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Abstract: Network motif detection is a very important problem in analysis of Protein-protein Interaction

networks (PPI). In this study, an efficient algorithm for finding probability motifs in PPI networks is presented.
First, a new sampling algorithm is provided to do subgraph mining; it is based on the adaptivity of the extension

set of the subgraph. Then, both topological structure and biological significance are combined to do subgraph
matching for calculating the mismatch point between subgraphs. Finally, the similar subgraphs are grouped by

comparing to a mismatch threshold and the matrix of probability motif for each group will be calculated. Three
PPT networks of Saccharomyces cerevisiae are used to test algorithm and achieve highly efficient and stable
experimental results. Kinds of probability motifs are exactly found.
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INTRODUCTION

For the past few years, with a large number of high
throughput experiments and the development of using
biomformatics methods widely in the prediction of protein
interactions field, people get more and more available
Protein-protein Interaction network (PPI) data.

As a very important research field of bicinformatics,
PPI network 1s used to discuss the evolution of biological
system problem increasingly. Motifs are the building
blocks of PPT networks and showing a very important
local property of PPI networks. Milo et al. (2002) first
provided this definition of PPI network motif. Motifs are
the recurring and sigmficant patterns of mterconnections.
These patterns have a much higher frequency of
occurrences in real networks than in the random networks.
It 15 so important, that the discovery and analysis of
motifs caused the bioinformatics, complex network
research and social statistics fields of wide concern.
Network motifs in biological networks refer to some
biological functions or do some information processing
tasks (Alon, 2007), they can be used to predict
protein-protein interaction (Albert and Albert, 2004) and
discover underlying network decomposition
(Ttzkovitz et al., 2005).

Later on, Berg and Lassig (2004) proposed a new
definition: probability motif. They considered the motifs
were not necessarily identical patterns and discussed

motifs grouping of mutually similar subgraphs. They
derived a scoring function to establish a statistical model
for the occurrence of probability motifs and then they
developed a search algorithm for matching motifs called
graph alignment which was similar to sequence alignment
(Xiang et al., 2010). The algorithm designed by Berg and
Lassig (2004) first introduced the concept of probability
motif and this method didn’t need to produce a large
number of random networks just like traditional methods,
so it had a higher efficiency. On the basis of Berg and
Lassig (2004) and Tang et al. (2006) thought the input
network was also can be probability network. The
algorithm further enlarged probability’s scope, not only
the motifs were not necessarily identical patterns but also
the whole input network was uncertainly. All of the
uncertainty theories are very accord with the real
biological networks and gradually become the emphasis
of bicinformatics research (Zou et al., 2010).

Researchers developed kinds of algorithm for motif
detection. ESA (edge sampling) algorithm was provided
by Kashtan et af. (2004) ESA algorithm 1s independent
from the network scale; the analysis of large network is
effective to find bigger size motifs. But ESA algorithm
cammot ensure getting all the subgraphs and the same
subgraph may be multiple sampling. Tn order to prevent
search repeated subgraphs, FANMOD: a tool for fast
motif detection was proposed by Wernicke (2006) and
Wernmicke and Rasche (2006). A faster exhaustive
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algorithm ESU (Enumerate Subgraph) was used by
FANMOD to enumerate all size-k subgraphs and each
subgraph appears only once. According to the larger
experimental data, they also proposed a sampling
algorithm Rand-ESU (Wernicke, 2006) that had been
widely used in follow-up probability motifs research.
NeMoFinder algorithm adopted the idea SPIN to search
for repeated trees and extended to subgraphs, then
counted the subgraph to ensure the motifs (Chen et al.,
2006). NeMoFinder had enabled the discovery of network
motifs with sizes ranging all the way to meso-scale but at
the cost of missing some potentially interesting motifs
(Ciriello and Guerra, 2008). How to determine the similarity
of probability motifs is a key problem in this few years.
Researchers matched the subgraphs with their adjacent
matrix (Wong et al., 2011) or gave each subgraph a graph
code based on the giving rule (Qmn and Gao, 2012) to
check their differences. The purpose was to find a suitable
method for subgraph alignment then cluster the similar
ones to find probability motifs.

