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Abstract: Visual tracking 1s an important topic in the field of computer vision and artificial intelligence. The main
challenging 1ssue in designing a robust tracking algorithm is the appearance variations caused by numerous
factors such as occlusion, background clutter, illumination change and motion blur. In recently years, sparse
representation has been extensively studied and applied in visual tracking. The representation has been shown
to be robustness to a wide range of image corruptions, especially to an occlusion. However, sparse coding
based trackers at a computational expense of the L1 minimization. In this study, we present a novel tracking
method based on sparse representation in a co-training framework, exploiting the strength of both holistic
representation and local histogram. We first introduce /; regularization into subspace representation with
Principal Component Analysis (PCA). Then, we develop a novel histogram-based tracking method in which we
take the spatial information of patches into consideration with an occlusion handling mechamsm. Furthermore,
we combine them in a novel collaborative model and the update scheme can make the tracker deal with
appearance effectively and alleviate the impact of the drift problem. Experimental results on benchmark
challenging sequences demonstrate that the robustness and effectiveness of the proposed algorithm is

competitive to the state-of-the-art tracking methods.

Key words: Visual tracking, sparse representation, appearance model, update scheme

INTRODUCTION

Despite great progresses in the past decades, visual
tracking remains a challenging problem as robust tracking
algorithms entail the need to accoumt for appearance
variation caused by occlusion, illummation change,
background clutter, pose variation, motion blur and
rotation. Moreover, few attempts have been made to
directly solve the occlusion problem, which remains as
arguably the most critical factor for causing tracking
failures.

To account for the appearance variations of the
target, visual tracking problem has been formulated n two
different categories: generative and discriminative.
Generative methods typically learn an appearance model
to describe the target observations and then use it to
search for the regions within the highest probability.
Black and Jepson (1998) learn a subspace model offline to
represent the target objects for tracking. Matthews et al.
(2004) propose a template update method which can
reduce the drifting problem by aligning with the first
template to reduce drifts. Later, visual tracking via online
subspace learning has attracted more and more attention.
Ross et al. (2008) present a tracking method with
incremental subspace learming, in this representatior, the

Sequential Karhunen Loeve (SKL) algorithm 15 extended
to effectively learning the variations of both illumination
and appearance. Kwon and Lee (2010) propose a tracking
algorithm with the visual tracking decomposition scheme.
In thus scheme, the observation model 13 decomposed mto
multiple basic models to cover a wide range of poses and
illumination changes. For discriminative methods, tracking
15 treated as a classification problem which aims at
designing a classifier to effectively separate the
foreground target from the background. Collins et al.
(2005) proposed an online featwre selection method to
select the most discriminative color space for tracking.
Grabner et al (2006) presented an online boosting
algorithm to select discriminative features for visual
tracking and later a classifier within the semi-supervised
learning framework (Grabner et al., 2008) is adapted to
address the online update problem. Avidan (2007) extend
a Support Vector Machine (SVM) classifier within the
optical flow framework for object tracking. Kalal et al.
(2010) propose the P-N learning algorithm. They exploit
the underlying structure of positive and negative samples
to learming effective classifier for visual tracking.
Babenko et al. (2011) introduced Multiple Instance
Learning (MIL) into online tracking, where positive and
negative samples are put into bags or sets to learn a
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discriminative model. Tn Wang et al (2011), a
discriminative appearance model based on superpixels is
presented, thereby facilitating a tracker to separate the
foreground target from the background. While these
discriminative methods perform well, they nevertheless do
not take correctly labeled samples into account which can
be useful in updating the classifier.

Recently, researchers have introduced sparse
representation for visual tracking (Mei and Ling, 2009)
and it is solved through a series of 1.1 minimization
problems to solve the model tracking problem. The
method demonstrates promising robustness to a wide
range of object corruptions, especially partial occlusion.
However, the algorithm with .1 minimization formulation
at the expense of high computational cost and it also
neglects the local visual information, which will result in
bad tracking performance in cases of there is similar object
or heavy occlusion. Zhang and Liu (2013) proposed an
object detection algorithm for visual tracking, they adopt
the variant of the Douglas-rachford Splitting Method
(VDRSM) to restore background and foreground by
taking advantage of the separable structure.

