transform by
splitting the finest frequency scale m LP mto two

in representing local geometrical features.

frequency bands. MDFB improves the  radial
frequency resolution of the Contourlet transform by
introducing  an  additional decomposition m  the
high-frequency band. Further, directional decompositions
are performed prior to scale decomposition. Since no
decimation is introduced in the new scales, MDFB
possess higher redundancy than the
Transform (Cheng et af., 2007a).

Faster version of this MDFB was proposed by
Cheng et al. (2007b) namely Fast Multiscale Directional
Filter Banks (FMDFB) by swapping scale and directional
decomposition m the first two scales. According to
Cheng et al. (2007b) this fast structure has reduced
computational ~ complexity
representing umages In various applications. In our
previous study, the application of FMDFB was extended
to image denoising with global thresholding approach,
which outperformed conventional contourlet based
denoising. Further, in this study, we analyze the statistical
nature of the FMDFB subbands and it 1s compared with
that of the wavelet transform to show the significant
characteristics of the FMDFB subbands. In order to
determmine the threshold from the subband statistics, a
new approach namely noisy subband selection
algorithm is proposed. Using NSS  algorithm, the
subband with huge amount of noisy components is
identified at each stage of FMDFB decomposition thus
the threshold can be made adaptive for better denoising
performance.

Contourlet

and well suited for

MATERIALS AND METHODS

Multiscale image  representations:  Multiscale
transforms represent an 1image in different scales
thereby ensuring the frequency resolution of the content
In addition, they possess the most
advantageous featwres such as sparsity and hence

of interest.

acquire high degree of energy compaction, that is useful
1in compression applications. The well-known multiscale
transform namely Contowurlet transform finds applications
in various fields of image processing. Unlike separable
wavelet transform, these Contourlet bases exhibits some
interesting  characteristics  hke  Multiresolution,
localization, critical sampling, directionality and
anisotropy (Cheng et al., 2007a). Among these, the first
three are successfully given by separable wavelets;
Contourlet that significant directional
information supports the latter two. In Contourlet
transform, the sparse representation is obtained by first

can retain

applying a multiscale transform followed by a local
directional transform to capture local features such as
edges.
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Multiscale directional filter banks (MDFB): The MDFB
alter the pyramidal directional filter bank or Contourlet
Transform by mntroducing scale decomposition in its
finest scale. Scale decomposition 18 done by performing
low pass filtering with cut-off frequency 0.75 [] to an
input image (Cheng et al., 2007b). First scale is generated
by subtracting the lowpass image from the mput image.
Second scale 13 obtamned as the first band pass image in
LP. Third scale is the second band pass image in L.P and
so on It contains two basic building blocks namely
Laplacian Pyramid (LP) and Directional Filter Bank (DFB).

Laplacian pyramid: An efficient way of obtaining
multiscale decomposition is to use a low pass filter
(Burt and Adelson, 1983) called Laplacian Pyrammd. It is an
over complete decomposition in which mput image 1s
represented by a set of band pass images and a low pass
image. In the LP, a lowpass filter and a downsampler first
process the input image to generate a lowpass image. A
coarse prediction of the original image 1s computed by
upsampling and subsequently convolving the lowpass
image using another lowpass filter. By subtracting the
coarse prediction from the input signal, a bandpass unage
15 obtained. The process can be iterated on the lowpass
image to pgenerate other bandpass images in lower
frequency range. A drawback of LP is the implicit
oversampling. A block diagram of this iterative process 1is
shown in Fig. 1. The main feature of the LP 1s that
decimation is performed only on the lowpass image. Thus,
there is no frequency scrambling,.

To avoid aliasing in the LP, it requires the stopband
edge of h;(n) should be less than [[/2. In order to satisfy
the criteria, equiripple hl.(n) with pass band edge 0.3 []
and stop band edge 0.5 [] are designed (Cheng et al,
2007b; Do and Vetterli, 2003). Further, processing such as
directional decomposition can be performed directly on
the bandpass images.

Directional filter bank: Directional filter bank (DFB)
mtroduced in 1992 (Bamberger and Smith, 1992). It1s a 2-D
directional filter bank is a critically sampled directional
decomposition with perfect reconstruction property.
The DFB partitions a frequency plane into a set of
wedge-shape region as illustrated in Fig. 2.

