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Abstract: This study presents an efficient commumcation scheme 1n Wireless Sensor Networks (WSNs) for
data gathering, called Network Coding Coupled Compressed Sensing (NCCS). We employ network coding to
adapt to the dynamic nature of WSNs, such as moving obstacles and link failure. Measwements from sensor
networks are often correlated because sensors nodes nearby observe the contiguous phenomenon and the
operation of the Random Linear Network Coding (RLNC) scheme 1s similar to that of the random projection in
Compressed Sensing (CS). Therefore, we introduce compressed sensing into the Network Coding (NC), to
prevent all-or-nothing impact on NC. NCCS simultaneously transmits and encodes specific packets of sensor
measurements to form random projections for CS recovery. CS technology guarantees that the data gathered
at all nodes are accurately reconstructed with a high probability from a very small number of projections which
15 less than the total number of source nodes in the network. Our simulation results show that, only less than
half mumber of packets is required to reconstruct measurements with reasonable quality compared with the
traditional network coding schemes. Also, NCCS increases the data gathering efficiency by over 20% compared

to the conventional NC scheme.

Key words: Wireless sensor network, compressed sensing, network coding, mesh network, NECO

INTRODUCTION

The Wireless Sensor Network (WSN) 1s composed
from a number of autonomous sensors and can be low-
cost and large-scale deployment to observe the physical
quantities, such as temperature, pressure and sounds.
Because sensor nodes are usually deployed in
unattended remote areas, even under very harsh
conditions, the WSN network topology frequently
changes because of the movement of obstacles, link
failure and the discontinuous operating schedule of
nodes. Moreover, most sensor data need multi-hop relays
to reach the sink. Therefore, the challenge of designing a
WSN involves in adapting to the dynamic characteristic
of the network while taking full advantage of the
broadcast nature.

In addition to leveraging the multicast network
capacity, Network Coding (NC) has been considered as a
promising tool to deal with this challenge in wireless

networks. NC 18 a specific network data processing

technique which utilizes the broadcast characteristics of
the wireless channels in order to increase the throughput
of the network. Conventionally, in a multi-hop network, a
node routes a packet to the destination through a
sequence of intermediate nodes by simply copying and
forwarding it to the next hop node. Using NC, a node
aggregates several received packets into a single packet
through simple algebraic operations and then forwards it
through one or more outgoing links (Ahlswede et al.,
2000). Coupled with the breoadcast nature of wireless
transmissions, NC can diversity and
redundancy in the network in order to adapt to the

ntroduce

dynamic changes in network topology. Only when
Ho et al. (2006, 2003) theoretically demonstrating the
design of lmear encoding function usimg random
coefficients, NC became practical to obtain throughput
gain. In particular, intermediate nodes using a Random
Lmear Network Coding (RLNC) scheme produce outputs
by linearly combining inputs with random coefficients.
Chachulski et al. (2007) proposed a design combined
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random network coding with opportunistic routing
exploits the broadcast characteristics of the wireless
channels efficiently. However, these schemes are too
complicated for use m WSNs and these traditional
network decoding have
all-or-nothing effect. Assuming that the source nodes
emit N original data blocks, then, in order to reconstructed
the original data, the sink node must receive at least N
linearly independent data blocks. If less than N blocks are
received, it is almost impossible to restore the original

schemes an unfavorable

block. The all-or-nothing effect will lead to serious packet
loss issues which affect the entire network’s throughput.

Fortunately, we can mtroduce CS to solve the
all-or-nothing problem. While the RLNC scheme’s
operation is similar to the random projection operation in
CS, measurements from a sensor network are either
spatially or temporally correlated, because many sensors
observe the same phenomenon. The core point of CS 1s
that a N-diumensional compressible (sparse) signal which
can effectively be transformed into a sparse vector under
certain transforming basis, can be reconstructed from a
small number of random samples which are projections
onto another basis that 1s incoherent with the
transforming basis (Candes et al., 2004). This approach is
directly applicable to sensor network scenarios if the
correlated data vector 1s considered as a collection of all
measwrements in the network at a certain time. The spatial
correlation of the measurements 1s reflected in the data
vector. Then, random projections of the data vector can
random ways m which those
measurements are linearly combined. The power of CS lies
in the fact that only a few data packets need to be
received to reconstruct all of the data from the network
(Donoho, 2006). Baron et al (2005) developed a
distributed CS framework for sensor data compression,

be considered as

exploiting both temporal and spatial correlations to reduce
the volume of sensor readings; however that study did
not consider the transmission problems.

