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Abstract: Tn recent years, researches on high-dimensional nonseparable function optimization have made
progress. Approaches based on Potter’s Cooperative Coevolutionary (CC) framework have achieved better
results and aroused a great attention. However, the computational results are still unsatisfying for most
Benchmark functions. Therefore, this study develops a dual-system (population) cooperative coevolutionary
differential evolution (DCCDE) algorithm based on dual-system Evolutionary Algorithm (EA). This algorithm
adopts a variable static grouping pattern and a improved Differential Evolution (DE) algorithm combined with
simple crossover (SPX) local search strategy and modifies the migration pattern of the sub-individuals
(not subpopulations) among the subsystems (subgroups of variables) in the dual-system. The test results
of 20 Benchmark functions (including 17 nonseparable functions, dimension D) = 1000) show that the proposed
algorithm is better than other algorithms in computational accuracy.
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INTRODUCTION

The engineering background of nonseparable
function optimization is one of the complicated coupling
engineering system  optimization problems. The
nonseparable functions divide into partially nonseparable
functions end fully nonseparable functions. The
nonseparable functions and multimodal functions are no
different in essentially, but only difference in the angle of
view. The former is from the view of coupling relationship
between variables; the latter 1s from multimodal
perspective of the functions solution space structure.
This kind of functions have more or less correlation
(coupling) among variables, so currently the nonseparable
functions, are the same as multimodal functions, have
become a hotspot receiving wide attention. Especially, the
fully nonseparable functions optimization problems are
very difficult to solve.

The heuristic algorithms (such as PSO, DE, GA) are
generally  effective for nonseparable  functions
optimization  problems  with fewer dimensions
(Zhang and Teng, 2009, Vesterstrom and Thomsen, 2004;
Wang et al, 2013; Livand I.i, 2011; Gao et al., 2006). In
recent years, CCEA (Potter CC) has attracted extensive

attention and made encouraging progress in solving
high-dimensional nonseparable function optimization
problems. Potter and De Tong (1994) proposed a
Cooperative Coevolutionary Genetic Algorithm (CCGA)
and in 2000, developed the cooperative coevolutionary
algorithms framework (CCEA). CCGA was used to
solve the nonseparable Rosenbrock function. To
overcome the difficulties presented by interacting
variables, they modified the credit assignment
algorithm. They adopted the best collaborator selection,
the best and random collaborator selection to compare.
The experimental results illustrate that the latter ways
for evaluating individuals influence algorithm’s
performance. Tt is clear that the results influenced by
the collaborator selection mechanism (Potter and De
Tong, 2000). For a class of coupled functions, they
explored an emergence of coadapted subcomponents
to suggest that the evolution of species might need to
be driven by more than the overall fitness of the
ecosystem to produce good decompositions. Sofge et al.
(2002) proposed a blended population approach for
cooperative coevolutionary (BCCES). They combined
Cooperative Coevolution Evolutionary Strategy (CCES)
and standard Evolutionary Strategy (ES) in a single
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evolutionary process, introduced a migration operator
to allow populations to migrate from subpopulations of
CCES to the population of ES. One population is
consisted of subspecies and implemented as a Potter
CCEA,; the other is a traditional EA. Experimental results
indicated that the blended population model outperformed
the CCEA on nonseparable function problems (D = 2).
Shi et al (2005) presented the Cooperative
Coevolutionary Differential Evolution (CCDE). CCDE
adopted Potter’s CC framework to improve the DE’s
performance. By splitting the solution vectors of DE,
CCDE can partition a high-dimensional search space into
smaller vectors. The subcomponents of a solution can be
co-evolved by the multiple cooperating subspecies (or
smaller vectors). The experimental results showed that, for
non-separable problem (D = 100), CCDE outperformed the
traditional DE and CCGA in performance. Yang et al.
(2008) proposed a mnew cooperative coevolution
framework (DECC-G) that could handle large scale
nonseparable optimization problems. A random grouping
scheme and an adaptive weighting strategy were used in
problem decomposition to made the variables stronger
coupled in the same group and the variables coupled as
weak as possible in different groups. Experimental results
indicated (D = 1000) that DECC-G could effectively solve
nonseparable function optimization problems up to
1000 dimensions. Li and Yao (2012) developed a new
cooperative  co-evolutionary particle swarin
optimization algorithm (CCPS02) based on the
cooperative co-evolutionary framework in order to solve
large scale non-separable function optimization problem
.The algorithm using new PSSO model based on the
combination of Cauchy and Gaussian mutation operator
update particle personal best (Pbest) and neighborhood
best position (Lbest), improved search ability and by
using variable random dynamic grouping. The
approach of wvariable random dynamic grouping is a
kind of breakthrough research results. Standard
test function set (Tang et al., 2007) test show that the
CCPSO2 algorithm can effectively solve as high as
2000 dimensional non-separable function F7 and has
good computational accuracy and robustness.

