http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 12 (8): 1522-1530, 2013
ISSN 1812-5638 / DOL 10.3923/1).2013.1522.1530
© 2013 Asian Network for Scientific Information

Source Code Visualization in Linux Environment Based on
Hierarchica Layout Algorithm

'Y1i Lue and *Yanying Han
'Institute of Computer and Communication,
Changsha University of Science and Technology, Changsha 410004, China
“Institute of Mathematics and Computing Science,
Changsha University of Science and Technology, Changsha 410004, China

Abstract: Since, the previous source code analysis tools can not reflect the hierarchical system structure of
source code in Linux perfectly, we propose an automatic lierarchical layout algorithm for source code in Linux
with the emphasis on symmetry. In order to reflect the structure of software according to Linux framework, we
construct the call graph from C language source codes and then divide extracted functions into different
abstract levels automatically. The call graph similar to a tree is visualized by improving Sugiyama layout
constrains and Walker’s layout algorithm. In this study a number of problems related to level-crossing and
subtrees overlapping are solved to make better visual representation. The experimental results show that this
algorithm is appropriate for source code visualization in Linux and can reflect the hierarchical structure and

dependencies of functions preferably.

Key words: Software visualization, source code analysis, limix, layout algorithm, hierarchical layout,

C language, call graph

INTRODUCTION

Linux, an open-source operating system, 1s widely
used on servers, desktops and embedded systems. With
the expansion of system scale, the costs of both forward
and reverse software engineering rise dramatically. As a
solution, assistive tools such as modeling tools and
visualization utilities (Bernardi et al., 2012; Wang et al.,
2003) are adopted to enhance the development
efficiency and save costs. [n Linux environment, it is
very effective to analyze source codes visually for
program understanding, embedded system tailoring and
reverse engineering. Visual code analysis is usually
realized by parsing the source, reflecting the system
structure and behavior on a higher abstraction level and
representing it by chart or graph (Harman, 2010,
De Figueiredo et al., 2008).

The source codes m Linux include the kemel source,
application programs and library functions. Nowadays the
scale of Linux kernel grows increasingly. Meanwhile the
applications get varied and the structure of code become
complex. But Linux itself 1s not defined as a lierarchical
structure strictly and its module structure 1s not clearly
classified. All of these propose higher requirements on
visual analysis tools.

An ideal Linux source code visualization tool should
meet the followmg conditions: Firstly, analysis tools
should be able to describe the software structure,
dependencies and other important properties. The
acquired information can be applied to software
maintenance and reverse engineering. Secondly, the
visual expression of the sowce code should be
straightforward, readable and understandable. Thirdly, it
should be appropriate to analyze all the source codes in
each system level extensively.

Currently, popular analysis tools which are suitable
for source codes in Linux are characterized into two
groups: cross-reference pattern and graphic pattern. LXR
(Linux cross-reference) 1s a typical cross-reference code
analyzer for Linux which can reflect functional relationship
of the kernel comprehensively (Gleditsch and Gjermshus,
2010). But it has not been visualized. CodeViz is a
visualiser which can generate call graph effectively by
analyzing functions dynamically. But it 1s unavailable for
uncompiled programs and kernel (Gorman, 2012). There
are still many intuitive graphical tools which could be
applied to object-oriented programs but not suitable for
C language modeling (Davis ef al, 2003). As a
professional layout tool, dot language, which compact the
spatial structure effectively, can create exciting visual

Corresponding Author: Yi Luo, Institute of Computer and Communication, Changsha Umversity of Science and Technology,
#960, 2nd Section, Wanjiali South Rd, Changsha, Hunan, 410004, China Tel: 86-13723876037
1522

Inform. Technol J., 12 (8): 1522-1530, 2013

effects. For this advantage, it has been adopted by
various code visualiser as layout front-end (Gansner and
North, 2000). However, dot 138 a general-purpose layout
mstrument without code-analysis back-end, so it cannot
reflect the level properties and the calling sequences. If
the codes are comprehensive, the readability may be
diminished.