In this study, a new sampling algorithm is firstly
provided for subgraphs based on vertex adaptive rule.
Then the study combines both topological structure and
biological significance to do subgraphs matching. At last,
from the results of front, a classification algorithm is used
to cluster the similar subgraphs and then calculate the
average of adjacency matrixes for each cluster to
determine the probability motifs. Three PPI networks of
Saccharomyces cerevisiae are used as the test data and
achieve highly efficient and stable experimental results.
Kinds of probability motifs are exactly found.

MATERIALS AND METHODS

Generally, finding probability motifs consists of three
subtasks: (1) Find which subgraphs occur mn the input
graph and in which number of size-k, (2) Match the
subgraphs with some rules to determine which of these
subgraphs are similar, (3) Group the similar subgraphs into
classes to calculate the probability motifs from PPI
networks.

New subgraph sampling algorithm: As showing in the
research of Wemicke (2006) the ESU-tree reflects the
algorithm of all processes. The algorithm was applied to
mark all the vertexes and sort them, then program began
mn a single vertex, add a vertex each iteration until the
subgraph to the desired size-k. In addition to have set
Vomgan like ESA (Kashtan ef ol , 2004), there was also
another set called V... They added only those vertices
to the Vigwa Set that have two properties: Their label
must be larger than that of v and they must only be
neighboured to the newly added vertex w but not to a
vertex already in a vertex already in Vg, that is, they

must be in the exclusive neighbourhood of w with respect
t0 Ve Rand-ESU 1s a sampling algorithm to
ESU (Wernicke, 2006) and this method has a lot of
advantages, this kind of sampling algorithm 1s
unbiased and easy to implement but there is a problem
to solve. Rand-ESU gives each vertex in one layer the
same probability value. For example vertex v and vertex u
are 1n the same layer, the child node number of the sub-
tree with v as its root is much higher than the sub-tree
with u as its root. Because of the same probability, which
vertex is chosen will affect the accuracy of the result. The
analysis on the deficiency of Rand-ESU 1s showing in the
Fig. 1 from the original Fig. 4 in the research of Wernicke
(2006).

As show in Fig. 1a, the red part selects four vertexes
with larger degree and larger V... in the first layer: 1, 2,
3 and 4, then continue to extend the sub-tree until get the
size-3 subgraphs. There were 15 subgraphs digged out
inFig. 1a, it means that the sampling coverage to 93.75%.
Figure 1b is on the contrary, the red part selects also four
vertexes in the first layer: 3, 4, 5 and 6 but three of them
have empty extension set; there 13 no way to expand the
size of subgraph. At last, even by the sub-tree with vertex
3 as the root has been always selected, the sampling rate
15 only 6.25%. According to the example, each current
subgraph has its own extension set with different size, so
the randomness of the Rand-ESU sampling algorithm wrill
greatly influence the accuracy of finding motifs. Most of
the PPI networks are sparse and complex networks,
different proteins mvolved in building different number of
interaction edges. For example, most of the key proteins
have larger degrees (Teong et al., 2001), module areas are
more dense to the other area m the whole network
(Yu et aol., 2010). Based on such consideration, a new
sampling algorithm based on ESU has been proposed.

The proposed sampling algorithm is based on the
adaptivity of the extension set of the subgraph called
Adapt Rand ESU (AS-ESU). The basic idea 1s that when
itneeds to expand a new node, the larger the extension set
of current subgraph is, the larger the sampling probability
value will be given. Set a sampling probability P, for every
node for every node when add a new vertex m the current
subgraph:

= Vererion

|
IV =0
= T Ve |

(1)
1

B=——— ¥, =0
k Vm[k]‘ Extensmnl

where, |V guemsie 18 the number of vertexes in the extension
set of current subgraph 1, V,[k] is the relative maximum
value of the extension set size in the whole layer k. In
order to obtain the bare maximum value of the whole layer,
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Subgraphs matching alignment: The motifs detection
algorithm 15 put forward based on the defimtion of
probability motifs proposed by Berg and Lassig (2004), so
the next step needs to find a group of similar subgraphs,
not completely isomorphism ones, their structural
similarity between each other and they can have small
differences. In the real biological theories, when the
organisms being in constant evolution, motifs have also
undergone a certain structure variations, which reflects
the dynamic evolution of biological networks. Calculating
the average value of a group of similar subgraphs’
adjacency matrix to get the adjacency matrix of probability
motif, the key step is how to compare different subgraphs
(Qin and Gao, 2012), so there will need to introduce a
judgment mechanism: subgraphs comparison algorithm.

