http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 12 (8): 1600-1606, 2013
ISSN 1812-5638 / DOL 10.3923/1t).2013.1600.1606
© 2013 Asian Network for Scientific Information

An Approach to Generate Test Goals from Use Case Scenarios

Azhar Mahmood and Shaheen Khatoon
School of Computer and Applied Technology, Huazhong University
of Science and Technology, Wuhan, China

Abstract: Scenanos are used to describe the functionality and behavior of a system. Scenarios are an important
mechanism for requirements specification and can be used to generate test goals at requirements analysis level.
By using scenarios in system testing, we are able to start testing at very early stage of software development.
By eliminating model defects before the coding begins and the test case creation results in significant cost
savings and higher quality code because later the defects captured are more costly in term of effort and time.
Cwrrent approaches for system testing are using a use cases scenario which involves functional details that
seem to be difficult at very initial level of software development. In this study, an approach is proposed for
system testing directly derived from the specification without mvolving fimctional details. Pre and post
conditions to use cases are utilized a guard that enables the generation of formalized test cases; also contracts
are added to each level that makes it possible to generate test cases for each flow of the system. The
contribution of this study is to provide an approach for testing software system that not only helps in starting
testing at early stages of software development, but also provides a mechamsm to elaborate and refine the

specifications.

Key words: Requirement validation, scenarios, use cases, system testing, contracts

INTRODUCTION

A UML use case 13 a system specific usage model
enabling identification of complete requirements and
analysis consisting of collection of scenarios whereas
use case analysis provide a key for complete
understanding of the system (Briand and Labiche, 2002).
By using UML technique user requirements are stated
i terms of use cases that can better combine the
user needs with the system behavior in the form of
user-system interaction when the system will be 1n
operation.

A use case based testing deal with capturing of user
requirements and the generation of test cases for the
system at early stage m the engineering process and
validating the tests with the specification of the system.
Hence, use cases may provides a foundation for the
system level testing (Raza et al., 2007). The basic principle
behind the system testing is to verify the functional and
performance aspects of the systern;
alternatively the system is tested and compared to its
specification which verifies the results and functionality

mtended

of the system. UML use case testing validates the user

requirements with an intention of ¢larifying what the user
actually requires from the system. The objective of using
use case based testing 1s the generation of test cases at
early stage of software development which can help to
identify the unclear requirements (Blackburn et al., 2004).

In this study, an approach is presented for system
level testing based on UML analysis artifacts such as
system use case diagram, scenario diagram and
sequence diagram m order to generate system test
requirements. UM, use cases are used to model entire
system usage flow whereas use case scenario expresses
the execution flow of a use case that can be used to
extract sequence diagram. We are enhancing the concept
described (Whittle and Tayaraman, 2006) by using
contractual use cases. In the proposed approach
contracts are added to the use cases that helps to capture
the sequential events alternatively representing complete
flow of the system by which the system has to be pass
while execution. Test requirements are generated as
logical expressions with the help of contracts, as
requirement level logical expression allows requirement
validation and test case generation early in the design

phase.

Corresponding Author: Azhar Mahmood, School of Computer and Applied Technology,
Huazhong University of Science and Technology, Wuhan, China

1600

Inform. Technol J., 12 (8): 1600-1606, 2013

RELATED WORK

Ryser and Glinz (1999) presented a techmque for the
description of use cases with scenarios using state chart
and deriving test cases from state charts in a systematic
manner. Scenarios are created from requirement natural
language by creating a step-by-step description of events
and actions perform by the system. Narrative scenarios
are then transformed into state charts; test cases for
system test are generated by path traversal in the state
charts. Fwthermore, a comprehensive notation for
modeling scenario dependencies has been proposed,
however the approach i1s manual and state chart
generation process 18 declared to be a creative activity
and 1s achieved solely by the experience of the tester.