According to the above issues, this paper designed
a source code parsing tool and visualized source code in
Linux by hierarchical layout algorithm. The architectures
of source codes are depicted to help users to understand
the design concepts of software quickly. Firstly, after
analyzing the source code in Linux, we obtained the
function dependencies and corresponding properties that
can be used during layout processing. Then the functions
are divided mto different system levels by retrieving the
libe-syscall matrix. Finally, considering the structure and
characteristics of source codes in Linux, we designed a
call graph visualiser by improving Sugiyama’s tree-layout
constraints and Walker’s algorithm to make better visual
representation.

SOURCE CODE VISUALIZATION METHODS IN
LINUX ENVIRONMENT

For object-oriented languages like Java, the entities
needing to be visualized are classes and the relationships
between them are mainly mnheritance. However, for a C
program, the visualized entities are functions and the
critical relationships are call relations. Call relations are
hidden among the codes and can be represented as call
tree. But merely the call relationships cannot represent the
architecture of program clearly. We tried to combine them
with the Linux system structure to form a clear hierarchy.
According to the requirements for source code
visualization, the visual procedure contans three steps:
source code analysis, system structure layering and
layout. Hence, our system includes three major modules:
(1) a source code analysis tool which 1s used to analysis
the text of C language code and acquire the
corresponding attributes, (2) a system structure layering
tool which is used to retrieve the libc-syscall and
syscall-kemel matrices
assoclated with fimetion attributes and (3) a layout tool
which can draw the hierarchical call graph for the
specified function based on its level and attributes. The
system flowchart i1s shown in Fig. 1.

and locate function’s level

Call relation analysis for source codes: The call relation
analysis tool analyses the call relationships between
functions. There are two kinds of commonly used
analytical methods: dynamic and static. The dynamic

Source code
analysis tool

Libc-syscall
matrix

A 4

C Source code l

Hierarchical
call graph

System structure
layering tool

|

Layout tool

\——/
Syscall-kernel
matrix

Fig. 1: System flowchart of source code visualization
system

A

methods are usually compiler-dependent and easy to
implement, while the code that could be processed must
be compiled successfully first (Bohnet et al., 2008). So
they are not quite suitable for uncompiled applications
and the source codes of kernel.

For this reason, static analytical method 1s adopted in
this paper to scan the source code file and find the call
relation between functions. At present, there have
been various CG{Call Graph) algorithms mecluding
NBR(Name-Based Resolution) algorithm, CHA (Class
Hierarchy) algorithm, RTA (Rapid Type Analysis)
algorithm and so on (Nan, 2006). In Linux, static code
scanning tools, such as CallTree, output the CG by NBR
algorithm in plain text (Schilling, 2010). This text has not
been transferred nto hierarchy model, so it can not be
used for layout directly.

CG is defined as a directed acyclic graph which
represents binary relationship of the selected entities
(Gang, 2009). The entities can be programs, functions,
modules or files. This paper defined CG H to describe the
function relation. Eliminated the recursive calls, H
becomes an acyclic graph whose nodes can be ranged
according to the sequence that the functions are called.

Definition 1: CGH = (V, E, V), V,; is the node set of CG
denoting the function set of source codes in Linux. E 1s
the edge set representing the call relations between
functions. And V is the attribute set of functions
representing various kinds of attribute value involved
during the analytical procedure.

The core algorithm of call-relation analysis tool 1s a
call parsing algorithm for C language source code. C
language program usually starts with a main function, so
parsing begins with this function and all the calling points
are processed by the order of presence recursively. If
there are some nested calls, the nested depth and
corresponding file name should be recorded and the
subfunction should be located. The functions will be
parsed recursively until all the functions are processed.

1523

Inform. Technol J., 12 (8): 1522-1530, 2013

Algorithm 1: C language parsing method

Step 1: mainFunc Vg (normally mainFunc is main function. Users can
specify his own mainFuc too.)

Step 2: For each function M in set Vi, if there is a nested function, namely
nestFunc, called by M, we let nestFunceV; and M-nestFunce E. Meanwhile
we set nested depth as nestLevel = nestLevelt+1 and deal with the lower
level. After all the nested functions are processed, we go back to the upper
level. Tf set V" is the set of functions being called by M, V' also belongs to
set Vg, that is (Me Vg)=(V' € Vy).

