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Abstract: Based on the existing theory of Fractional-order integral and derivative, this study discussed
stochastic resonance mduced by over-damped Fractional-order Langevin equation. Firstly, Fractional-order
Langevin equation under over damped condition 1s derived and then its physical sigmficance 1s discussed and
internal mechanism of stochastic resonance phenomenon induced by over damped fractional-order Langevin

equation is presented. The following corresponding numerical experiments state that it is easy to achieve to
stochastic resonance by adjusting parameters of fractional-order Langevin equation such as fractional-order,
noise intensity, or bi-stable system parameters and that it can be used to detect the frequency of the weak
signal. The result of this study has positive practical value in weak periodic signal recovery.

Key words: Fractional-order Langevin equation, stochastic resonance, over damped

INTRODUCTION

During the past decades, stochastic resonance
become one of the most active nonlinear phenomenon
and attracted considerable attention.  Stochastic
resonance is firstly put forward by Benzi ef ol (1981, 1983)
has been extensively studied theoretically and
experimentally around different power system and noise
due to its vast applications in many fields. It describes a
bi-stable system with nonlinear system, under the action
of a small periodic moedulation signal and inputting noise
simultaneously, when the noise increases to certain
mtensity, the system output SNR will greatly boost and
exist a best input noise intensity which can make the
system produces a highest output SNR (Lingyun and
Yuehua, 2013). Guerriero et al. (2009), Chenet al. (2008)
and Applebaum (2009) have proved that stochastic
resonance can increase weak signal detection
performance within strong noise background. Generally,
Langevin equation based on non-linear bi-stable system
15 used to the research model of stochastic resonance
(Repperger et al., 2005). Fractional-order calculus theory
has attracted considerable attention for several decades
mn research on color noise, chaos and anomalous diffusion
and so on (Ma and Hor1, 2004). Goychuk and Hangg:
(2011) found stochastic resonance in anomalous diffusion

process in their study m non-Markovian process in
bi-stable renewal process model and had greater
signal-to-noise improvement than traditional Markovian
process. Recently, there are several researches on the
phenomenon of stochastic resonance on fractional
nonlinear systems (Xiao et al., 2012). Based on the
ideas, in this paper stochastic
resonance mduced by over damped fractional-order
Langevin equation and application of which m weak
signal detection are studied.

above-mentioned

THEORY OF STOCHASTIC RESONANCE INDUCED
BY OVER DAMPED FRACTIONAL-ORDER
LANGEVIN EQUATION

Micro particle m medium got random collision from
medium molecule due to the molecular thermal movement,
resulting in a Brown movement. Langevin considered that
Brownian particle with mass m in the mediums under the
external forces mecluding gradient potential field force
-U(x), the damping force -n%, random force £(t) and the
external signal power F(t) (Calderon et al., 2006). Due to
Newton's second law, Langevin equation can be:

g+ [t (e = U0+ T+ &) M
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In the over-damped cases, the acceleration term mx
can be ignored, so the Langevin equation can be
simplified as:

jn(t — (L = —U'(x)+ F(1) + (1) 2

It is known that Brownian motion is characterized well
by a bi-stable system. In this paper, we deal with the case
that bi-stable system induced by periodic signals, its
potential function 1s:

U(x) =2y E)«14
2 4

And external power signal is F(t) = Acos (2mfit),
substituted to Langevin equation we have:

jn(t —tYR(t)dt = ax —bx® + Acos(2nf, )+ &(1) (3

where, [ (x,t) = -0U (x,t)/0x is a deterministic force; £ (1)
denotes a =zero mean, Gaussian white noise with
autocorrelation function € (£) = 0 € (t) (")) = 2D (1)
and mtensity D and 1 (t) 1s the frictional memory kemnel
related to noise by the fluctuation-dissipation relation:

() &) =k Tm (Jt-) “4)

where, k; is Boltzmann constant and T is medium
temperature.

Damping force acting on the particles depends on the
speed of the moments of the past time in different
weights, which in the performance of damping kernel
function with memory, setting the damping kernel
function 1 (t) is:

ni = L™, O<a<l &)

1
Tl—a)

where, I" () 1s Euler Gamma function.