Briand and Labiche (2002) proposed an approach that
mvolves use case diagram, activity diagram and sequence
diagram for the generation of system level tests cases.
Use case dependencies are modeled by using activity
diagram and the functionality of the system is modeled by
using class diagrams. The sequential constraints are used
to generate test requirements which is described in
meta-model and contains formal description of class,
operators and contracts. Concrete test cases are obtained
in the form of regular expressions written in OCL.
However, there are several limitations exists in the work,
first the test criterion is based on the coverage of the
regular expressions obtammed by the projection from the
activity diagram. This criterion leads to a very large
number of test cases. We believe that test criteria have to
be found, leading to a more realistic number of test cases.
Second, the activity diagram is either incomplete to
generate sigrificant test sequences (so all functions are
not covered) or complex to define (with the risk of
specifying infeasible use-case sequences). Moreover, not
all the interactions between actors are taken into account.

Nebut et al. (2003) proposed an approach by the
mspiration of Briand and Labiche (2002) on UML based
approach for system testing. Contract language for
requirements 1s defined as pre and post conditions
assoclated as logical expression To generate test
objectives Use Case Transition System (UCTS) 1s buald.
UCTS 18 a valid sequence of use cases representing the
possible ordering of instantiated use cases. Instantiated
use cases are obtained by replacing their set of formal
parameters by all possible combination of their effective
values. The use case transition system represents all the
valid sequence of use cases referred to as path. From
UCTS test objectives are generated that are finite
sequence of instantiated use cases and most test
objectives are not directly implemented. Test objectives

define a finite sequence of use cases if each test objective
traverse path in UCTS then these test objectives are said
to be consistent.

Raza et al. (2007) proposed a test path generation
approach for scenarios using Interaction Overview
Diagram (IOD). From the operational contracts in IOD a
Contract Transition System (CTS) 1s built that specifies
the pre and post conditions. A CTS metric is developed
base on the operations in IOD that shows states and
contracts in the CTS. Based on CTS metrics scenarios are
generated for each use case and finally test path are
created by applying coverage criteria i.e. all transition
coverage or all state coverage.

Hsia et al. (1994) presented a tree based approach for
generating scenarios from use cases. Scenario tree consist
of nodes and arc comresponding to states and events.
Scenarios are formally stated by using the regular
expression that results mto determmistic finite state
machine with a single state that defines it’s both imtial
and final state. Kosters et al. (1997) presented an
approach for mapping use cases into static classes and
methods. Directed graph are used to describe use case
where a node inherits the scenarios. The technique
transform he scenario steps into action by using tree
methods. Alspaugh et al. (2005) proposed requirement
based V and V model in order to develop requirement
scenario description language named “ ScenarioML”,
used to generate test goals from functional requirements.
An event based tree 13 generated from functional
requirements. Test goals are generated by using test
coverage metric that covers all the sub-goals in the event
tree. A test suits consist of set of event traces that
integrally provide goal coverage. Kim et al. (1999)
proposed an approach for class testing by using a set of
coverage criteria based on data and control flow in UMI
state diagram. The state diagram shows the basics and
composite states and described as OR-State/AND-State.
States can have actions that contains list of operations for
transition being occur. Test cases are generated by either
using control flow or data flow methed.

Most of the approaches present in the literature
involved more functional details e.g. Briand and Labiche
(2002) uses class diagram which demand more functional
detail which cannot be captured at early stages of
requirement analysis. Whereas, Whittle and Jayaraman
(2006) focused on hierarchical state machine generation
from scenarios. First, use case scenarios are created for
each use case, then node sequence diagram are created.
Finally, a hierarchical state chart is generated by
combimng node sequences. Since, contracts are not
applied in sequence diagrams, hence testing and test

1601

Inform. Technol J., 12 (8): 1600-1606, 2013

criteria are not the objective of this approach. Nebut et al.
(2003) presented appreach 1s a UML based system level
testing. It defines the contract language for requirement
as pre and post condition associated as logical
eXPIessIon.