In this study, we propose a robust visual tracking
algorithm in a co-trainming framework. The proposed object
appearance model exploits the strength of both holistic
representation and local histogram. The proposed
tracking method 1s effective m dealing with appearance
changes through incremental subspace learning and the
computation complexity is reduced. In addition, the
developed update scheme considers whether the target
object 1s occluded or not, thereby enabling the tracker to
deal with appearance change effectively. Experimental
results on several challenging sequences demonstrate the
robustness and effectiveness of the proposed algorithm,
especially when the objects exhibit large appearance
changes.

OBJECT TRACKING WITH SPARSE
REPRESENTATION

The pioneering woark on applying sparse
representation to object tracking is done by Mei and Ling
(2009), who proposed a L1 tracker by casting the problem
as determiming the most likely patch with a sparse
representation of object templates and modeling partial
occlusion by sparse representation of trivial templates:

y=Dx+e=[D I]K}:Bw (1)

where yeR® denotes an observed target sample (by
stacking columns to from a 1D vector), D = [d,, d,,...,

d,JeR*® (f>>n) indicates a set of training templates,
X = (X, X;..., X,)" is the corresponding target coefficient
vector, e€R' is a sparse emror and nonzero entries
correspond to pixels m y that are occluded or corrupted
and 1 =i, i, ..., i,] is an identity matrix, where each trivial
template i, is a vector with only one nonzero entry in the
k-th position.

When the vector w 1s sparse enough the target
coefficients x and sparse error e can be jointly solved by
the following 1-norm minimization:
st. || y-Bw|, <= (2)

w= argmin”w”
- i

where ||.|, denotes the l-nomm that counts the number of
nonzero entries in a vector, |.|,denotes the l,-norm (i.e.,
Euclidean distance) and €=0 is the noise level. The
problem (2) is in general ill-posed (NP-Hard) and has index
complexity of the algorithm 1 theory or practice. To make
the problem tractable, the I,-norm minimization is widely
used to replace the 1-norm mimimization:

st ” v - BWH2 <g (3)

w = g mn

The Lagrangian version of the problem (3) can be
written as:

1 A
wargmin < |y~ B + 2w, + 22w (4)

where, A, and A, are regularization parameters, which
control the relative importance of the sparseness to the
reconstruction error. When A, = 0, it leads to the widely
{,-norm minimization problem. When 4,>0, it makes the
problem (4) become strictly convex. After obtaining the
sparse coefficients w, the input sample y can be
represented 1n a sparse way.

PROPOSED TRACKING FRAMEWORK

We first describe how the holistic and local visual
information are exploited. Then the collaborative model
and the update scheme of our appearance model are
presented.

HOLISTIC REPRESENTATION

Motivated by above-mentioned discussions, in this
study, we combine the meremental subspace learning with
sparse representation for modeling object appearance.
We first model the target appearance with PCA basis
vectors and handling partial occlusion with trivial
templates by:
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y=Ux+e=[U I]|:x} (5)
e

where, ¥ denotes an observation vector, U represents a
matrix of column basis vectors, x indicates the
corresponding coefficients and e is the error term which
can be viewed as the coefficients of trivial templates.

By assuming that each candidate image is sparsely
represented by a set of target and trivial templates, and
error & can be modeled by arbitrary but sparse noise,
Eq. 5 can be solved via /,-norm minimization:

.1
mnin Ly~ Ux —ef; + 2] (6)

Here, Eq. 6 is the variant of Eq. 4 when 4, = 0. Our
formulation maintains the holistic appearance information
and has the following advantages. On the one side,
overcoming the drawback of the incremental subspace
representation of the TVT method (Ross et al., 2008) is
sensitive to partial occlusion, our method handles partial
occlusion with trivial templates explicitly. On the other
side, comparison with the time complexity of the /; method
(Mei and Ling, 2009) is quite significant, our algorithm is
able to reduce the computational complexity by exploiting
subspace representation.