A graph alignment 15 defined by a set of several
subgraphs and a specific order of the vertexes in each
subgraph; this joint order is again denoted by A
Subgraph vertex matching is the first procedwre to ensure
A. Vertex invariants are some mherent properties of the
vertexes that do not change across mappings (Riaz et al.,
2005). For sunplicity, the step assumes here that the
subgraphs are of the same size-k and detects probability
motifs of different size separately.

The most convenient method is sorting the vertexes
by their degree, from high to low, formmng a one-one
mapping. But different proteins have different function or
other biological properties and motif play an important
role in biological evolution. In this study, the subgraph
matching algorithm complies with these rules: protein
name matching first, then degree matching for the
remaining vertexes.

G"| Vertex | Protein | degree
1 A 3
2 B 2
3 C 2
4 D 1

O

For example in Fig. 3, G* and GP are two subgraph of
size-4 and the purpose is getting the join vertex order of
these two subgraphs by the matching rules. Protein A and
protemn B are both in the two subgraphs, so let them get
matching first: {1, 2} in G* and {2, 4} in G*. For step 2,
sorting the residual vertex according to degree from high
to low in each subgraph, so there gets {3, 4} in G” and
{3, 1} in G". Finally, the vertex order is ensured.

Probability motifs classification: C* is the adjacency
matrix of subgraphs G®, for any two aligned subgraphs G*
and GP, the pairwise mismatch point is defined as follow
(Berg and Lassig, 2004):

(2)

Mismatch (C*, C*) = 2:,=1[c: (1* CE)Jr(lf cj)cz]

The mismatch pomt 1s 0 if and only if the matrices C*
and CF are equal and is positive otherwise. It can be
considered as a Hamming distance for aligned subgraphs.
The lower the mismatch pomt is, the similar the subgraphs
are and they are more likely to constitute a probability
motif.

In order to derive probability motifs only from similar
subgraphs and discover several motifs for a given size,
from this study, a classification algorithm 1s used to find
similar subgraphs and a probability motif for each cluster
is evaluated. First, choose one subgraph &' initially as a
cluster by itself. Then, calculate the mismatch pomnt
between G' and G, if the mismatch point is less than the
mismatch threshold M, G is joined to cluster 1 with G,
otherwise, G* creates a new cluster. When G* is going to

Vertex

o
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Vertex | Protein | degree
1 E 1
2 A 2
3 F 3
4 B 3
Vertex

1

2 |G

3

4

= Step 1: Matching by protein neme

Step 2: Matching by degree order

Vertex order: A= {G" {1,2, 3,4}, G*{2,4,3, 1}}

Fig. 3: Subgraph vertexes matching rules
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02 foreach 6™e §, (m=23,...n) do

10 for each Cluster[i] € Cluster do

12 return the set of probability motifs 5°

Algorithm: Probability motifs classification of size-k

Input: A set of subgraphs 5 = {G* G%,....6™} and mismatch threshold M,
Output: A set of probability motifs 5" = {CM*,CMZ, ...,CM™}}

01 initialization: Cluster[1] = {G*}. ClusterRepresentative[1] = G*

03 set Mismatch,,;, = Mismatch(G™, G*)

04 set N = |ClusterPepresentative |

05 for each ClusterPepresentative[i] € ClusterPepresentative

0e set M = Mismatch(G™, ClusterPepresentativ[i])

07 if M <X Mismatchy;, then Mismatfchy;, = M,setclass =1

08 if Mismatchy,;, = M, thenadd G™ to Cluster[class]

09 else ClusterRepresentative[N+1] = &™, Cluster[N+1]={G™}

11 CM? = CalculateMotifMatrix (Cluster[i])

[/ the average of the adjacency matrix

Fig. 4: Pseudocode for probability motifs classification algorithm

find its classification, compare G* to each cluster to find
the cluster M who has a minimum mismatch point with G*.
If the minimum is less than My, then put G* in cluster M;
otherwise G* creates a new cluster. The pseudocode for
probability motifs classification algorithm is showing as
Fig. 4.