Tt can be implemented efficiently in an ‘1" level tree
structure that results in 2' directional subbands. The tree
structure relies on a two-channel filter bank in which a
complementary diamond-shaped filter pair 1s followed by
a quincunx down sampling as shown in Fig. 3 (Do, 2001;
Cheng et al., 2007a).

A resampler 18 employed before the two-channel filter
bank. Its function 15 to shear the desired frequency

Input image .~ Bandpass image

\T/

e

T
t

Lowerpass image

T h@ [ 2

Fig. 1. Iterative structure of the laplacian pyramid, h, (m)
1s the lowpass filter, g, (n) 15 the high pass filter,
12 and |2 represents down sampling and

upsampling by a factor of 2, respectively
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Fig. 2: Frequency plane partitioning in a three-level
DFB
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Fig. 3: Two channel DFB (Ri-Resampling Matrix, H,,
H,;: Low pass filters, Q; Quincunx down sampling)

partitions into diamond shape so that the two-channel
filter bank can give the desired frequency bands.

Resampling: The definition of resampling matrix is that it
18 a 2x2 matrix whose entries are all integers and whose
determimant 1s non zero so that its inverse matrix 1s also a
resampling matrix. Tt is a unimodular matrix that can
change the diamond shaped pass band into parallelogram
pass band. A ummodular matrix 1s a matrix whose
determinant 1s 1. Its mverse 1s also wumodular. There are
many resampling matrices have been proposed in the
literature (Bamberger and Smith, 1992; Do, 2001). Any one
of the following can be used according to the required
frequency band:
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i) G,
o) nel

Figure 4 shows, for R, and R,, the input image is
extended along the vertical direction; while for R, and R,
the image is extended along the horizontal direction.

Diamond shaped filters: Diamond shaped filter pair splits
the frequency spectrum of the input signal into lowpass
and highpass channels (Bamberger and Smith,1992).
Figure 5 shows the frequency spectrum of diamond
shaped filter.

One filter pair can be derived from the other by simply
modulating the filters by [] in either the w, or w,
frequency variable. Perfect reconstruction is achieved by
applying the same modulation to both analysis and
synthesis filters. Because of sampling, subbands would
suffer from spatial distortion. Spatial distortion results
from resampling used mn the construction. This problem
can be solved by adopting backsampling at the output of
the DFB (Do, 2001). The overall sampling matrix is given
by:

2
ey @
Dy inR,

JNPN

Fig. 4: Four parallelogram pass bands produced by R, R,
R; and R,, respectively

Fig. 5: Frequency spectrum of diamond shaped filter
(Stopband 1s shown m gray)

where, ‘1’ is the index of output stage of DFB, R, =0, 1
are the spectral regions shown in Fig. 6, D and D, are

Downsampling matrices:
D, =[1 OJ 3)
0 2

20
D, =
01

The backsampling reorders the subbands so that the
overall sampling 15 diagonal (Cheng et al., 2007Db).

Quincunx down sampling: Tt is a generalized down
sampling matrix 1s a sampling matrix whose entries are +1
with determinant 2. The resampling matrices are used to
perform the shearing operation (Do, 2001). The quincunx
matrices that can be used in directional filter banks are
derived as follows:

Q =R,DR; =RDR, (4)
Q, =R DR, =R,DR,

Out of the above four quincunx sampling matrices
any one can be used for down sampling. Those sampling
matrices generate the same sub-lattice but the down
sampling operation rotates the input image by -45 and 45°.
Quincunx down sampling results in down sampled and
rotated representations as shown in Fig. 7.

Fast multiscale directional filter banks (FMDFB): The
basic building blocks of Fast Multiscale Directional Filter
banks are the same as that of MDFB namely, Laplacian
Pyramid and Directional Filter Banks (Cheng et al., 2007b).
In analysis filter bank structure, low pass filtering and
wavelet transform technique are applied for splitting the
image into various scales. Use of non aliasing lowpass

filters broadens the bandwidth of the finer scale.
o,
R,
o,
R, R, |—r
R,

Fig. 6: Spectral regions Ry and R,
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Fig. 7(a-d). (a) Example of quincunx downsampling lattice in (n,,n,) space, (b) An nput image, (c¢) and (d) Quincunx

downsampled outputs by q, and g,, respectively

Directional decomposition with lower angular resolution
is performed before scale decomposition. Hence, one set
of operations for directional decomposition with lower
angular resolution 15 saved by sharing. Also, the total
number of subband coefficients will be equal to the size of
the original image and thereby maintaining the maximally
decimated property. As stated in (Cheng et al., 2007h),
perfect reconstruction is always possible at all scales
regardless of the low pass filters used for decomposition.
According to Cheng et al. (2007b) this FMDFB achieved
33.5-37.5% of reduction in computational complexity when
compared to original MDFB.