Let the object function be iy ¢)— argmin%”y ~Ux—eff + e
the optimization problem can be constructed as:

min ~ W({x,e) st. UTU=I (7)

where, I denotes an identify matrix. For solve thus
optimization problem, an iterative algorithm composes of
a simple least squares problem and a shrinkage operation
15 presented, as shown in Algorithm 1. Thus, the
confidence value L, (where 1 denotes the i-th sample) can
be measured by the reconstruction error of each observed
umage patch:

y (8)

v - Ux

L; = exp(-

In order to further deal with occlusions, we use a
mask to factor out non-occluding and occluding parts:

o' oty - ux')

L =exp| RN ©)
where, © denotes the element-wise multiplication,
[P s » .o Pul" is a vector that indicates the zero
elements of error e and P is a penalty term (simply set to
A in this study). If the j-th element of & is zero, then
p' = 1, otherwise p); = O The first part of the exponent

accounts for the reconstruction error of un-occluded
portion of the target object and the second term aims to
penalize labeling any pixel as being occluded. The
experimental results on sequences Caviarl and
Occlusion2 with severe occlusions in a later section
demonstrate the effectiveness of our formulation.

Algorithm 1: For computing e and x"*

Input: An observation vector v, orthogonal basis vectors U and a
regularization parameters.

1. Initialize = 0 and i = 0.

2. Tterate

3. Obtain x™* via x™ = UT (y-¢))

4. Obtain e via e =8, (y-Ux*)

5. i-i+1

6. Until convergence or termination

Qutput: e*® and x°¥

LOCAL HISTOGRAM

In this part, sparse codes of local patches with spatial
layout in a target object are used to model the appearance
model for visual tracking and this can help locate the
target more accurately. We first extract a set of overlapped
local image patches within a target region and tun them
into vectors as ¥ = [y, Vs ...vul€ R™", where N is the
number of local image patches and G denotes the size of
each patch. The sparse coefficient ¢ corresponds to v,
can be computed by:

2
L+

| (10)

¥, - Da,

(I'l

« = arg min
L

where, the dictionary DeR®™ is generated from
k-means cluster centers via the patches belonging to the
labeled object in the first frame and M denotes the number
of cluster centers. Then, the sparse coefficient vector ¢; of
each patch is concatenated to form a histogram as
h=[a, o, o]

However, the constructed histogram does not
consider partial occlusion. Thus, we regard the local patch
with large reconstruction error as corruption and the
corresponding sparse coefficient 13 set to 0. Then, a
weighted histogram can be constructed as:

e=hoo (11)

where, each element of 0 13 an indicator of corruption of
the corresponding patch and is determined by:

Oi:{l g < (12)

0 ortherwise
where, & =|yDel} 1s the reconstruction error of the
local patch y; and €, is a predefined threshold. The
similarity of histograms between the candidate and the
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model can be computed by using the histogram
intersection function due to its effectiveness:

H =" min(¢.¢') (13)

where, ¢, is the histogram for the i-th candidate and ¢ is
the template.

In our approach, the reconstructed coefficient of each
local patch essentially represents the importance of each
local image patch. In the proposed representation
mechanism, spatial information of local patches and
occlusion are taken into account through which the
appearance model is more effective and robust.