Although, the researches on solving nonseparable
problems have made progress i recent years, most of the
problems have not yet achieved the optimal solution. For
most Benchmark functions, there even 1s several orders of
magnitude away form the optimal solution.

In order to improve computational performance of
algorithm in CC framework for high dimensional non-
separable problems, we developed dual-system
cooperative  co-evolutionary  differential  evolution
algorithm (DCCDE) to solve lgh dimensional non-
separable function problem.

DUAL-SYSTEM COOPERATIVE
COEVOLUTIONARY DIFFERENTIAL EVOLUTION

Basic idea: the DCCDE we develop 1s based on dual-
system variable-grain cooperative coevolution algorithm
(DVGCCEA), also called Oboe-CCEA (Teng et al., 2010).
And the domain where the algorithm will apply is complex
coupled system optimization problems (e.g., satellite
layout optimization). Below is a brief description of the
Oboe-CCEA. The Oboe-CCEA decomposes the original
problem or system P (equivalent to non-separable
function) into E subsystems PPe (e = 1,2,... .E) (equivalent
to decomposing function variables into E groups) and
then duplicates system P (copy) as systems A and B,
each includes sub-systems (AAe or BBe), respectively.
System A 1s a virtual Potter CC, while system B 15 an
authentic one. The two systems evolve parallelly. System
A 13 optimized globally (all-in-one) and the optimization of
system B is achieved by its sub-systems BBe optimizing
parallelly. And system A adopts a coarse-to-fine variable-
grain strategy in order to reduce the time brought by the
dual-system. It 1s the sub-individual migration between
subsystems AAe and BBe on a group level, rather than
the individual migration between systems A and B on a
whole level, that improves the diversity in a population
(the ‘subsystem’ here differs from the ‘subpopulation’
in literature Sofge et al. (2002). System B adopts the
implicit coordination mechanism. The difference
between Oboe-CCEA and traditional CCEA is that BBe
are evaluated by system A rather than system B.
Oboe-CCEA in literature (Teng et al, 2010) did better
1n solving satellite-module layout optimization, but it did
not touch upon nonseparable function optimization
problems.

A dual-system  cooperative  coevolutionary
differential evolution with human-computer cooperation
(HDCCDE) is developed in Literature (Zhang et al.,
2012). HDCCDE  mcorporates  human-computer
cooperation based on Oboe-CCEA, namely, artificial
individual 15 added in the optimization process of
system A.

In this study, DCCDE employs the dual-system
CCEA architecture in Oboe-CCEA (Teng et al., 2010). The
differences between DCCDE and Oboe-CCEA lie m:

» DCCDE does not use the variable-grain strategy,
because we mainly focus on functions optimization
problems rather than complex engineering system
optimization problems

»  DCCDE decomposes the original problem P by static
variables grouping, while Oboe-CCEA decomposes
P according to the physical structure of engineering
systems
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¢+  Systems A and B of DCCDE use the improved DE
algorithm, which 1s combined with a simple cross
(SPX) (Tsutsw et al., 1999) local search strategy, n
order to improve the convergence

¢ Systems A and B evolve parallelly. System A
optimizes on a global level and the optimization of
system B 18 aclieved by the cooperative
coevolutionary among its subsystems BBe. AAe in
system A are the virtual subsystems corresponding
to the subsystems BBe in system B. Individuals
migration between systems A and B 1s achieved by
the sub-individuals migration between AAe and BBe.
It cen mnprove the diversity of a population. The
sub-individuals migration process between AAe and
BBe 1s the same as the one in Oboe-CCEA

In this
coordination mechanism and improving the space
searching ability of EA, in order to enhance the ability of
DCCDE to solve nonseparable functions.