Rabbat et al. (2006) introduced a practical random
compressed projection compression method for multi-hop
WSNs. In that study, the communication scheme uses a
simple gossip algorithm to gradually floed the network
with all random projections. Although, the framework can
be adapted to the dynamic network topology and
unreliable transmission link, it requires a significant
amount of communication and convergence time.
Katti et al. (2007) earlier proposed combining network
coding and CS but did not provide an implementation
framework. Nguyen et al. (2010) proposed the so-called

Netcompress encoding framework using RLNC at adjacent

source nodes and intermediate nodes and using the
[-mimmization CS reconstruction method. However, its
designs of the packet header and packet elimination
mechanism are unclear.

In this study, we introduce a practical scheme for
achieving efficient communication in WSNs by using
NCCS. We present a detailed design of the NCCS
framework, including the packet format, local encoding
vector selection, measurement matrix design and the
algorithm of signal
simulations to evaluate the feasibility of the framework
design and the performance of NCCS. The proposed
NCCS scheme can not only exploit the broadcast nature

reconstruction. We also use

and adapt to the dynamic natiwe of WSNs to increase
diversity but can also exploit the correlation between
sensor measurements to mimmize the number of received
packets required for decoding. We demonstrate a
significant reduction i the number of packets required for
data reconstruction with reasonably high quality and
demonstrate that NCCS is a competitively efficient data
commumcation scheme in WSNs.

SYSTEM MODEL

A WSN normally consists of several distributed
nodes that organize themselves mto a multi-hop wireless
network and typically coordinate to perform a common
task. WSNs have a vanety of topologies. We are
interested in mesh networking (Fig. 1) which is a type of
networking where each node can sense, receive, process
and forward sensed data while some of them gather the
data. A sensor network with a centralized architecture may
collapse entirely if there is a failure in some key nodes.
However, distributed control architecture can increase the
reliability of the semsor network effectively. In thus
context, flooding-based technology is considered. Using
flooding rather than specific routing to send a message
from one node to another, the message 13 flooded to all
nodes in the network including those unintended nodes.
Flooding has High reliability and extremely simplicity,
since there is no needs of complex routing technology
such as network management, self-discovery, self-repair,
overhead for conveying routing tables or routing
information.

Inevitably, measurements from a sensor network
(Fig. 1) are spatially correlated because many sensors
observe the same phenomenon. Therefore, it 1s desirable
to exploit this correlation. The observation of several
WSNs indicates that if we appropriately arrange the
data sensed by different nodes of a given WSN, the
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Fig. 1: Mesh topology of WSNs

arranged data will have a high compressed ratio which
does not generally change if the order of nodes remams
constant.

MATERIALS AND METHODS OF NCCS

Random linear network coding: In broadcast
transmission schemes, Random Linear Network Coding
(RLNC) can obtain almost optimal throughput using a
decentralized algorithm. For WSN scenarios where
centralized network management and control are complex,
RLNC effectively allows network nodes to achieve optimal
performance while operating in a decentralized fashion.
Thus, network nodes can operate in a distributed fashion
without requiring the knowledge of the overall network
configuration.

Nodes transmit random linear combinations of the
recelved packets, with coefficients chosen using the
random method (Chou et al., 2003). A dual radio graph
(V, E) having unit capacity edges is considered with a set
of source nodes SeV and a set of sink nodes TeV. Each
edge eeE from a node v transmits a symbol sequence
v(e) as a linear combination of symbols y(e™) on edges ¢,
e’ = in(v), as shown in Fig. 2.

The Local Enceding Vector (LCV) m(e) = [m,
()]s < i Which 1s a randomly generated projection
vector, represents the encoding function at node v for all
y(e’) with the same timestamp, namely y(e) = X _;,,, m,
)y (&) IfS53{=1, 2.N, N is the number of sowce
nodes) 18 a source node, we mtroduce an artificial edge e’
to maintain umformity of notation, as shown in Fig. 3.