Step 3: Perform step 2 repeatedly, until the end of mainFunc or the nested
depth reaches a maximum value.

The principal attributes extracted from source codes
include function name, function’s file name, subfunction
list, nested depth and so on. Taken C code cls.c from
software package of Apache as an example, the CG
adjacency list is shown in Fig. 2.

System structure layering for functions: The CG we
constructed above can represent the call relation of
source code in Linux and can be visualized by dot
language. But because of the complexity of call relation,
the picture draw from this CG directly produces a poor
layout without strict system-level hierarchical structure.
In order to help users to under stand software structure
from the system-level, we divide functions into different
abstract level before we start to layout. This improved CG
is defined as hierarchical CG H' as follow.

Definition 2: Hierarchucal CGH' (V. E, V. L, C), L 1s the
set of layers representing the layer that the function
belongs to. C expressed as C: Souwrce~T arg et is the
association set that corresponds to relations between
nodes. Here, SourceeV,, T arg et € V and the relation
between them could be ancestor-descendant, father-sen
or brothers.

In Walker’s algorithm, the layers are merely computed
by the Inherit sequence of nodes, therefore can not reflect
the system-level structure of software perfectly
(Walker, 1990; Buchheim et al., 2002). To solve this
problem, according to their abstract system-level, we
divide the functions into four layers: user application
level, libc level, syscall level and kemel level The
application program belongs to user level. Libc level
contains the functions in the standard function library of
C language. And in Linux it particularly refers to glibc
which 1s widely used in Unix-like systems. Glibc contams
many APIs (Application Program Interface) which
normally correspond to a homonymic system call. System
calls associated itself with API via wrapper routine and
provide the service that 1s needed by the application from
the kernel. The kernel level belongs to operating system
and can not be called by applications directly. Single
system call can call multiple kernel functions and
sometimes APT 1s not associated with any system calls, so

& Adjacency List Viewer

['rain [cls.c81] -="checkmask "

"checkmask [cls o 34] "-="isdigit"-="islower "-="isupper "-="isxdigit "-="""

'rain [cls.ci91] -="closedir -="exit "-="fclose "-="fyets "-="fopen "-="fprintf"
-="gmtime "-="hex2sec [cls.cor0]"

"hexZsec [cls.co70] -="isdigit"-="isupper "-="""

"main [cl=.c:91] "-="opendir "-="perror "-="printf "-="readdir "-="=printf"
-="stropy "-="strftime "-="strlen "-="strncmp"-=""

cls.c's Adjacency List Wiew

Fig. 2: CG adjacency list of ¢ls.c

the call relations between functions in four levels are not
one-to-one correspondence. The application programs
call the kernel function by system call, i.e., the system call
service routine.

So, we define the node set of CG as V=V, UV, U
Ve Ve Vi and V_ refers to the function set of
applications, libc and system calls, respectively. To set
the various function levels for source codes, each
function should be located into one of these sets. In a
specified Linux system, the CG of libe, system call and
kernel, which is a disordered hierarchy graph, is
determinate. Tn Linux, the name and identifier of system
calls is saved in a file named unistdh and the
corresponding service-routine address is saved in the
table called syscall table.S. By parsing these files, the
relationship between system call and kernel function is
obtained. Also by using the C language analysis
algorithm we mentioned above to process libc source
code, we construct the relationship between system call
and libe. After that the function layering tools can query
these two relationship tables to locate a specified function
to its corresponding set.

In order to embody the system-level of the function,
nodes are arranged top to bottom according to the user-
libe-SystemCall sequence.

Definition 3: We defined function’s level as I = (Depth,
LimuxSysLevel). Depth refers to the calling depth of the
function node in H. LinuxSysLevel refers to system-level
of the function m H'.