study, we focus on dualsystem CC

Variable grouping: In this study, variable static grouping
1s employed to solve fully nonseparable functions. We set
a fixed number of variables groups and randomly
distribute the variables into each group. The grouping
principle 15 that the coupled relationships (usually strong
correlation) of varables m the same group are kept the
same as in original system and the variables in different
groups are independent of each other. To illustrate the
variables grouping, we take the partially nonseparable
function F, as an example. F14 13 shown as follows:

L,
E,= iFm_eum[X(P(k—l)“m+l 1Pl

()

3 =
Eoy e (%) = 3 (1091
=1

where, D 1s the dimension of variable; assume that E is the
mumber of group and m = D/E is the dimension of
variables in each group; P 15 a D dimensional random

position vector. The decision variables of the kth group
X(P iyt Pron) are shown i Fig. 1. For example, when
D =100, E =5, thus m = 20.

Coordination mechanism of DCCDE and information
exchange between systems A and B: The implicit overall
mechamsm m CCEA
collaborator selection. Some common methods for
selection  are:

coordmation relates to

collaborators random ndividual
selection, multiple individuals selection, the best
individual selection (Wiegand et al., 2001) and archive
method (Panait et af, 2006). In this study, system B
decomposes mto several subsystems BBe, which should
maintain the coordination consistency in the evolution
process 1if there are coupled relationships
subsystems BBe.

The coordination mechamism we improve based on
the Oboe-CCEA is described as follows. Before migrating
from BBe (variable groups) to AAe (variable groups), the
elite sub-individuals X" should be evaluated. The

approach we adopt is that: according to the best

among

collaborator selection, the collaberators X, 1s selected
from the remaining (E-1) subsystems (variable groups) in
system B to constitute the complete individuals
X = X5 X}, which is evaluated by system A
rather than system B in traditional CCEA. Tf the migration
criteria is satisfied, X", and X%, migrate to the
corresponding AAe to replace the worst
X+ owere, o and the X5 in system A will iterate for m
generations by the survival of the fittest. It is noteworthy

individuals

that there are general not one single elite mdividual, but
rather several subpopulations, migrating from BBe to
AAe. The process that the elite individuals X, in AAe
migrate to BBe 13 idem. It 15 worth stressing that the
individual migrations between systems A and B are
achieved by the sub-individual migrations between AAe
and BBe in order to increase the diversity of the
population. Systems A and B adopt the elitist preserving
strategy and utilize their synergies to increase the

Fy, (6, Ky X}

—

(Kr:u xn!""lxl’n)
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Fig. 1: The decomposition of function Fy,
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convergence of the algorithm. Finally system B
approximates system A and system A approximates

original system P (original problem).

Exploration ability of the improved heuristic algorithm:
Exploration ability of an algorithm 18 mainly reflected n
two aspects of diversity and convergence. DCCDE fully
utilized the migration information between AAe and BBe
to increase the diversity of the system and employs
unproved DE as the solving algorithm. In the improved
DE, the individuals have good diversity in the early stage
of evolution, so their exploration abilities are stronger; but
with the mcreasing evolution generations, the differences
among individuals decrease and the convergence rate
slow 1n the later stage. The improved DE 1s an algorithm
that combines the traditional DE with a simplex crossover
(SPX) (Tsutswi et al., 1999) local search strategy. And the
SPX local search strategy will be implemented every few
generations in the optimization process. What we should
note here is that a proper search length is very important
for SPX strategy. A small length is
unuseful to wnprove the search quality, while a longer
length may bring additional unnecessary evaluations,
which takes a lot of time. Considering the function
complexity and the allowable maximum evaluation times,

local search

we set the maximum search times of SPX local search
strategy T = D/5 (D 18 variable dimension). In addition, in
order to avoid premature convergence and save
evaluation times, SPX local search stops once a better
fitness 1s obtained.

In the DE algorithm, the CR and F
generally take fixed wvalues. CR relates to the nature
and complexity of problems and F relates to the
convergence rate. The two are closely related to the
considered problems and different problems have
different optimal control parameters CR and F.
Therefore, several algorithms that can adaptively
adjust the control parameters of DE in the evolution
process have been proposed in many literatures, such as
SaDE (Qin et al., 2009), jDE (Brestetal., 2006). In this
study, the adaptive strategy is also employed We set
CR = 0.5 (1+rand (0, 1), where rand (0,1) 1s a uruformly
distributed random number between 0 and 1. F takes
values by the following rules (Bdack et al, 1991): the
success rate of mutations should be maintained at 1/5. If

classical

1t 1s greater than 1/5, F increases; Otherwise, F decreases.
Hence:

C, < FLif pl<l/s
F&** = ¢ x FLif pl=1/s (2)
F' if pi=1/5

where, F' and F** are mutation factors in tth and (t-+H)th
generations, respectively, Cd = 0.82, C1 = 1/Cd, p, 1s the
success rate of mutations and measured over mntervals of
k trials.