Fig. 3: Input edges and output edges of source nodes

Each artificial edge e’ of the source node s, carries a
sequence of source symbols y(e’)) = x, x = [X, Xy X1 ],
where L 1s the length of the source symbol packet. Thus,
on any edge e€E, y(e) can be represented by a linear
combination y(e) = gle).[x,", %% x"]", g(e) = [g, 8ol
The vector g(e) 1s known as the Global Encoding Vector
(GCV) along edge e.
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According to traditional network coding methods, by
one or more time steps, any receiver te€T receiving certain
symbol sequences along its incoming edges with the
same timestamp can recover the source symbols X, X,.. Xy
as long as the matrix G Eq. 1 has rank N:

Y g Bz 7 B Xy X 7 Xy X

= X, Xy - X X
Y_z _ g_n g?z _ gz_N | Kz gl (1)
Y B Baz 7 Baw [ Xm Xwx 7 Xu Xn

Packet format: Here, we propose a packet format (Fig. 4)
that eliminates the need for a centralized knowledge of the
graph topology or the centralized encoding and decoding
functions. The packet header field has two sections,
timestamp and GCV. In real networks, packets are not
received and transmitted synchronously at different
nodes because they are likely to be received sequentially
with other packets contamning unmergeable data and
packets containing mergeable data on different routes are
generally subject to loss, congestion, different
propagation and queuing delays, or other changes in the
available bandwidth because of competing traffic. In this
study, all packets with mergeable data (that are sensed at
the same time slot) are considered to be in the same
generation. The timestamp indicates the generation
identity of the packet using an integer munber. GCV 1s
presented by N single-precision floating-point format
numbers, where N 1s the number of source nodes of the
network. We can assign an [D from the set {1, 2, . N} to
each node. If a packet i1s forwarded by the source node
with ID 1, GCV will be mmtialized as a umit vector, where
only the ith component 1s 1 and all others are 0, as
llustrated in Fig. 5. Depending on this mampulation and
Eq. 1, if some components of the received packet’s GCV
are nonzero, the packet contains the information regarding
the source nodes for which the IDs correspond to those
nonzero components. We consider that the size of each

Packet Eleader Df\ta
r L 1
| Timestamp |G10bal encoding vector | Sensed data |
A A
O I I I I O 9 3 B

1 bytes, N is the number 1 bytes, L is the

of nodes longth of data
Fig. 4: Packet format
Timestamp | Globad encoding vector | Sensed data
A
1] 0]

Only the ith component is 1, all others are 0

Fig. 5: Format of packet forwarded by the source node

packet is 1400 bytes, just as an [P packet in the Internet.
The cost of this scheme 1s the overhead of transmitting
N+1 additional bytes in each packet. If there are
118 nodes m the WSN, then the overhead 1s
approximately 119/1400 = 8.5%.

Compressed sensing: ITn a WSN, any signal can be
regarded as an Nx1 real discrete column vector in R”,
represented by x = [x,, X5, Xy]. And any x can be
represented n terms of the orthonormal basis of Nx1
vectors |r = [y, [r,]..[yry]" Using the NxN basis matrix
¥ = [ ). [y, ] with vectors ', as columns, a signal x can
be expressed as Eq. 2, where s = [s,, 83,..,5,]"

N
X = E CRVS or X ="Ys (2)
i=1

Clearly, x is the representation of the signal in the
time or space domam and s 18 the equivalent
representation in the ¥ domain. The signal x is K-sparse
if only K of the s; coefficients in Eq. 2 are nonzero. The
case of interest occurs when K<<N. The signal x is
compressible if only a few coefficients of s are not close
to zero.

Consider an under determined system:

y=®x (3)

where, @ 15 an m >N random projecting matrix with m<N
and x 18 K-sparse or compressible in the ¥ domam. The
system can be rewritten as:

y =Ox = DYrs (D

According to the result in CS (Candes et al., 2006,
Donoho, 2006), if the product matrix @Y satisfies the
condition of Restricted Isometry Property (RIP), for all s,
|Islle<K, there exists a 8,,e(0, 1) such that:

(1-B2p) (I8l < DL [, < (1430 [1s]1 (5)

x can be reconstructed effectively by solving an
f;-minimization problem:

min Hs”l1 st. y=0x,x="Ys (6)