Denoising using FMDFB: David I.. Donoho proposed a
method for reconstructing an unknown function ‘f° on
(0, 1), from noisy data (Boggess and Narcowich, 2002)
with wavelet thresholding. The reconstruction is defined
in wavelet domain as translation of all the empirical
wavelet coefficients toward zere by an amount of
threshold “T°. Further, adaptive threshold estimation
methods have been used for wavelet domain image
denoising (Suresh et al, 2007) and proved
computationally more efficient and adaptive since the
parameters required for estimating the threshold depend

only on the subband data. Adaptive thresholding
methods are also found to study well with Contourlet
(Zhou and Shw, 2007). The adaptive window m each of the
Contourlet subband 1s first fixed by autocorrelation
function of Contourlet coefficients’ energy distribution,
followed by the local Wiener filtering to denoise the noisy
image.

In general, there are three steps in transform domain
denoising:

»  Transform the mnput data by an orthogonal transform

»  Threshold transformed coefficients by a nonlinear
algorithm

*»  Reconstruct image with modified coefficients

Wavelet shrinkage 13 an efficient signal denoising
algorithm introduced by Donoho (1993) which is based on
the idea that the original image has large wavelet
coefficients and the noise 1s distributed over all
coefficients. Thus, by thresholding (either hard threshold
or soft threshold) (Wang and Zheng, 2013) the smaller
coefficients, the image will not be damaged, even though
a large amount of noise energy will be removed Hard
threshold follows ‘Keep or kill” approach which exhibits
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some oscillations near edges. On the other hand in Soft
threshold small coefficients are cancelled and the others
are changed in order not to destroy the continuity in
transformed coefficients (Doncho, 1993).

In owr previous study the fast multiscale filter banks
15 used to obtain the transformed coefficients
(Leavline and Sutha, 2011). The algorithm for image
denoising using FMDFB 1s described below:

*  Get the mput image

¢+ Decompose the noisy image with FMDFB. The
FMDFB analysis filter bank decomposes the input
noisy image in to ‘27 subbands for the
decomposition level of I’

+  Estimate Median Absolutes Difference (MAD) and
nolse variance

¢+ Determine threshold wvalue with the parameters
calculated in step 3. The value of threshold depends
on the choice of thresholding method

* Perform soft thresholding with global threshold
approach

*  Apply inverse FMDFB to the threshold coefficients
and reconstruct the image

*  Obtain the denoised image and calculate Peak Signal
to Noise Ratio using the formula:

2
PSNR = 101og,, | 2 (5)
MSE

The process flow of the denoising algorithm is shown
m Fig. 8.

Noisy subband selection in FMDFB: In our previous
study Wavelet based shrinkage fimections with global
threshold approach were employed (Leavline and Sutha,
2011) which outperformed the conventional contourlet
based dencising algorithm in terms of PSNR. Tn wavelet
decomposition, out of four subbands at any level of
decomposition, the approximate coefficients contain the
coarse information of the image and the high frequency
fine details are present in the other three subbands

Noisy MAD Threshold
. e—bFMDFB—ie..m—i fon

L Soft Inverse .| Denoised

threshold "|FMDFB "

Fig. 8: Denoising scheme using FMDFB

namely Horizontal, Vertical and Diagonal subbands
(Soman and Ramachandran, 2005; Zhou and Shui, 2007).
On the other hand, the FMDFB subbands carry iumage
information is in almost all subbands at any level (1) of
decomposition. Also, in contrary with wavelet
decomposition, the number of subbands of FMDFB
depends on the number of levels of DFB (Cheng et af.,
2007b). For two levels of decomposition, wavelets
produce seven subbands (A, V,, H,, D,, V|, H, and D))
where with the number of DFB levels 1 = 2, at scale S, = 2,
FMDFB yields 16 (2'%2%) subbands. Hence, a mere global
threshold 1s less effective in noise removal with FMDFB,

To achieve better denoising performance, it is
apparent that, the selection of suitable threshold is vital.
In this direction, a nonlinear function, which considerably
shrinks the noisy coefficients, retaining the image details
has to be developed. For real time image processing
applications, particularly when the noise power is
unknown, it has to be estimated without the prior
knowledge of noise distribution. In the next section we
propose a new scheme to identify the noisiest subband
out of 2x2° FMDFB subbands and to estimate the noise
power from the statistics of the subbands.