With our method the height of function node is set
by LmuxSysLevel instead of Depth. The value of
LinuxSysLevel is growing as the function node getting
closer to the bottom. For arbitrary function node that
belongs to set Vg, the LinuxSysLevel can be set by Eq. 1.

node.Depth (node eV,)
node.LinuxSysLevel = i MaxDepth +1 (node= V) (1)
MaxDepth +2 (nodes UV,)

MaxDepth is the maximum depth of nodes. There will
be a cross-layer when the LinuxSysLevel of anode 1s not

1524

Inform. Technol J., 12 (8): 1522-1530, 2013

Fig. 3(a-b): Layer crossing issue (a) Call tree set by Depth and (b) Call tree set by LinuxSysLevel

Virtual
nodes {
/ -~
O O
Node A

Fig. 4: Call graph after adding virtual nodes

equivalent to its Depth, such as node A shown in Fig. 3.
In such a situation, two problems arise. One is that the
sequence of function calls shown in the call graph may
change. For example the node will move to the right side
of its right brother so that the calling sequence will be
destroyed. On the other hand, the number of
crossing-edge will increase too (Fig. 3).

Therefore virtual node is added in the original
position of node to avoid calling sequence changing and
more virtual nodes are added in each level between
original and updated position to avoid edge-crossing. The
call graph after adding virtual nodes is shown in Fig. 4.

Hierarchical call graph 1s accomplished after all the
nodes are layered. The main properties of each function
node include function name, storage location, father,
children list, calling depth and system-level. Still taken
cls.c as an example, the main properties list 1s shown in
Fig. 5.

Hierarchical layout for call relations: The hierarchical CG
describes the mmer logical relationship between functions,
but still hasn’t been visualized. To visualize the source
code, the layout must be generated based on the call
graph.

Layout constraints of call graph: The layout of CG
should be understandable, readable and capable of
reflecting the structure of the function and characteristics.
Considering the aesthetics, it should be clear and balance.
Considering the features of source code in Linux and
based on Sugiyama’s drawing rules (Sugiyama ef af.,
1981), the layout constraints include the following:

» Layout 15 a descending graph. The function beng
analyzed is placed at the top. The level of the node
can reflect the actual level of function in Linux
system

» Nodes should be sorted according to the calling
order, which makes it easy for users to understand

» To mprove the comprehensibility of figure, subtrees’
outlines should not overlap each other

» With a clear hierarchical structure, the figure can
represent the calling relations between functions

» Edge crossing are avoided (mimmization of edge
Crossing)

» Parents are placed at the barycenter of their children

There are a variety of layout algorithms that
can satisfy the drawing rules 4 to 6 at present. But the

1525

Inform. Technol J., 12 (8): 1522-1530, 2013

Function's Attribute

Funcitaon Father Chidren List

1 main [cl=.ci...|nane u} u} checkmask [cls.c:34] closedir g
2 checkmask.. |[main [cls.c 1 1 isdigit \islower isupper isxzdigit
3 isdigit checkmask.. |2 e}

4 islower checkmask. |2 3

a isupper checkmask.. |2 e}

5] isudigit checkmask.. |2 e}

T closedir main [cls.co. |1 3

= exit main [cls.co. |1 3

2l folose main [cls.co. |1 3

10 |fgets main [cls.co |1 e}

11 |fapen main [cls.co |1 e}

12 |fprintf main [cls.co |1 e}

13 |grmtime main [cls.co |1 e}

14 |hexZsec [cl... main [cls.c |1 1 isdigit isupper,

158 |isdigit hexZsec [cl... |2 e}

16 IEIRT=ToT-1 hawloar] hrl 2

4] Il [T1r]

Fig. 5: Function attributes table of cls.c

traditional algorithms compute the layer merely by
mheritance relationship and carmmot reflect the system
structure of software in Linux. To compress layout area,
subtrees are overlapped along X axis direction
Furthermore he traditional algorithms support (k_2)-partite
tree which cannot solve the cross-layer problem. Hence
the existing algorithms need to be improved.