DCCDE algorithm procedure: According to above
algorithm description, the pseudo-code of DCCDE
algorithm and improved DE algorithm are shown in
Algorithm 1 and 2, respectively.

Algorithm 1: The pseudo-code of DCCDE:
begin
(1) decompose system P into E subsystems PP;
(2) duplicate P to A and B respectively, that is the corresponding
subsystems Aa, and BB,
(3) for each X; of A do
(3.1) random initial population the individual X,; of A systern;
(3.2) evalute the individual fittness of f (X,);
end for
(4) for each BB, do
(4.1) random initial subpopulation BR,;
(4.2) evahite the individual fittness of  (Xpp,);
end for
(5) mutate facotr F=1, 2, crossrate CR=10, 9;
(6) while terminal condition do
(6.1) A system use differential improve evolution algorithm (IDE) to
evolve,
(6.2) B system employ CCDE to evolve;
(6.3) If the condition of mifration is met
migrate the subindvidiuals between AA, and BB,;
end if
end while
end

Algorithm 2: The pseudo-code of Improved DE (IDE):
begin
(1) foreach X,; in A do
(1.1) slect three different random individuals from A population X, ;,
Kz Xz

(1.2) if rand (0,1)<CR
Ui =Xt X Xkt
if £ (U better than f (X,7);
X =1
end if
end if
end for
(2) if the criteria of local search in met
using local search algorithm SPX;
end il
(3) if the frequency of successful mutations p<<0.2
F=0.825F,
else if p=0.2
F=1/0.82xF,
end il
(4) CR = 0.5%(1+rand (0,1));
end

NUMERICAL SIMULATION

Test functions: In this study, we use 20 representative
Benchmark functions presented by literature (Tang ef af.,
2010) to test the proposed DCCDE algorithm.
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Definition 1 (Tang et al., 2010): A function f(x) is
separable 1if:

arg txl"l.'l.i"l:lnj £y, x0= (arg n}{:n £z, -0, arg mxm f- ,Xh)) (3)

Definition 2 (Tang et al., 2010): A nonseparable function
f(x) 18 called m-nonseparable function if at most m of its
parameters xi are not independent. A nonseparable
function fx) 1s called fully-nonseparable function if any of
its two parameters xi is dependent with each other.

According to the above two  defimitions, the
20 high-dimensional functions in (Tang et al., 2010) can
divide into 3 categories: (1) separable functions F1-F3;
(2) partially nonseparable functions F4-F18; (3)
fully-nonseparable functions F19-F20.

The experiment is to compare the performance of
DCCDE with the performance of CCDE Shi et af. (2005),
DECC-G (Yang et al., 2008) and SDENS (Wang et al.,
2010) m solving nonseparable function optimization
problems. And the evaluation index is computational
ACCUracy.

Experimental setup: The expenmental parameters are set
as follows. For the 20 test functions in (Tang et al., 2010),
the variable dimension was set to 1000, the population
size of systems A and B was set to 30, the population size
of subsystems BBe and AAe was set to 30 and the
mumber of subpopulations (variable groups) was set
to 5. We allocated the 1000 vanables into the
5 subpopulations. The control parameters CR and F were
mutialized with 0.9 and 1.2, respectively. In this study, the
DE/rand/1/exp strategy was adopted by DCCDE. The
maximum number of fitness evaluations (MAX FES) is

calculated by:
MAX FES = 3000=D

where, D 13 the number of dimensions. In order to
eliminate the mfluence brought by random operation in
the initialization on the performance, every algorithm ran
25 times on each test function. For each test function, the
averaged results of 25 independent runs were recorded.
The function error for a solution x 1s defined as:

Afx) = £0)-1x) )
where, x* 13 the global optinum.
Experimental results and analysis: The computational
results of the 25 independent runs of DCCDE on the

20 Benchmark functions are listed n Table 1. The
averages of function error Af(x) in 25 independent runs of

DCCDE, CCDE, DECC-G and SDENS are shown in
Table 2. The MAX FES m CCDE, DECC-G and SDENS
were set to (3x10°). Because DCCDE algorithm adopts
dual-system architecture, therefore, MAX FES in each
system of DCCDE was set to (1.5x10) for fair.