<EY

Considering the RLNC system in the previous section, the
GCV matrix G is generated randomly and [x,, x,..x,]" is
compressible. By constructing an appropriate G and
finding the sparseness feature of the sensed signal,
we can also recover the source symbol by solving the
[i-minimization problem, even when G is not full rank.
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We consider the greedy algorithm to solve

reconstruction problems. The orthogonal matching
pursuit method, one of the most commoen and simple
greedy approaches that finds the column of ©¥ most
correlated with the measurements, repeats this step by
correlating the colunns with the signal residual which 1s
obtained by subtracting the contribution of a partial
estimate of the signal from the original measurement
vector. If the measurement matrix @Y satisfies the RIP,
the simplest guarantees for OMP state that for exactly
k-sparse x with noise-free measurements y = Ox = OPs,
OMP will recover x in exactly k iterations. The algorithm is
formally defined as follows. Algorithm 1:

Algorithm 1
Orthogonal matching pursuit algorithm
Input: The C8 observation y and a measurement matrix
O=0¥={0,i=1, 2, , N}, where PeR*¥, PeRN*N
Initialization: Index I = @, residual r =y, sparse representation
5= 0eRY
Tteration:
While (stopping criterion false):
i= arg max; {r, 8}
I=Tu{i};
r=y-0 . Dec D"y,
End
SO=ecily

Output: Sparse representation s and the original x =Y.

Local encoding vector choice: According to Jaggi et al.
(2005), if the local encoding vectors are generated
randomly and lie in a fimte field of sufficient size (same as
the symbols), the global encoding matnix G received at any
sink node will have full rank with high probability.
However, it is difficult to find a proper basis ¥ over a
finite field, in which the sensed signal can be represented
sparsely and GV satisfies the RIP of the CS theory. We
select Rademacher distribution random variables in a real
field to construct local encoding vectors:

A with probability -
m, {e) = 2 (7)

i

1 with probability%

After many multiplicative operations, the global
encoding matrix G received at the sink node will be a
normal distribution. In the scene of interest, for example,
the Ocean Climatic Sensor Network, where the obtamed
data are spatially comrelated, data gathered from
appropriately arrayed nodes are compressible over a
Discrete Cosine Transform (DCT). Next we will show
that in this case, GW (normal distribution random
matrix and discrete cosine transform) has a very good
RIP property.

SIMULATION AND RESULT ANALYSIS

We performed numerical experiments using data from
the US” National Oceanographic Data Center (NODC)
which were collected from sensors scattered throughout
the Okhotsk Sea, as depicted in Fig. 6.

The data processed by any node can be considered
as shown in Fig. 7. This study aimed to design a
framework for this data gathering to occur rapidly.

We employed the NECO (Joao et al., 2009) simulation
platform to analyze the data gathering efficiency of CSNC
and NC models under mesh WSN schemes; the
topological structure of the model 1s shown in Fig. 1. We
also employed Matlab to analyze properties such as
sensor data compressibility and the RIP of the practical
measurerment matrix.

We first evaluated the compressibility of the sensor
data by mainly using temperature in our munerical study.
We selected a set of temperature data simultaneously
sensed by nodes scattered throughout the Okhotsk Sea.
First, we randomly gathered data from these nodes.
Figure 8 shows their readings and the representation over
DCT and indicates that there are several relatively large
coefficients. Second, after performing several tests, we
chose a more appropriate node arrangement and
numbered the nodes in this order; then, we collected the
data of all nodes m order; the reading and its DCT
representation at a certain time are shown in Fig. 9. Then,
reading data in this order, we tested all the temperature
data acquired from the Okhotsk Sea in 2012. The results
showed that the expansion of any ordered data on DCT
has only 13-16 coefficients that are not close to zero, as
shown in Fig. 10.