We have presented an approach that has mspiration
from Briand and Labiche (2002) and Nebut et «f. (2003)
work. Our proposed approach differs with the fact that we
are taking into account only the specification of the
system without involving the functional details so a level
above on the specification by captiring the sequential
ordering of the use cases with the guard annotation
defined as contracts. Addition of contracts mn the
proposed approach 1s closer to the way Nebut et al.
(2003) applied the contracts to use cases whereas
Briand and Labiche (2002) and Whittle and Tayaraman
(2006) does not imposed contracts. The proposed
approach applied contracts on the use cases to capture
the sequential dependencies in scenarios. The annotation
of contracts on the scenario is used to generate the test
objectives. Whereas, Nebut et al. (2003) does not
mnposed contracts on scenarios. Furthermore test
objectives are generated based on the coverage criteria.
The advantage of generating test objectives from
contracts makes them executable by expressing as logical
expression. The proposed approach also captures use
case flow model and contracts from the specification.
Additionally, it makes conditional testing easy and can be
defined as logical expression. Our contribution to
literature 1s the extraction of sequential dependencies of
use cases mvolving use cases contracts and extraction of
test objectives from the scenario’s contracts both
expressed as logical expression.

PROPOSED APPROCH

This section describes the proposed scenarios based
approach for system level testing. It consists of followimng
steps:

* Create an overall system use case design diagram

* Generation of sequential use case diagram

* Extracting sequential constructs for use cases

¢ Deriving the second level use case scenario diagrams
where each node express the level-1 use case node
with contracts

* Generating execution contracts to level-2 scenario
use cases as a logical expression

¢ Extraction of test goals from contracts

In the proposed approach as shown in Fig. 1, the first
level of the diagram represents the entire system usage

Syswmspaciﬁmﬁnnsinnmal]anguagej

h

h
System use case diagram

(scenario execution conn'wts)j

(v)

|

@mmmmmmmmm@

'Testgoalgﬂmraﬁm'

Test goal execution

Fig. 1: Abstract model of scenario based approach

where nodes are use cases. The entire use case diagram 1s
then modeled with sequential events which represents the
use case sequences and the complete flow of the system
by which it has to be passed dwring execution. Each use
case node 1s then further modeled mto use case scenario
at level-2, where each use case scenario actually reflects
the use case flow of each level-1 use case node and then
at level-3 each level-2 use case scenario is transformed
into sequence diagram. Sequence diagrams represent the
interactions as messages at edges between the lifelines
with the participants where life line increases vertically
downwards.

Overall system use case diagram: The overall use case
design diagram shows the entire system view showing the
major actors involving in the system with the interacting
system elements in the form of use cases. A UML use
case allows the modeling and understanding of complete
requirements. Use case models are purely based on the
requirement specification with the major emphasis is to
understand the actual problem domain without involving
any mmplementation and functional details with an aim of
completely capturing the user requirements and formally
describe them. For the creation of use cases the system
under test should be completely understood and modeled
(El-Far and Whittaker, 2001) by capturing the complete
response and sequence of events or inputs that needed
to be modeled. The number of use cases may be very
large in the system as each use case originally describe a
single activity performed by a combination of user/system

1602

Inform. Technol J., 12 (8): 1600-1606, 2013

interaction and may include several actors. Each of the
use case contains its own set of events to occur, therefore
the entire system use case diagram can comprises of
several use case nodes by involving the interacting
actors.

Generation of sequential use case diagram: A use case
model can be transformed into functional requirement
specification with structuring and formalization of use
cases and can be used in acceptance testing as it involves
requirement specification validation with the users. A use
case based requirement validation requires that the
sequential ordering of the use cases should be captured
in behavioral model. Use case sequences can be
expressed by using the pre and post conditions that may
become the contracts. The use case sequential flow
describes how the use cases follow each other and gives
a clear idea of system usage (Some, 2007). Some use cases
of the system can be run independently of others whle
some use cases may have sequential dependencies
between them indicating the execution order of the use
cases. Sequential execution of use cases can be the first
component of system test requirements.

Extracting sequential constraints for use cases: The
sequential constraints between the use cases can be
specified by using the logical expression with the
AND/OR operators, where the OR operator show the
alternative paths n the execution sequential order. We are
adding contracts to the use cases so the sequential
contracts will be made with the combination of
guards/contracts.