Proposed NSS (noisy subband selection) algorithm: The
proposed NSS algorithm works as follows. The noisy
image is first decomposed to 2' subbands at stage 1 each
of size N/2xN/2 for a N*N mmage. For each subband,
standard deviation is calculated and the subband with
maximum standard deviation i1s considered as noisy
subband. Then, the threshold for stage-1 is calculated
with the maximum standard deviation and applied to all
coefficients in stage-1 using soft threshold technique.
Similarly higher stages of decomposition are performed, at
each stage the standard deviation of the noisiest subband
and the threshold value are calculated and applied on the
coefficients. This process is repeated until the subband
size 1s negligibly small.

Parameters:
1 = No. of levels in DFB
S = No. of scales inFMDFB
S, = Scale index
Algorithm:

Step 1: Get the noisy image

Step 2: Determine the number of levels in DFB (1) and FMDFB (8)

Step 3: Decompose the noisy image into subbands (2'x2%)

Step 4: Obtain the subband coefficients at the first stage of decornposition

Step 5: Calculate standard deviation of each subband

Step 6: Identify the subband with maximum standard deviation and
designate the corresponding subband as Noisy subband at that level

Step 7: Estimate threshold for stage-1, using the maximuwn standard
deviation and apply to all subbands in stage-1

Step 8: Repeat step 5-7 for next higher stage of decomp osition
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With this NSS algorithm, the noise standard
deviation is estimated from the FMDFB subband statistics
which 15 used to calculate the threshold wvalue for
denoising. Calculation of threshold for each stage and
denoising is beyond the scope of this study. However,
the threshold methods such as Vishushrink, SUREshrink,
Normalshnink and Bayes shnnk (Leavline et af., 2011,
Wang and Zheng, 2013) can be used to calculating the
threshold. After applying adaptive threshold, inverse
FMDFB can be applied to reconstruct the denoised image.

RESULTS AND DISCUSSION

The experiments have been carried out with
MATLAB 7.5.0 (R2007b) on a set of standard Gray scale
images of size 512x512. In FMDFB, the number of DFB
levels is set as 2 and two stages of scale decomposition
have been performed. After decomposition, the NSS
algorithm is applied on the 16 (2'%2%) decomposed
subbands to find out the noisy subband. This algorithm
is also employed on wavelet subbands for its sound
justification. The comparison of standard deviation
of Wavelet subbands for standard test unages (Peppers,
Mandrill and Barbara) are shown 1 Fig. 9 and 10 with one

level and two levels of decomposition respectively. Tt is
evident from Table 1 that the minimum subband standard
deviation always occurs at HHI1 subband of the wavelet
decomposition. Also the maximum standard deviation 1s
exhibited by the approximate (1.I.) coefficients of the finest
level.

The graphical representation of Standard deviation of
all ‘2" FMDFB subbands (1 = 2) with one level
decomposition (SB1, 5B2, SB3 and SB4) for Peppers,
Mandrill and Barbara images are shown in Fig. 11.
Figure 12(a-c) shows standard deviation of all “2'x2%
FMDFB subbands (1 = 2, s = 2) with two levels of
decomposition (SBlg, SB2g, SB3q and SB4q) for Peppers,
Mandrill and Barbara images respectively. From Fig. 11 it
1s observed that the maximum subband standard deviation
occurs 1n any one of the four subbands at level 1.
Table 2 also appreciates this fact. From the experimental
results tabulated in Table 2 and 3 the following facts are
observed. In contrary with the wavelet decomposition at
level 1, the noise spread is wider and the higher subband
standard deviation lies on any one of the FMDFB
subbands (SB,, SB, SB, and SB,). For smooth images, the
subband standard deviations are found to be lower
compared to that of images with more details. In level 2,

Subband standard deviation

25 o 20 -
N g20Tv
=] = L
$2
3 5 154
el el
5 15 4 5
= =)
g 2 101
3 10 z
=} =}
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<} 51 el
= =
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0 — r . { 0K—=
SB1 SB2 SB3 SB4 SB1 SB2
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Fig. 9a-c): Standard deviation of Wavelet subbands with one level decomposition for Peppers, Mandrill and Barbara

images, respectively
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Fig 10(a-c): Standard deviation of Wavelet subbands with two levels of decomposition for Peppers, Mandrill and Barbara

umages, respectively
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Table 1: Standard deviation of Wavelet subbands with two levels of decomposition for various images