When each subgraph for a given size is divided into
an exact classification as the Pseudocode showing, the
probability motif CM, which is families of each
classification, can be calculated by the set of n similar
subgraphs {G', G°, ..., G"%:

:l . P Y (3)
CM = 3 Mairix (G, &, . G}

RESULTS AND DISCUSSION

To evaluate the performance of this study, three PPI
networks are used as test data: Saccharomyces cerevisiae
PPI data (S-DIP) and yeast core PPI data (Core-DIP-
20120518CR version) downloaded from DIP database
(http://dip.doe-mbi.ucla.edu/dip/Main.cgi), UETZ data
from Uetz et al (2000). According to the three PPI
networks, Table 1 shows the subgraph number of each
size and that is the complete subgraph number without
any sampling operation. The mining result showing in
Table 1 is exactly the same with FANMOD method
(Wernicke and Rasche, 2006). That mean the realization of
the basic ESU code m this study 1s correct.

From Table 1 that complete subgraph set has a huge
number with the increasing of size-k, it is difficult to
continue follow-up calculation, so there must be a

Table 1: The number of subgraphs in different PPI databases

Database UETZ Core-DIP S-DIP
Vertex number 1004 2191 4748
Edge number Q57 4290 15166
Rize-3 2377 31237 355412
Rize-4 10510 343124 15509802
Size-5 56724 4364749 823897272
Size-6 337824 59103782 -
Size-7 2143248 832186474 -

UETZ: Database from Uetz et af. (2000), Core-DIP: Yeast core PPT
database, 8-DIP: Saccharontyces cerevisiae PPI database, PPT: Protein-
protein interaction network

Table 2: AS-ESU and Rand-ESU sampling results comparison
UETZ Core-DIP S-DIP

Size AS-ESU Rand-ESU AS-ESU Rand-ESU AS-ESU Rand-ESU

3 492 203 5857 3410 337%4 25465
491 346 4223 4253 40675 56165
4 1198 414 32857 25195 1036677 1230671
1372 606 35163 19328 843797 381629
5 2394 1125 184321 98580 25364934 18270317
2645 1999 222703 185674 24178701 33692546
6 10538 1574 1037336 709618 - -

11184 4576 1053846 1149213
UETZ: database from Uetz et al. (2000), Core-DIP: Yeast core PPI database
8-DIP: Saccharontyces cerevisiae, PPI database, AS-ESUI: Adaptivity
sampling-enumerate subgraph, Rand-ESU: Rand-enumerate subgraph

sampling mechanism that called AS-ESU based on
improving Rand-ESU. The new algorithin makes sampling
contingency smaller, guarantees the sampling rules
covering more vertexes with higher degree and covering
the relatively dense network area. Keep the same
parameters, rim AS-ESU and Rand-ESU twice to get the
different sampling results in Table 2. The results of
Rand-ESU come from FANMOD, each layer probability
value equals to 0.5. From Table 2, two AS-ESU results of
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size-3 in S-DIP database are 33794 and 40675, the
Rand-ESU results are 25465 and 56165, The second result
of AS-ESU 1s nearly 20% larger than the first time, whle
the second result of Rand-ESU is over 120% larger than
the first time. Obviously, AS-ESU has better sampling
stability and the same situation will appear in the other
two databases. It means that the AS-ESU can better
represent the original network topology property to
improve the accuracy of motif detection.

The last work of the study, the goal 1s for all size-k
subgraph classification according to the result of AS-ESU
sampling algorithm running the 2nd time and following the
rules: protein name matching first, vertex degree matching
second. When size-k from low to high, the more edges will
appear in the subgraphs, then there should allow more

Table 3: Classification result in different PPI networks

Size M, UETZ Core-DIP S-DIP
Size-3 0 2 2 2
Size-4 2 4 3 7
Size-5 3 4 12 -
Size-6 4 11 24 -