Layout algorithm of call graph: The layout algorithm
calculates the coordinates of each node based on the
calling relation we obtained above. And the edges are
drawn after that by a preorder traversal The layout
algorithm is described as follows:

Algorithm 2: Hierarchical layout algorithm
Function DrawCallTree();

Position(); //Calculates the coordinates
DrawGraph(); //Routing

End

The position algorithm, which 1s improved based on
the Walker algorithm, computes x coordinates, while y
coordinates are computed by node level (Buchheim et al.,
2002). To improve the readability of figure rather than try
to the compress the layout area as much as possible, the
distance between two trees are set in this algorithm.

In order to generate the node’s position, PreX is set
as the initial value of X coordinate which refers to the
relative coordinate in the subtree it belongs to. And
ModX 1s the modification value of X coordmate which
refers to the distance that the subtree needs to move from
left to right to make the call tree be balance.

To produce the final x coordinate of a node, two tree
traversals are used. The first traversals, PostTraversal, 1s
a postorder traversal which is used to calculate the PreX
and Mod¥X for each node. The second traversals,
PreTraversal, is a preorder traversal which determines the
fnal x coordmnate for each node. To separate subtrees, the

distance between trees should be given when we
calculate the value of PreX. To keep the subtrees from
crossing and minimize the distance between their roots,
TreeSpace is set as the minimum distance between
subtrees.

In the postorder traversal, the nodes’ default
coordinates in subtree are given. Assume that the
distance between the most right son of left subtree and
left subtree’s root 1s d, and the distance between the most
left son of right subtree and night subtree’s root 18 d,.
Normally the space between two subtrees 1s the sum
of d, and d,. But if there is only one son in each layer of
these subtrees, the space we’ve calculated may be smaller
than the width of the node itself, namely NodeSize.

Therefore TreeSpcace = Max((d,+d,), NodeSize).

The postorder traversal algorithm is described as
follows:

Algorithm 3: PostTraversal(node,level)

Step 1: After initialized and then taken the boundary of current layer, we add
the current node to form the new boundary. ModX value of the node is set
to 0.

Step 2: If the node is a leaf and has left brothers, then we set
PreX(node) = PreX(leftSib}+spaceX+TreeSpace. If' the node is a leaf and has
not any left brothers, then we set PreX(node) = 0. Here, spaceX is the
minimum horizontal space between nodes.

Step 3: If the node is not a leaf and not all of the sons have been processed,
we take a son and perform step 4 recursively.

Step 4: We take most-left unprocessed son as the current node to perform
PostTraversal recursivety. After that we calculate the middle point, namely
midPoint, of the subtree. Tf node has left brother, then set Pre(node) =
PreX(leftSiby+spaceX+TreeSpace and ModX = Pre (node)-midPoint. If node
has not left brother, then PreX(node) = midPoint.

Step 5: End

During a second preorder walk, each node 1s given an
x coordinate. PreTraversal processes the root first and
then subtrees from left to nght Finally leafs are
processed. All of the subtrees are moved to right
according to the modifiers which makes sons arranged

1526

Inform. Technol J., 12 (8): 1522-1530, 2013

under father balanced. The x coordinate value of node v
1s given by summing its prelininary x coordnate and the
modifiers of all its ancestors. The y coordmate depends
on the system level Eq. 2.

x = xAdjust + PreX(v)+ E ModX({v,)

) 2)
y = yAdjust + v.level xspaceY

Here, xAdjust and yAdjust 1s the adjustment value of
coordinates. The ancestor(v) is the ancestors set of node
v and spaceY is the longitudinal separation.

Routing: The routing algorithm reads the function-node
coordinates from the hashtable and connects the nodes
which have been called with their farther. This algorithm
judges the validity of the coordinates firstly. And then it
sets the size of the layout based on the width and height
of call tree. Finally it draws the call graph.

Actual function nodes are connected according to
the call relationship directly with node name. When the
connection contains virtual nodes, nodes are comected
in accordance with the inheritance relationships without
virtual nodes’ name.