Subband standard deviation

Test image LL1 HL1 LH1 HH1 L2 HL2 LH2 HH2
Peppers 24.424 6.154 5.919 4.734 118.599 24.291 25476 20.867
Barbara 22172 9.181 6.152 4.018 114.590 39.877 25.607 32,403
Boat 21.089 5.536 5.510 3.577 105.794 25142 23.100 19.423
Goldhill 11.032 6.030 5.760 3.8 54.319 24.487 24.037 19457
Lena 29.074 5.067 4.549 3.725 148.068 27.744 21.690 19.269
Mandrill 16.179 5476 7.361 3.872 82.753 27404 37.203 22417
Zelda 19.287 5272 5.795 4.042 100.682 24.658 22.656 19.289
Aerial 14.273 4.635 4.985 3.581 74.596 25.235 27.324 19.683
Airfield 27.073 6.193 5.784 4.263 122.805 33.447 35.253 21.484
Bridge 19.986 4.770 5.256 3.566 100.657 25.034 23.988 20.735
2.0 54 7

g (a) g ° (b g (c)

8 g -8 —7

g ) g —| = 61

515 - 5 4] 2

o k=] < 5

2 = 2

- g3 g 47
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£051 - = 2l @
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Fig 11(a-c): Standard deviation of all *2”” FMDFB subbands (1= 2) with one level decomposition (SB1, SB2, SB3 and SB4)

for Peppers, Mandrill and Barbara images, respectively
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Fig. 12(a-c¢): FMDFB standard deviation of all *2'<2* subbands (1= 2, s = 2) with two levels of decomposition (SB1q,
SB2q, SB3q and SB4q) for Peppers, Mandrill and Barbara images, respectively

unlike level 1, for all test images, higher subband standard
deviation lies on SB,,, SB,, SB, and SB,, which are
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Table 2: Standard deviation of FMDFB subbands with one level decomposition for various images

Subband standard deviation

Test image SB1 SR2 3BR3 SB4
Barbara 3.049 0.065 1.197 1.339
Boat 1.440 1.563 0.660 1.241
Goldhill 1.396 1.262 0.013 1.332
Lena 1.293 1.237 0.579 1.236
Mandrill 1.777 1.835 1.858 4.247
Peppers 1.648 1.219 0.703 1.341
Zelda 1.325 1.099 0.658 1.132
Aerial 1.421 1.276 0.765 1.652
Airfield 1.710 2.025 0.950 2142
Bridge 1.753 1.650 0.942 1.841
Table 3: Standard deviation of FMDFB subbands with two levels of decomposition for various images
Subband standard deviation

Test image SB11 SB12 SBI13  SBl14 §B21 SB22 SB23 SB24 SB31 SB32 SB33 SB34 SB41 SB42  SB43 SB44
Barbara 1.77 0.91 0.41 081 0.89 0.42 0.18 0.37 048 024 011 022 1.05 0.50 0.23 0.48
Boat 1.23 0.61 0.27 053 0.6l 0.34 0.15 0.28 0.50 026 011 023 1.01 0.48 0.22 0.44
Goldhill 1.42 0.67 0.31 0.66 0.86 0.47 0.20 0.37 0.57 028 012 024 1.10 0.59 0.26 0.49
Lena 1.15 0.56 0.25 051  0.76 0.37 0.17 034  0.50 024 011 023 099 0.47 0.21 0.45
Mandrill 1.40 0.72 0.33 063 073 0.36 0.16 031 1.01 050 024 050 1.80 0.97 0.49 0.85
Peppers 1.59 0.79 0.36 0.69 0.78 0.39 0.18 034  0.63 032 015 030 1.24 0.62 0.30 0.58
Zelda 1.30 0.66 0.31 0.60 071 0.36 0.16 0.31 0.58 029 014 027 090 0.52 0.23 0.43
Acerial 1.38 0.69 0.34 0.06 0.02 0.34 0.15 0.28 0.62 029 014 030 1.14 0.55 0.27 0.55
Airfield 1.38 0.72 0.34 004 081 0.45 0.20 0.37 053 0.25 012 025 1.07 0.54 0.25 0.49
Bridge 1.39 0.69 0.33 0.04  0.08 0.39 0.17 0.32  0.62 032 016 031 1.25 0.61 0.31 0.61
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