My: Subgraphs mismatching threshold, UETZ: Database from Uetz et al.
(20000, Core-DIP: Yeast core PPT database, S3-DIP: Saccharonty ces cerevisiae
PPI database, PPT: Protein-protein interaction nebwork

differences to ensure getting the most representative
probability motifs for each size-k. So i parameters setting,
mismatching threshold M, will increase with size-k and it
is helpful to avoid the classification becoming too rough
or too precise. Table 3 shows the classification result. For
example, there are 4 probability motif classification of
size-4 detected in UETZ database where the threshold
15 2. With the increase of subgraph size, more classes will
be found. Table 4 shows the top two probability motifs
which have a larger percentage in each situation. The
result shows the average probability value matrix and the
topological graph of each probability motif. The larger the
probability value of the matrix is, the denser the
corresponding line in topological graph is. Berg and
Lassig (2004) used the E. coli gene regulatory network
with 424 nodes and 577 edges to find the probability
motifs with size-5. Qmn and Gao (2012) used the network
whose size was similar to Berg and Lassig (2004) and they
also only found the motifs with size-3 to size-5. PPI
networks used m this study have bigger scale than other
biological networks, based on the new subgraph sampling
and matching algorithm, the study can find the probability
motifs with bigger size than other motif detection methods
used in smaller networks.

Table 4: Top two probability motifs that have a larger percentage in each situation

Database Size Matrix p (%)
UETZ 3 o 11 97.76
1 00
1 00
o 11 2.24
1 01
1 10
o 1096 07
4 1 0 007 031 77.55
09 007 0 0O
|07 031 0o 0 |
[ D 1004 0 21.72
1 0 0099
004 0 0 098
L o 099 0%8 0O |
5 o 1096 093 057 44.73
1 0 0 0 045
096 0 0 o004
093 0 0 o007
|0.57 045 004 007 0
0 08 1 021 O
0g 0 0 1 091
1 0o o 0 o0 27.%
021 1 0 0 01
D 0% 0 01 O
(5] 0 072 087 083 0.69 032 2811
072 0 004 001 0.4 067
087 004 O 0 009 0
083 001 © 0 016 001
069 064 009 016 0 009
L1032 067 0 001 009 O
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Table 4: Continue

Database Size Matrix p (%)
[0 097 013 0 0 003 20.00
097 0 087 095 09 098
013 0.87 0 0.01 001 002
0 095 001 0 0 006
0 09% 001 0 0 003
|0.03 098 0.02 006 003 0
Core-DIP 3 0 1 0 oM.67
101
010
o 1 1 533
101
11 10
4 [0 09 1 004 22.77
09 0 037 1
1037 0 001
lod 1 ool 0
[0 1 0 oot 15.66
101 0
o 10 1
oot 01 0
[0 0% 1 018 0
091 0 0 1 09
5 | 5 0 0 o 15.95
018 1 0 0 008
| 0 097 0 008 0O
[0 1t o 009 01
10 1 o0
0 1 0 082 09 14.84
00Y 0 092 0 0
ol 0 0% 0 0
6 [0 1 012 0 0 O 58.06
1 0 099 083 086 088
012 099 0 016 0.14 0.13
0 08 016 0 0 0
0 08 014 0 0 0
| 0 08 013 0 0 0 |
[0 1 0 002 012 014] 14.41
1 0 099 003 007 007
0 099 0 09 081 078
002 003 099 0 0 0
012 007 081 0 0 0
014 007 078 0 0 0 |
S-DIP 3 o 1 1 99,37
00
11 00
[0 11
101 0.63
|1 0
4 [o1 1 1 84.08
10 0 0O
10 0 o002
[1 0 002 O
[0 1 1 0 823
1 0 0 099
1 0 0 o001
lo 092 ool O

UETZ: Database from Uetz et a. (20000, Core-DIP: Yeast core PPT database, 3-DIP: Saccharomyces cerevisiae PPI database
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CONCLUSION

To detect probability motifs, subgraph sampling and
matching are necessary and mnportant steps. In this
study, a new algorithm is provided to calculate the
probability value based on the adaptivity of the extension
set of the subgraph; it 1s an increase of the traditional
sampling algorithm Rand-ESU. According to the
experimental results, the new algorithm has better stability
and it is helpful to the final accuracy of motifs detection.
The next, subgraph matching 1s based on protein type and
vertex degree. That 1s very different from the traditional
motif definition which only considers the topological
characteristics. In the future, studies can do more
experiments for similar subgraphs grouping; there must be
many different clustering methods that can be used for
probability motifs calculation. The future work should
also pay attention to combine more biological information
for motifs detection. The research concept of combimng
biological information and topological structure will be a
new development direction on motifs detection and this
will promote the research to whole biological network
evolution.
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