60 4 o
o G < o
387 o o © o
I 0 0 0 0
567 o c o0 ©
1] ©C 0 0 oo o0 Q
o o0 000 o000
2 55 oo oo o o o
e © o o o ¢ o o
Z 504 o o el 0 o 0
- o o o o o @
184 O 0 C 00 0 0 GO C
© 00 0Q o0 o0 C c
642 © © 0 e 00 0 0 ¢
oo o o0 o o0 Qo o
o0 0 ¢ 0 0 0
44
o 0 0
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Fig. 6:Position of nodes scattered throughout the

Okhotsk Sea
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Temperature of Okhotak Sea surface sensed by different nodes
(Lon: 142.5 Lat: 44.5)

(Lon: 142.5 Lat: 46.5)

(Lon: 1435 Lat: 44.5)

— -8
| e o o+ -
-6
4
(Lon: 1475 Lat: 44.5)
® e - . 2
0
® e = -
- ---EN ---
Correlation sensed data with the same timestamp
Fig. 7: Method of packeting sensed data
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Fig. 8(a-b). Temperature readings without arrangement and their DCT representation
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Fig. 9(a-b). Temperatwre readings with appropriate arrangement and their DCT representation
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Here, we investigated the RIP of the measurement
matrix composed of the GCV matrix and DCT matnx (G'F).
In our frame, the length of any signal x to be processed
was N = 118 and its linear combination on DCT had
K = 13-16 coefficients not close to zero. Therefore,
we considered an mx=118, m = 30, 45, 60, 75 GCV matrix

randomly received at the sink node. Tn accordance with
Eq. 5, we investigated 8 for different m. Figure 11 indicates
that when the rank of the received GCV malrix sink nodes
measures up to 75, the measurement matrix can satisfy the
RIP with high probability, so the signal x can be
reconstructed exactly with lugh probability.

Next, we compared the packet transmission efficiency

35+
of NCCS and NC frames.
30 For the NECO simulation platform, the related
25 parameters are presented in Table 1.
20 Table 1: Simulation parameter list
5 Parameter NC NCCS
A 54 No. of nodes 118 118
No. of sink nodes 1 1
10- Nodes® generation  Random geometric graph  Random geometric graph
Connection radius ~ 0.35 0.35
5- Type of nodes Randomic nodes Randomic nodes
Capacity of edge 1bit 1 bit
0 — T | — — Link erasure 0.5 0.5
10 11 12 13 14 15 16 17 18 gmi’abﬂl‘fy - s
. rotoco
Cocfficient LCV finite Field, field size = 2° Rademacher distribution
Fig. 10: Number of statistical coefficient Routing Flooding Flooding

30 .
@
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Fig. 11(a-d). Value of § investigated under mx118, m = 30, 45, 60, 75 (a) m =30, (b) m =45, (c) m = 60 and (d) m =75
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Fig. 12: Rank of the GCV matrix received by sink node under NC and NCCS
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Fig. 13(a-b): Packets reconstructed (a) number of packets reconstructed under NC and NCCS and (b) Ratio of
reconstructed packets number of NC and NCCS

The type of node 1s set to “Randomic Nodes,” where
any node will randomly lose its receiving or transmitting
ability, leading to packet loss. Simply and without
loss of generality, we randomly selected one of the
118 nodes as a sink node. Ther, in each experiment, we
sent 500 generations of packets. Figure 12 shows the
received rank of the GCV matrix for each generation at the
sink node. In the NC scheme using the finite field element
as the local encoding vector, the sink node received a
full-rank GCV matrix with a probability of 83.5. Also,
in the NCCS scheme using Rademacher distributed
random elements as the local encoding vector, the rank of
the GCV matrix received by the sink node at each
generation was about 85-110 which is hardly
considered to be full rank but all of the ranks were larger
than 75. Figure 13a shows the number of packets that are
exactly reconstructed under different generation numbers
of two schemes. Computing the data-gathering-efficiency
ratioc of two schemes as shown in Fig. 13b, the
efficiency of NCCS was observed to be 20-35% higher
than that of NC.

CONCLUSION AND FUTURE WORK

Commumcation 1 WSNs 1s mostly characterized by
one or more sensor nodes forwarding the data that they
collect to a centralized collector. In most cases, the sensor
measurements reported by neighboring nodes are
correlated. The presented NCCS scheme combines the
benefits of NC and CS to achieve efficient data
throughput capacity in WSNs. While CS3 takes advantage
of the data correlations to reconstruct data with a high
probability using a much smaller number of measurements
than the number of source nodes m the network, the
network coding scheme n NCCS leverages the broadcast
nature of wireless transmissions and provides a method
to efficiently aggregate and commumecate those data by
minimizing the commumecation overhead. The results
obtained from our NCCS smnulation show that we
successfully reconstructed data with a reasonably high
fidelity by using only about half the mumber of
measurements  collected by the sensor nodes in a
network.
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