From the experimental results of the 20 Benchmark
functions in Table 2, we can find that DCCDE apparently
outperforms SDENS.

Compared with CCDE, DCCDE performs better on
most of the test functions, specifically, on the
fully-nonseparable function F19. This owes to the Potter
CC framework and sub-individuals migration pattern in
dual-system of DCCDE. The coordination mechanism
in DCCDE reflects the interactions between the
sub-individuals in one variable group (subsystems) and
the sub-individuals in other variable groups and it also
provides a potential environmental pressure, which
guides the evoluttion direcion. The coordination
consistency of evolution among subpopulations in CCDE
1s maintaimed by the collaborator selection For weak
coupled problems (or separable problems), the traditional
coordination mechamsm does well in gmding each
subpopulation toward the optimal solutions, while for the
sttong coupled problems (or fully-nonseparable
problems), it does poorly. After the sub-individuals in
BBe migrating to Afe, system A optimizes on global
level, thus the coupling relationships in original problem
can be considered on the system level. After m iterations
with the elitist strategy, system A migrate the global
optimal solutions in AAe backwards to the corresponding
BBe to conduct the evolution of each subsystem in
system B.

Compared with CCDE, for the m-nonseparable
functions, DCCDE performed worse than CCDE onF7 and
F12. And the reason may be that the variable groupings
for the two functions are improper. For F18 and F20, there
15 no significant difference between the two. Most
importantly, DCCDE performed sigmficantly better than
CCDE on the remaining m-nonseparable functions. In a
word, the proposed DCCDE algorithm achieved better
results on the 12 out of the 17 m-nonseparable functions.

Compared with DECC-G, DCCDE performed better on
11 out of 17 functions (F5, F6, F7, F8, F10, F11, F13, Fl6,
F18, F19 and F20) according to Table 2. DECC-G is a
DECC with single system, adopts a new dynamic random
grouping mechanism to increase the chance of allocating
the strong coupled variables into the same subpopulation
(variable group). Thus, it improves the ability of CCEA for
solving nonseparable problems by using adaptive
weighted strategy.

The test results show that DCCDE simultaneously
outperformed CCDE and SDENS on 7 out of 17
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Table 1: Experimental results of DCCDE of 25 independent rung for F1-F20, with dimension D = 1000

Function Best Median Worst Mean Std.

F; 3.66E-15 4.66E-15 6.97E-15 5.02E-15 1.16E-15
F; 2.30E+02 2.42E+02 2.69E+02 2.45E+02 1.29E+01
F; 1.67E-08 1.88E-08 2.06E-08 1.90E-08 1.37E-09
F, T.34E+12 1.17E+13 1.23E+13 1.04E+13 2.04E+12
Fs 1.67E+08 2.44E+08 2. 74E+08 2.24E+08 3.90E+07
F; 9.12E-06 1.11E-05 1.61E-05 1.18E-05 2.61E-06
F; 1.07E+05 1.42E+05 2.69E+05 1.63E+05 6. 00E+04
Fs 4.22E+07 4. 29E+07 4. 46E+07 4.31E+07 8 79E+05
Fy 1.59E+08 1.86E+08 2.41E+08 1.93E+08 3.02E+07
Fiy 1.94E+03 2. 16E+03 2.80E+03 2.27E+03 3.36E+02
Fiy 6.46E-06 7.59E-06 1.22E-05 8.97E-06 2.51E-06
Fi, 3.67E+01 4 93E+01 8. 92E+01 5. 72E+01 2. 10E+01
Fiz 4.03E+02 4, 52E+02 5.59E+02 4.64E+02 5.73E+01
Fiy 5.18E+08 5.86E+08 6.45E+08 5.82E+08 4.82E+07
Fis 4.69E+03 5.10E+03 5.36E+03 5.07E+03 2.42E+02
Fis 1.34E-05 1.59E-05 1.79E-05 1.59E-05 1.67E-06
Fi7 9.69E+02 9. 89E+02 1.09E+03 1.01E+03 5.08E+01
Fq 8.00E+02 8. 54E+02 9. 11E+02 8.62E+02 4. 72E+01
Fis 5.55E+05 5.88E+05 1.23E+06 8. 27E+05 3. 56E+05
Fop 9. 82E+02 9.83E+02 9. 84E+02 9. 83E+02 5.29E-01

F,-F;: 8eparable functions, Fy-Fy;: Partially nonseparable functions and Fy;-Fap: Fully nonseparable functions

Table 2: Comparison between CCDE and DECC-G, SDENS and DCCDE of 25 independent runs on function F1-F20, with dimension D = 1000

DCCDE
CCDE DECC-G SDENS

Function Median Median Median Median Std.