COLLABORATIVE MODEL

In this study, we embed the appearance models mto
the particle filtering framework to form a robust tracking
algorithm and ow approach uses the collaborative
strength of both holistic representation and local
histogram. The particle filtering (Li et al., 2008) 1s a
sequential Monte Carlo method, which recursively
approximates the posterior distribution characterizing a
dynamic system. Given the observation set of the target
Vie = {vi, o, .oyvidup to time t  the observation
likelihood of i-th candidate at time t can be measured by:

iy, | 3) = max(ow! xL,w? x H,) (14)
L exp | © " - Ux)f BT W)
DL e (o - v P e 1 TR mindel )
wo B T min(el.¢))
LR el (oot v PR e |+ mint @)
(15)

In the particle filtering framework, the tracking
process is governed by a dynamic model p (x,|x,,) and an
observation model p (vr]x,). The dynamic model p (x,]x,.,)
represents the motion state of a target in consecutive
frames. Then, we apply an affine image warp to model the
target motion state, ie., p (/%) = N(x; x,,, ¥) where ¥ is
a diagonal covariance matrix whose elements are the
variances of the affine parameters. Therefore, the
posterior probability p (x|y,s) can be nferred by the
Bayesian inference recursively:

PO%, 920 0 PO, 1% POS, | X )POE, 4 35 )i (16)

Finally, the optimal state % of the tracked target is
obtained by the Maximum a Posteriori (MAP) estimation:

X, =argmaxp(x,|y;.) (17)

UPDATE SCHEME

The appearance of an object may change drastically
due to the inevitable challenging factors. Therefore, an
important and
necessary. In this paper, we present an update scheme in
which the holistic and local appearance models are
updated independently.

For holistic representation, we employ one of the
three kinds of operations based on the occlusion ratio
{(i.e., the ratio of the number of nonzero pixels and the
number of occlusion map pixels). Here, two thresholds t,
and t; represent the degree of occlusion. First, if n<t,,, we
directly update the model with the sample. Second, if
T>t,, 1t means that the target is partially occluded. We
then replace the occluded pixels by its corresponding
parts of the average observation and use this recovered
sample for updating. Third, if 1>t,, it indicates that a
sigmificant part of the target object 13 occluded and we
discard this sample without updating. After we cumulate
enough samples, we use the incremental PCA scheme
{(Ross et al., 2008) to update our observation model. With
this update strategy, the model can adapt to the
appearance change of the target and handle partial
occlusion.

For local histogram, in order to capture the new
appearance and recover the object from occlusions, the
histogram is updated by:

effective online update scheme is

Y =g + (- Wy, if 0, <0y (18)

where, P, indicates the new obtained histogram, V¥
denotes the histogram at the first frame and ¥, denotes
last stored according to the weights assigned by the
constant p. The variable O, denotes the occlusion
condition and can be computed by the corresponding
occlusion indication vector o, (by Eq. 12) using:

0,=3""(1-0) (19)

In this way, the proposed update scheme not only
effectively alleviates the visual drift problem, but also
captures the variations of the target during the tracking
process.

EXPERIMENTAL RESULTS

Here, we evaluate our tracker on mne challenging

image sequences (most of them are publicly
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available). The challenging factors in these sequences
include occlusion, illumination variation, background
clutter, motion bluwr and rotation. For comparison, we
evaluate the proposed tracker against six state-of-the-art
algorithms, including FragTrack (Frag) (Adam et al., 2006),
the Tncremental Visual Tracking (IVT) (Ross et al., 2008),
L1 tracking ({,) (Me1 and Ling, 2009), Multiple Instance
Tracking (MIL) (Babenko et af., 2009), PN learming
tracking (PN) (Kalal et af, 2010) and Visual Tracking
Decomposition (VID) (Kwon and Lee, 2010) methods.
Both qualitative and quantitative evaluations  on
benchmark challenging sequences demonstrate the
favorable performance of the proposed tracking method.

In our experiments, the location of the target object is
manually labeled in the first frame for each sequence, the
regularization constant A is set to 0.01 (P is the same) and
the number of particles is set to 600. For PCA
representation, each image observation is normalized to
3232 pixels and 16 eigenvectors are used in all
experiments. In addition, 1024 trivial templates are used in
this paper. The threshold &, in Eq.12 1s set to 0.1. The
constant p is set to 0.95 and the threshold O, in Eq.18 1s
0.8. Two thresholds t, and t, are set to 0.1 and 0.6,
respectively.