Generation of use case scenario diagram: A scenario
specifies sequence of events for a use case. We are
generating scenario chart from the specification of the
system and adding the contracts to the scenario nodes
where the contracts actually depicts the passing criteria
to go to the next stage. Addition of contracts allows the
requirement validation and test case generation.

Generating execution contracts: The execution contracts
are generated from the use case scenario by adding the
contracts applied to the sequential constructs, where as
the alternative path are covered by ordering the decision
conditions.

Test goal extraction: Test goal specifies the objective
from the test 1.e. what the user or tester require from the
system should be identified separately. Identification of
goals gives confidence to testing, with the introduction of
goals the use case scenario either completed with success
or fails, the goal plan also mncludes the alternatives as well

(Alspaugh et al., 2005). We have applied contracts at the
use case scenario that will be used to define the test goals
which can be executed by routing through the path at the
state diagram. The primary advantage of using contracts
is the definition of test goals but these should be
consistent while moving from one stage to other in order
to make the consistent and the proper execution of test
goals. Test goals are extracted from the execution
contracts by involving the alternatives. For each of the
alternative a test goal has been 1dentified.

Case study: The proposed approach 1s validated by using
a case study of inventory system. It contains purchase
requisition for an item required; the purchase order for the
requisitioned item is then created after that the product
receipt for the purchased item is created. Which means
the product is received. For the issuance of an item store
requisition 1s required and the 1ssued item will be stocked
out from the system.

System specifications:

s Only authorized user can access the system

» The first step 1s to create a purchase requisition for
the item indicating the item required

» Purchase order for an item can be made only for the
completed purchase requisition

» Purchase order can be put to registered vendors
against the requisition

» The item having purchase order must be stocked in
the system

» A store requisition for the issuance of item can only
be made if the item is in stock

* A stock out can only be made for an item against the
store requisition

Overall system use case diagram: The overall system use
case diagram 1s shown m Fig. 2. It represents the entire
system use case where the actors that are interacted to
the system are defined; similarly all the possible use cases
must be identified and expressed at his level with
participating actors.

Once the entire use case of the system is identified it
15 then converted mto sequential use case, which
represents the sequential flow of the entire system. For
each use case node of the entire system we will generate
use case scenarios by adding parameters and contracts.
The contracts of the use case scenarios fulfill the passing
criteria to reach the next point in the use case scenario.

Generation of sequential use case diagram: The overall
sequence diagram corresponding to system use case
diagram is shown in Fig. 3. Tt shows the execution flow of

1603

Inform. Technol J., 12 (8): 1600-1606, 2013

User (U)

Purchaser ()

Fig. 2: Overall system use case diagram

J, [/Completed purchase requisition]

(P i

[/Campleted purchase_order]
[/Completed stock_in]

[/Completed store_requisition]

[/Completed stock_out]

Fig. 3: System sequential use case diagram

the whole life cycle of the system with Pre and Post
Condition of each use case representing a use case node,
where the post condition of the previous node waill
become the pre condition for the next node in the
sequence. The Pre and Post conditions for the use cases
are derived from the specification of the system and
appeared as guard to the sequential use case diagram.

The sequential use case diagram can be presented as
activity diagram that shows the activity path of the
system. The addition of contracts at the sequential use
case diagrams enables to extract sequential constramnts
that can be recorded as logical expression that can be
tested for the validation of sequential execution of the
systerm.

Supplier (S}

Extracting sequential constraints for use cases: The
sequential contracts for the entire system use case is
derived by following the path in the transition as logical
expression by using the “AND/OR” logical operators.
Where OR indicates optional path of the system flow:

» [/Completed Purchase Requisition and/Completed
Purchase Order and/Completed Stock In
and/Completed Store Requisition and/Completed
Stock Out)]

For extraction of sequential contracts each of the use
case nodes Le. used in Fig. 2 has to be mvolved 1 path
execution of the whole system.