EXPERIMENTAL RESULTS AND ANALYSIS

To verify the validity of our method, we designed
software named CallTreeLin by java language which can
parse the source codes in Linux and acquire the layout of
call graph. CallTreeLin can run on both Windows and
Linux platform. This study analyzed a set of programs
written in C language in Linux and drew their call graphs
as shown in Table 1. The C language parsing tool
analyzed 5 kinds of software. Each kind includes 3
specified source codes. The numbers of functions that are
parsed see the third column. We can see that number of
functions varied with scale of code and the biggest call
tree is produced by cum which includes 315 function
nodes. And in total we processed 2472 functions nodes.

Graphviz, which 1s developed by Bell laboratories,
adopts general composite layout-algorithm and become
the most commonly used tool for call graph layout
currently (Gansner and North, 2000). We use dot, the

Table 1: Software systemn studied

hierarchical layout tool of Graphviz, to compare the
automatic layout algorithm we proposed. Because the dot
language itself cannot analyze the source codes, we
designed a transformation program that could convert the
calling relationship between functions into the dot
language. Then dot language can produce its own
layout.

Readability improvement: Firstly, this paper draws the call
graph which can reflect the system level of all functions.
Fig. 6 is drawn by dot. Tt represents the call graph of
parse-dir-colors which is function of software named tree.
Because dot usually changes the order of function nodes,
1t canmnot reflect the order that each fimction being called.
Dot arranges the nodes in layers in mherit order, so the
system level 18 not very clear. In Fig. 6 we can see that
xmalloc calls the same libe function repeatedly. The same
call tree drawn by CallTreeLin as Fig. 7. Scopy, sprintf and
strlen are subfunctions of parse-dir-colors. Scopy, which
is written by user, belongs to application level. Sprintf and
strlen belongs to libc level which is lower than scopy.
Sprintf called system call write which belongs to the
bottom level, that is, system call level. From this picture
we can see that with our method the functions are
arranged in order that they are called. In application level
of the tree structure, there s not any crossing. The
applications, libc functions and system calls are well
arranged with a clear system structure which makes the
call tree readable and understandable.

Secondly, when dot 15 drawing the call graph, one
line represents one call of function. Hence it only
indicates the frequency that the function 1s called rather
than the order and position of functions. In the case of
functions being called frequently, the graph will lost its
readability. This paper draws a new node for each
function call to represent the order and position of
functions. Meanwhile it solve the problem that there may
be too many crossings and raise readability of call graph.
The effect comparison of both methods is shown as
Fig. 8.

Testing all the functions in Table 1, the experimental
results show that the number of node and edge 1s very
close in our method (Fig. 9). That is because we arranged
the nodes m a specified order and tried to reduce the

Software type Software name Number of functions
Developing tool Busybox, gec, tree 10+22+24=56
Multimedia Paino, Mp3fs -0.32, Mpd-0.17 458+13+135=606
Image processing Ristretto-0.1.1, cum-20110726, gif2png 3H307+306=652
Video display Gxine_0.5905, notmuch-0.13, radeontool-1.5 146+315+96=557
Text processing Abcem?2ps-7.0.16, difffilter-0.3.3, gummi-0.6.5 135+44+47=226
Network Apache, vsfipd-3.0.2,openssl-1.0.1¢ 214451+110=375

1527

Inform. Technol. J.,

12 (8): 1522-1530, 2013

parse_dir_colors [color.c:76]

@ Xmalloc [tree.c:834]

(mee)

Fig. 6 Call graph generated by dot

£ Draw Tree

brk geteny Isatly

=

Xmalloc [tree.c:824]

colors [colorc TE]

Libe

exit write shrk mimap syscall

Fig. 7. Call graph generated by our method

FianoResponse

Repeated function

iAppendrlewline

calls generated by dot

arlliPrintStation

arllibl=sg [Ui.c:97]

Repeated function cals generated by CallTreeLin

Fig. 8: Comparison of repeated functions calls

crossing. The experimental results also show that
there 1s little difference between the numbers of layer
of out methods and dot. In order to reduce the area
of layout, crossings generated by dot increase
remarkably with the increasing of function number.
While there
method Fig. 10.
Another major objective of our study is to reduce
layout area on the basis of better readability and

understandability. So we compared the layout area of our

18 not any crossing generated by our

method with dot under the circumstance that the character
size of function name 1s same 1n both methods (Fig. 11).