QUALITATIVE EVALUATION

Figure la and b, respectively show the tracking
results on sequences Caviarl and Occlusion? with severe
occlusions. In object tracking, occlusion is one of the
most challenging problems and it 1s the cntical factor
causing drift. In the Caviarl sequence, some trackers fail
after heavy occlusion (e.g., #1354, #190, #256 and #382).
The MIL, and TVT methods perform poorly when the target
object 18 occluded by a sumilar object (e.g., #154 and #190)
because the adopted Harr-like features are less effective.
The I, tracker also drifts away from the target

after occluded by a similar object (e.g., #123 and #190). In
contrast, our tracker performs stably (e.g., #256 and #382)
in the entire sequence when there is a large scale change
with heavy occlusion. Owr tracker also does not drift away
when the target reappears again (e.g., #123) because it is
easy to differentiate the target and similar objects by
using both holistic and local mformation. In the
Occlusion? sequence, our tracker i1s able to track the
target accurately, especially when heavy occlusion
(e.g., #180, #272 and #719) or m-plane rotation (e.g., #360
and #504) occurs. This attribute to the local histogram
model has both spatial and partial mformation of the
target object. FragTrack and /, methods can also perform
well (e.g., #819) because partial occlusion is taken into
account. The FragTrack method handles partial occlusion
via the part-based representation with histograms, but it
can not handles appearance change caused by pose and
occlusion (e.g., #504). The I, tracker handles occlusion
based on sparse representation with trivial templates.
However, it can easily lead to tracking drift because the
simple update method.

Figure 2a and b, respectively show the tracking
results on sequences Davidlndoor and Singerl with
dramatic illumination changes. In the Davidindoor
sequence, the ambient light changes from dark to bright
in the first few frames, the scale and pose of the object
both change gradually (e.g., #60, #115 and #160). Ow
tracker and the TVT method can successfully track the
target throughout the entire sequence (e.g., #60, #200 and
#462). However, the Frag tracker drifts from the target
{e.g., #115) due to the sudden and large illumination
change and when the out-of-plane pose change happens,
the I, method dnfts away (e.g., #160 and #200) from the
ground truth locations gradually. In the Singer] sequence,
a singer undergoes drastic appearance change due to
llummation variation and scale change. The IVT, VID
and proposed methods perform well whereas the other

—IVT—L1—MIL

—PN —Our

Fig. 1(a-b). Tracking results of 7 trackers on sequences, (a) Caviar and (b)Occlusion with severe occlusions delineated
by different colors, Frame numbers are overlayed in red
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1 ¥
—IVT—L1—MIL

i, 1o

—PN —Our

Fig. 2(a-b). Tracking results of 7 trackers on sequences, (a) DavidIlndoor and (b) Singer] with dramatic llumination
change delineated by different colors. Frame numbers are overlayed in red

?-'.:,
)

—IVT—L1—MIL

—PN —Our

Fig. 3(a-b). Tracking results of 7 trackers on sequences, (a) Lemming and (b) Stone with background clutter delineated
by different colors. Frame numbers are overlayed in red

methods drift away when drastic illumination change
occurs (e.g., #36 and #125). The reason is that subspace
learning method 1s robust to illumination changes. In this
sequence, the PN method loses track of the target object
for most of the frames (e.g., #125). We note that the /,
tracker performs better than the TVT method, but also fails
when the target experiences significant scale change and
camera movement (e.g., #125). Moreover, we can find that
the MIL and Frag methods do not estimate the scale
change well (e.g., #160 and #233).