Let formula (5) substituted to left end of Eq. 3, due to
definitions of Riemamm-Liouville integral and Caputo
fractional derivative (Podlubny, 1999), we have:

Iﬁ(t — () =D x(E) (6)

Therefore, fractional-order Langevin equation of
over-damped Browman motion 15 as follows:

D*x(t) = ax — bx" + A cos(2af,t) + E(t), tca<l (7

From the definition of Caputo derivative we can see
that, fractional derivative of displacement x (t) in bi-stable
potential well of Brownian particle is equivalent to a
weighted integral of its speed % (t), closer to the present
moment, greater of the weight of % (t) and vice versa. Also,
decreased ratio of weight is related to the order « of
fractional derivative. Particularly, if ¢~1, damping kernel
function 1 (t) is degraded to unit impulse function, loss of
characteristic of memory, fractional-order derivative is
becoming to integer derivative, the result of derivative is
the speed % (t) of particle when initial value is 0. Tf ¢-1,
damping kernel function 1 (t) is degraded to constantl,
meaning that having the same speed memory of every
moment, called having idea memory, which derivative is
displacement x (t).

EXPERIMENTS AND RESULTS

Tn this study, weal signal in heavy noise background
is detected by the system as shown in Fig.]1 and the
signal-to-noise ratio (SNR) is used as the index of
stochastic resonance, which 1s defined as follows:

2 lim [~ (e
SNR. = [Ag}gnﬂ‘[ﬁ—ﬁm S(CD) CD] (8)
8y (Q)

where, S (0) 1s the signal power and S, (£) denote the
noise energy which is corresponding to the frequency
range of the mput signal.

Figure 2 shows that the system can achieve
stochastic resonance by modulating system parameters a,
b, a. Firstly, let parameters a = b =1 be fixed. Figure 2a
shows that the SNR is a non-monotonic function of
fractional-order ¢« and here exits a maximum. Combined
concerned with Fig. Zb, Brownian particles transmit the
potential barrier excited from noise intensity and with
increase of noise mtensity, the SNR is mcreased, until
noise intensity reaches a certamn value, the SNR 1s
increased to a maxmmum. After that, along with the noise
intensity further increase, the SNR began to decrease
gradually. Otherwise, due to without need noise irtensity
for Brownian particles to transmit to another potential
well, so stochastic resonance will not happen, SNR 1s a
monotonic function of noise mtensity, as shown in

Fig. 2band c.
l Noise n (t)

Stochastic resonance system

Out x (t)
>

Measure signal s (t)

Fig. 1. Numerical simulation scheme of weak signal
detection via stochastic resonance induced by
over damped fractional-order Langevin equation
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Fig. 2(a-d): Graph of SNR versus (a) D, (b) Fractional-order &, (¢) a and (d) b
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Fig. 3(a-b): (a) Output signal x (t) of Eq. 7 and (b) Power spectrum of x (t) of Eq. 7

Thus for non-linear system of induced by over

damped Langevin equation, stochastic resonance occurs

by

modulating the fractional-order ¢. Without loss of

generality, fractional-order ¢ = 0.2 is taken, the non-linear
system display stochastic resonance, which is shown in
Fig. 3. Figure 3a and b depict the output signal x (t) and its
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Fig. 4(a-b): (a) Output signal x (t) of Eq. 7 and (b) Power spectrum of x (t) of Eq. 7 whena =6
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Fig. 5(a-b): (a) Output signal x (t) of Eq. 7 and (b) Power spectrum of x (t) of Eq. 7 whena =1

power spectrum, respectively. It is clearly can be
seen that the frequency of the weak signal can be
detected.

Similarly, let parameters b = 1, @ = 0.2 be fixed.
Figure 2¢ shows that the SNR is a non-monotonic

function of the parameter ¢ and here exits a maximum.
Thus stochastic can occurs easily by
modulating the parameter o« Without loss of
generality, fractional-order a 6 1s taken, which 1s
shown in Fig. 4. Figure 4a and b depict the output

resonance

signal x (t) for a = 6 and its power spectrurm, respectively.
Tt is clearly can be seen that the frequency of the wealk
signal can be detected.

Also, let parameters a=1, ¢ =0.2 be fixed, stochastic
resonance would also occur by modulating the parameter
b, which 1s shown in Fig. 2d and Fig. 5.

CONCLUSION

In this study,
over-damped Fractional-order Langevin equation is
discussed. Firstly, we derived fractional-order Langevin

stochastic resonance induced by

equation under over damped conditions and studied
stochastic resonance induced by it, including the internal
mechamsm of the phenomenon of which. Then
experimental results show that stochastic resonance
induced by over damped fractional-order Langevin
equation can occur by modulating fractional-order «, the
noise intensity D, or parameters a, b. One of the

characteristic  of stochastic ~ resonance  in
fractional-order Langevin equation is that it can
enhance stochastic resonance by modulating the

fractional-order ¢. At last, corresponding experimental
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results state that by adjusting the above-mentioned
parameters, the weak signal can be detected with power
spectra.
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