Generation of use case scenario diagram: A use case
scenario 1s a system usage view of a specific actor which
can be a user, external system or communicating device
(the basic course plus any appropriate alternate paths).
Use cases scenario normally focus on the behavior of the
system and typically describe several paths for a use case
and simulate the sequence of actions to real happenings
as expected to occur when the system 1s m operation
(Liang et al., 2006).

For each of the use case there will be a scenario
indicating the ordering of events. As there are multiple
use cases mn the system so for each use case there will be
a separate scenario diagram. We are only dealing with the
use case scenario Purchase Requisition (PR) as shown in
Fig. 4.

1604

Inform. Technol J., 12 (8): 1600-1606, 2013

(Pumhase requisition lequeatJ

/PR nlaquest]

[/Validated user (U]

(Add item(f) to purchase requisition J

[fadd PR(1)]

Search it {i)

[Not exist(D)]

X [/Not validated ser (Yo cof purchase requisition requesg

Add item(i) to system

[/Exist(i)]

@ompleted purchase lequisiﬂowadd(i)]

/PR

Fig. 4: Use case scenario for purchase requisition

Generating execution contracts: Conftracts are
generated by traversing the use case scenario which
will be used to define the test goals. Contracts that
are applied to the use case scenarios will be appeared
as a user action/system response when converted
to the sequence diagram. The primary advantage of
using contracts is the definition of test goals but
these should be consistent while moving from one stage
to other in order to make the proper execution of test

goals.

+ Pre condition: User(u)

¢ Execution contracts: [/PR_Request and {(/Validated
User (U) and /add PR(1) and (exist(1) or (Not /Exist(1)
and /add(i))) and /PR{i}) or /Not Validated User(1)} |

* Post condition: PR(1)

Test goal extraction: Test goals are extracted from the
execution contracts defining the path flow for the
scenario. Each test goal defines the alternative path of the
scenario;

e Test goal TG_PR1: TG PRI= [/PR Request and
fValidated User (U) and /add PR(i) and exist(i) and
/PR(1)]

* Test Goal TG_PR2: TG _PR2-= [/PR_Request and
/Validated User (U) and /add PR(i) and Not /Exist(i)
and /add(i)) and /PR(1)]

* Test goal TG_PR3: TG PR3= [/PR_Request and
//Not Validated User (U)]

RESULTS AND DISCUSSION

We are generating results based on the related
techniques that presents use case based system testing.
(Briand and Labiche, 2002) work provides a base for
system testing based on use cases. (Nebut et al., 2003)
has extends Briand’s work by adding contracts. However,
both the approaches have lack of some formalization
technique for test case generation and to maintain
consistenicy between use cases to scenario. The main
advantages of the proposed approach are following:

» Addition of contracts to the use cases as pre and
post condition enables to formally express sequential
flow as logical expression. AND/OR logical operators
can be used to identify execution paths. The
advantage of proposed approach 1s that it allows the
addition of contracts to use cases which added more
strength to testing by aiding to generate complete
test conditions and enabling to derive conditional
test case generation and also sequential flow can be
tested by contracts easily

s A use case scenario presents the execution trace of
a system and provides a base for the development of
state machine. Use case scenarios can be expressed
by using the sequence diagram that shows the flow
of events but it is difficult to define contracts at
the sequence diagram. However, through pre
and post conditions applied to use case scenario
enables the generation of test paths. The proposed

1605

Inform. Technol J., 12 (8): 1600-1606, 2013

approach applies the contractual sequence diagram
derived from the use case scenario that can be used
to bridge the gap between the test objectives and
test cases alternatively depicting the use case
scenario as it may contain additional information
than scenario

* The advantage of applying contracts at the scenario
enables to generate the test cases also referred to as
test goals. These test goals captwre the flow of
events for the use case scenario. As the test goals
are based on contracts so that can be formalized as
logical expression