Figure 3a and b, respectively show the tracking
results on sequences Lemming and Stone with
background clutter. In the Lemming sequence, there are
also partial occlusions, which add difficulty for visual
tracking. From Fig. 3a, we observe that our tracker and
the MIL method perform better than the other methods
(e.g., #283 and #1037). The Frag, I, and VTD methods all
lose track of the target gradually (e.g., #1335, #283, #365
and #520). In addition, the IVT method fails when the
target undergoes severe occlusion (e.g., #365) and the PN
method is able to capture the target as long as there is no
rotation or occlusion (e.g., #365 and #1037). In the Stone
sequence, there are numerous stones of different shapes
and colors. Most tracker fail as holistic representations

inevitably include background pixels that may be
considered as part of foreground object. The Frag, MIL
and VTD methods drift away when the target object is
occluded (e.g., #125, #393 and #555) whereas the IVT
method and our tracker successfully track the location
throughout the sequence (e.g., #300 and #593). The 1,
tracking method 1s very easy to drift away from the target
in background clutters (e.g., #393 and #555). The PN
method is able to recapture the target object again after
drifting away but with higher tracking errors and lower
success rate (e.g., #125).

Figure 4a and b, respectively show the tracking
results on sequences Tumping and Deer with dramatic
motion blur. Fast motion of the target object or the camera
may lead to motion blur which 1s difficult to account for in
object tracking. In the Jumping sequence, the target
object 13 jumping and the motion blurs are very severe.
From Fig. 4a, it can be seen that the proposed tracker
performs better than other methods whereas the PN and
MIL methods are also able to track the target object
(e.g., #40, #150 and #304). We note that the PN method
exploits the underlying structure of positive and negative
samples to learning effective classifier which facilitates
object tracking. Also the MIL. method adopts multiple
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—IVT—L1—MIL

—PN —Our

Fig. 4(a-b). Tracking results of 7 trackers on sequences, (a) Jumping and (b) Deer with motion blur delineated by
different colors. Frame numbers are overlayed in red

Table 1: Success rates of 7 trackers on @ different video sequences. On average, the proposed tracker outperforms the other 6 state-of-the-art trackers

Frag IVT L1 MIL VID PN Our
Caviarl 0.68 0.28 0.28 0.25 0.83%* 0.70 0.91%
Occlusion2 0.60 0.59 0.67%* 0.61 0.59 0.49 0.85%
DavidIndoor 0.20 0.71%* 0.63 0.45 0.53 0.60 0.81%
Singerl 0.34 0.66 0.70 0.34 0.79 0.41 0.86%
Lemming 0.13 0.18 0.13 0.53%% 0.35 0.49 0.58%
Stone 0.15 0.65%* 0.29 0.32 0.42 0.41 0.67%
Jumping 0.14 0.28 0.09 0.53 0.08 0.69%* 0.70%
Deer 0.08 0.22 0.04 0.21 0.58%* 0.41 0.69%
Girl 0.69%* 0.43 0.33 0.52 0.51 0.58 0.70%

#, %% Show the best and second best results for each sequence, respectively

instance learning to develop a discriminative model which
can deal with appearance change caused by motion blur.
The IVT method 1s able to capture the target object in
some frames (e.g., #72 and #100) but fails when there exits
drastic image blur (e.g., #150 and #226). The Frag, L, and
VTD methods have relative lager errors during tracking
process. In the Deer sequence, we can see that most
tracking methods fail to track the target object at the
beginning of this sequence (e.g., #4 and #7), the Irag,
MIL and L methods fail when there 1s drastic motion blur
(e.g., #19 and #37). In this sequence, the IVT method is
also prone to drift when the motion blur occurs
(e.g., #37 and #52). However, our tracker and the VID
method perform better than the other methods (e.g., #19,
#37, #52 and #71). The tracking results on sequence Deer
show that the robustness of our proposed method in fast
motion and background clutters.