When the software is relatively simple, because the
node size is smaller, with our method the layout area is
much smaller than that of dot. With the mcreasing of
software complexity, more nodes are added to the layout
by owr method and the layout area increase dramatically.
Therefore with increase of function number, the layout
area of out method become closer to dot but still has a
little advantage i number of pixels Fig. 11.

1528

Inform. Technol J., 12 (8): 1522-1530, 2013

500 A

—— Node number with dot
—#— Node number with orignal
—&— Edge number with dot
—»— Edge number with orignal

400

300

200

Node/edge number

100

T 1
9 19 29 36 47 63 91 121 137
Number of function

Fig. 9: Comparison of node and edge number

300 7—e— Crossing number with dot

—a— Crossing number with original
250

200 -

150

No. of crossing

100

50

9 22 36 47 91 124
No. of function

Fig. 10: Comparison of edge-crossing number

7,000,000 7—s— Area with dot
6,000,000 —&— Area with original

5,000,000 -
4,000,000

No. of pixe

3,000,000 -
2,000,000 -
1,000,000 -

0 - T T T 1
9 19 29 36 47 63 91 121 137
No. of function

Fig. 11: Comparison of layout area

The Significance of Layout: When designing the
source code visualizer, we wish that the layout could
reflect more information about functions.

First, the layout should embody the call-relation and
dependent-relation between functions directly. We can
see that the functions within a subtree are relevant to
each other and the nodes depend on their descendants.
Hence, the layout may assist users to understand the

software structure, to tailor Linux into a smaller special-
purpose system and work as an auxiliary tool for software
maintenance.

Second, layout should describe corresponding libe
functions and system calls that are called by each
function particularly. By analyzing the features of libc
functions and system calls, the core functions of software
can be derived. According to functions, libc functions
and system calls can be classified into file processing,
data processing, time control, user management and so
on. As shown in Fig. 7, libe functions, such as stremp,
strlen and strcasecmp, are operations that mampulate the
string. So, we can infer from the libc functions that the
main goal of these source codes is to operate on string.

Finally, the complexity of layout reflects the
complexity and scale of the program directly. As we can
see in Fig. 9, program complexity is proportional to the
node number and the layout breadth. Targe-scale software
usually has bigger width. If the width of smgle fimction 1s
too big, it may imply that the module is relatively
complicated and should be divided into submodules. The
depth of call graph is proportional to the height of layout.
If the height of layout is too high, it may imply that the
coupling degree of function 1s relatively lngh and it needs
to be improved. By testing the existing software, the
layout of most mature software product keeps a depth
within 6. In conclusion, the layout may assist users to
measure the complexity of software and to evaluate the
software.

At present, there are two kinds of source-code
analysis tool for Linux: cross-reference pattern and
graphic pattern. LXR analyze the code m Linux
automatically but reflect functional relationship in a
textual form (Gleditsch and Gjermshus, 2010). Most of
visual tools, such as CodeViz (Gorman, 2012), Doxygen
(Heesch, 2008.) and so on can generate call graph
effectively using Graphviz (Gansner and North, 2000) as
front end for call graph layout. We designed a layering
tool that can change the hierarchical attribute of a node
according to its system level. And the layout algorithm 1s
optimized to reflect the system hierarchical structure
which makes our method unique to other source-code
analysis tools. Meanwhile the area of layout is relatively
smaller than Graphviz.

CONCLUSION

This study developed a tool that can parse the C
source codes in Linux into call graph. A set of layout
constrains based on Sugiymama hierarchical layout
algorithm are selected. With these constrains, the issues
caused by call graph generating and hierarchical layout

1529

Inform. Technol J., 12 (8): 1522-1530, 2013

are analyzed. And we improved the tree layout algorithm
based on Walker’s algorithm to make it suitable for C code
in Linux. We analyzed the problem arose when combiming
Linux system structure to hierarchical layout algorithm
and gave possible solutions. Virtual nodes are set
avoiding level-crossing problem and Tree Space is set
avolding subtrees overlapping along X-axis direction to
umprove visual presentation.