CONCLUSION

In this study, we have presented a approach based
on use cases, as use cases are good source for generating
test requirements at the analysis level, with the addition
of contracts at the use case sequential flow allows to track
the path selection at the top node, with the introduction
of contracts to each use case enables to strength the
conditional execution flow of use cases where as the post
condition of the last use case becomes the pre condition
of the next use case in order. Each use case consist of a
set of scenarios to execute under which the use case may
run usually there is one nominal scenario and a number of
exceptional scenarios. With the introduction of contracts
at the scenario enables to make a conditional testing
likewise peneration of conditional test path selection
becomes easy. The sequence diagram generation from use
case scenarlo 1s more appropriate if contracts are available
at the use case scenarios, where the contracts of the use
case scenarioc becomes messages for the sequence
diagram, hence enhances the power of testing at the
analysis level.

REFERENCES

Alspaugh, T.A., D.J. Richardson, T.A. Standish and
H. Ziv, 2005. Scenario-driven specification-based
testing against goals and requirements. Proceedings
of the 11th International Workshop on Requirements
Engineering: Foundation for Software Quality, June
12-13, 2005, Porto, Portugal, pp: 187-202.

Blackburn, M., R. Busser and A. Nauman, 2004, Why
model-based test automation is different and what
vou should know to get started. Proceedings of the
International Conference on Practical Software
Quality and Testing, October 23-29, 2004,
Minneapolis, MN., USA., pp: 212-232.

Briand, T.. and Y. Labiche, 2002. A UML-based approach
to system testing. Software Syst. Modeling, 1: 10-42.

El-Far, IK. and T A. Whittaker, 2001. Model based
Software Testing. In: Encyclopedia Software
Engineering, Marcimak, I.J. (Ed.). Vol 1. Wiley-
Interscience, USA., ISBN-13: 978-0471210085,
pp: 825-837.

Hsia, P., J. Samuel, J. Gao, D. Kung, Y. Toyoshima and
C. Chen, 1994. Formal approach to scenario analysis.
IEEE Software, 11: 33-41.

Kim, Y.G., HS. Hong, D H. Bae and 3.D. Cha, 1999. Test
cases generation from UMI, state diagrams. TEE
Proce. Software, 146: 187-192.

Kosters, G., B.U. Pagel and M. Winter, 1997. Coupling use
cases and class models. Proceedings of the BCS
FACS/EROS Workshop on Making Object-Oriented
Methods more Rigorous, June 24, 1997, Impenal
College, London, UK.

Liang, H., I. Dingel and 7. Diskin, 2006. A comparative
survey of scenario-based to state-based model
synthesis approaches. Proceedings of the
International Workshop on Scenarios and State
Machies: Models, Algorithms and Tools, May 20-
28, 2006, Shanghai, China, pp: 5-12.

Nebut, C., F. Fleurey, Y. Le Traon and J.M. Jezequel, 2003.
Requirements by contracts allow automated system
testing. Proceedings of the 14th International
Symposium on Software Reliability Engineering,
November 17-20, 2003, Denver, CO., USA., pp: 85-96.

Raza, N., A. Nadeem and M.Z.7. Igbal, 2007. An
automated approach to system testing based on
scenarios and operations contracts. Proceedings of
the 7th International Conference on Quality
Software, October 11-12, 2007, Portland, OR.., USA .,
pp: 256-261.

Ryser, J. and M. Glinz, 1999. A scenario-based approach
to validating and testing software systems using
statecharts. Proceedings of the 12th International
Conference on Software and Systems Engineering
and their Applications, December 8-10, 1999, Paris,
France.

Some, 3.5, 2007. Specifying use case sequencing
constramts using description elements. Proceedings
of the 6th International Workshop on Scenarios and
State Machines, May 20-26, 2007, Minneapolis, MN.,
USA., pp: 4.

Whttle, J. and P.K. Jayaraman, 2006. Generating
hierarchical state machines from use case charts.
Proceedings of the 14th TEEE International
Conference on Requirements Engineering, September
11-15, 2006, St. Paul, MN., USA_, pp: 19-28.

1606

	ITJ.pdf
	Page 1