Figure 5 presents the tracking results of the
evaluated trackers on sequence Girl. In this sequence, the
challenging factors include in-plane rotation, out-of-plane
rotation, 360 degree pose variation and partial occlusion
by another face which is similar to the target. The TVT,
VTD and PN tracking methods fail when the target object
turns her head (eg., #117 and #200) or is severely
occluded (e.g., #322 and #433). As the holistic sparse
representation method cannot deal with heavy occlusions
and there 1s no drift alleviation mechanism, the 1 tracking
method does not perform well in this sequence (e.g., #32,

#117, #322 and #433). Compared with other tracking
method, the use of local histogram of our tracking method
helps in accounting for appearance changes due to
complex rotation. The experimental results show that our
method is more robust and accurate.

QUANTITATIVE EVALUATION

To quantitatively evaluation the robustness under
challenging conditions, we measure the tracking success
rate and center location error using the ground truth
object locations obtained by manual labels at every 5
frames. We conduct quantitative comparisons between
the proposed tracker and other algorithms using PASCAL
VOC (Everingham et al., 2010) challenge criterion. Given
the tracking result Ry and the ground truth R, the score
to evaluate the success rate is defined as:

area(R; N R;)
area(R; U R;)

(20)

score =

and tracking in each frame is considered to be successful
when the score is above 0.5. The success rates of our
tracker and the other six algorithms on the challenging
sequences are summarized in Table 1. For each sequence,
the best and second best results are shown m red and
blue respectively. From it, we can see that the proposed
tracker outperforms the other trackers in all sequences.

1733



Inform. Technol J., 12 (9): 1727-1736, 2013

VT L1—MIL

—PN —Our

Fig. 5: Tracking results of 7 trackers on sequence Girl with rotation delineated by different colors. Frame numbers are

overlayed i red
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Fig. 6 Center location error between tracking result and ground truth over time for 7 trackers applied to 9 video

sequences
The second criterion for evaluating the tracking
performance 1s the center location error, which 1s based on
the distance between the central of the tracking result and
that of the ground truth. Figure 6 shows the center
location errors of the evaluated tracking methods on the
nine challenging sequences. From this figre, we can see
that the proposed tracker consistently produce a smaller
center location error than other tracking methods in
general. This implies that the tracker can accurately track
the target object despite severe occlusions, dramatic
illumination change, background clutter, motion blur and

rotation. The average center location errors are presented
in Table 2. Similarly, the best and second best results are
shown m red and blue, respectively. From these
comparison results, we can see that our tracking method
performs well against most of the evaluated trackers and
has slightly higher tracking errors than the IVT method on
Stone sequence and the PN method on Jumping and
Lemming sequences. Overall, in thorough experiments
involving nine challenging sequences and other six
state-of-the-art  trackers, the proposed algorithm
demonstrates very promising tracking performance.
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Table 2 : Average center location errors of 7 trackers on 9 different video sequences. On average, the proposed tracker outperforms the other 6 state-of-the-art.

trackers

Frag IVT L1 MIL VTD PN Our
Caviarl 5.7 452 119.9 48.5 3.0%* 5.6 0.9%
Occlusion2 15.5 10.2%* 11.1 14.1 10.4 185 3.2%
DavidIndoor 76.7 3.6%% 1.6 16.1 13.6 .7 3.4
Singerl 22.0 85 4.6 152 4.1%# 327 3.7*
Lemming 149.1 934 184.8 25. 6% 86.9 23.2% 28.1
Stone 65.9 2.5% 19.2 32.3 314 80 2.5
Jumping 584 30.8 92.4 9.9 63.0 3.6% 4.0
Deer 92.1 127.5 171.5 60.5 11.9%:# 25.7 8.1
irl 18.1%* 8.5 62.4 322 21.4 23.2 10.9%

* #4% Show the best and second best results for each sequence, respectively

COLLUSION

In this study, we propose and demonstrate an
effective and robust tracking in a co-traiming framework.
Owr algorithm can encode the holistic appearance model
of the object in a compact linear subspace whle
strengthening the local histogram power. Moreover, the
co-traimng framework helps the models update each
other, which is especially helpful when each of them
fails
evaluations demonstrate that our proposed tracking
method performs well against the other state-of-the-art
methods.

during tracking. Quantitative and qualitative
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