According to the layout effects of applications, the
experimental results show that our method is more
suitable for source code visualization m Linux than
common source code visualizer. Functional dependency
and software structures are represented clearly. The
above information play an important role in Linux code
analysis, Lmux software reverse engmmeering, system
optimization, system tailoring and customization of
embedded system. In the future we will consider how to
represent other attributes of functions during the
visualization procedure, such as functional property, data
dependence, coupling degree and cohesion.

ACKNOWLEDGMENT

This research study 1s financially supported by
Scientific Research Fund of Hunan Provincial
Education Department (No. 10C0368).

REFERENCES

Bermardi, S., T. Merseguer and D. C. Petriv, 2012.
Dependability modeling and analysis of software
systems specified with UML. ACM Comput.
Surv., 45: 14-22.

Bohnet, J. and J. Doellner, 2008. Analyzing dynamic call
graphs enhanced with program state information for
feature location and understanding. Proceedings of
the 30th International Conference on Software
Engineering, May 10-18, 2008, Leipzig, Germany,
pp: 915-916.

Buchheim, C., M. Junger and 3. Leipert, 2002. Improving
walker's algorithm to run in linear time. Proceedings
of the 10th International Symposium on Graph
Drawing, August 26-28, 2002, Irvine, CA, USA,
pPp: 347-364.

Davis, T.A., K. Pestka and A. Kaplan, 2003. Kscope:
A modularized tool for
object-oriented programs. Proceedings of the IEEE
International Workshop on Visualizing Software for
Understanding and Analysis, May 26-28, 2003,
Grenoble, France, pp: 128-134.

3d visualization of

De Figueiredo Carneiro, G., R. Magnavita and

M. Mendonca, 2008 Combining software
visualization paradigms to support software
comprehension activities. Proceedings of the

4th ACM symposium on Software visualization,
September 16-17, 2008, Munich, Germany,
pp: 201-202.

Gang, X, 2009. Design and Implementation of C program
call graph construction algorithms. J. Guizhou Univ.,
27: 77-81.

Gansner, ER. and S.C. North, 2000. An open graph
visualization system and its applications to
software engineering. Software-Pract. Experience,
11:1203-1233,

Gleditsch and PK. Gjermshus, 2010. LXR, Linux
cross-reference. LXR community. http:/Ixr. linux .no/.

Gorman, M., 2012. CodeViz: A callgraph visualiser.
http: //www.csn.ul.ie/~mel/projects/codeviz/.

Harman, M., 2010. Why source code analysis and
manipulation will always be mmportant. Proceedings
of the 10th TEEE Working Conference on Source
Code Analysis and Manipulation, September 12-13,
2010, Timisoara, Romamia, pp: 7-19.

Heesch, D, 2008. Doxygern: Generate documentation from
source code. hitp:/www.stack nl/i~dimitri/doxygen/.

Nan, L., 2006. Design and implementation of call graph
analysis tool for aspect-oriented program. Shanghai
Communication Univ., pp: 12-15

Schilling, T., 2010. Calltree: Valgrind skin for cache
simulation and call tracing. http://www.usinglimux.
org/devel/calltree html.

Sugivama, K., 5. Tagawa and M. Toda, 1981.
Methods for visual understanding of hierarchical
system structures. IEEE Trans. Syst. Man Cybernet.,
11: 109-125.

Walker, 1.Q., 1990. A node-positioning algorithm for
general trees. Software-Pract. Experience, 20: 685-705.

Wang, Q. W. Wang, R. Brown, K. Driesen, B. Dufour,
L. Hendren and C. Verbrugge, 2003. EVolve: An open
extensible software visualization framework.
Proceedings of the 2003 ACM symposium on
Software visualization, June 11-13, 2003, California,
USA, pp: 37-43.

1530

	1522-1530_Page_1
	1522-1530_Page_2
	1522-1530_Page_3
	1522-1530_Page_4
	1522-1530_Page_5
	1522-1530_Page_6
	1522-1530_Page_7
	1522-1530_Page_8
	1522-1530_Page_9
	ITJ.pdf
	Page 1