F 1.67E-09(3) 8.81E-12(2) 5.73E-06(4) 5.02E-15(1) 1.16E-15
F, L.70E+01(1) 4.42E+02(3) 2.21E+03(4) 2.45E+02(2) 1.20E+01
F; 3.9M4E-08(3) 3.30E-08(2) 2. 70E-05(4) 1.90E-08(1) 1.37E-09
E, 1.S4E+14(4) 2.20E+12(1) 5.11E+12(2) L.O4E+13(3) 2.4E+H12
F; 3.28E+08(4) 2.45E+08(3) 1.1SE+08(1) 2.24E+08(2) 3.90E+07
F; 9.98E-05(2) 8.77E-03(4) 2.02E-04(3) 1.18E-05(1) 2.61E-06
F; 9.97E+03(1) L.10E+07(3) 1.20E+08(4) 1.63E+05(2) 6.00E+04
F, 5.47E+07(3) 6.14E+07(4) 5.12E+07(2) 4.31E+07(1) 8.79E+05
F: L ME+09(4) LAIE+0T(1) 5.63E+08(3) 1.93E+08(2) 3.02E+07
Fio 3.20E+03(3) 2.48E+03(2) 6.87E+03(4) 2.27E+03(1) 3.36E+02
F, 3.90E-05(2) 3.52E-02(3) 2.21E+02(4) 8.97E-06(1) 2.51E-06
Fis L.19E+01{1) 7.87TE+01(2) 4.13B+05(4) 5.72E+01(3) 2.10F+01
Fis 7.87E+02(3) 5.50E+02(2) 2.19E+03(4) 4.64E+02(1) 5.73E+01
Fi, 2.56E+09(4) 2.91E+07(1) 1.8SE+09(3) 5.82E+08(2) 4.82E+07
Fis 6.86E+03(3) 3.88E+03(1) 7.32E+03(4) 5.07E+03(2) 242F+02
Fis 4.38E-05(2) 4.01E-01(3) 4,08E-+02(4) 1.59E-05(1) 1.67E-06
F, 4.15B+02(2) L.O3E+02(1) 1.0SE+06{4) L.OIE+03(3) 5.08F+01
Fiz 8.59E+02(1) 1.80E+03(3) 3.08E+04(4) 8.62E+02(2) 4.72E+01
Fis 1.31E+08(4) 1. 14E+04(3) 8.80E+05(2) 8.27E+05(1) 3.56E+05
Fa 9.82E+02(1) 3.33E+03(4) 9.90E+02(3) 9.83E+02(2) 5.29E-01

F,-F;: Separable finctions, F,-F,;: Partially nonseparable functions and F,,-F,;: Fully nonseparable functions that the results of DECC-G and 8DENS are cited
from literatures Yang ef . (2008) and Wang ef . (2010) and the results of CCDE and DCCDE are worked out in this study, The number in the bracket

denotes sort order, The number 1 denotes best, the number 4 denotes worst

nonseparable Benchmark functions (D = 1000) and
outperformed DECC-G on 11 out of the 17 functions.

Tn addition, DCCDE is compared with BCCES. BCCES
was tested on 6 functions (D = 2) in literature Sofge et al.
(2002) and there is only a convergent curve without any
specific data Table. F1, F2, F3 m the convergent curve are
comparable. The results show that DCCDE outperformed
BCCES on Fl, F3 and for F2, there 1s no obvious
difference between the two algorithms. Tt indicates that,
for 2-D functions, the dual-system (dual population)
algorithm is better than the BCCES in literature
Sofge et al. (2002), where the high-dimensional functions
were not involved.
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CONCLUSION

On the basis of Oboe-CCEA, we develop DCCDE
based on dual-system CC frameworl. In the dual-system
of DCCDE, system A 1s a virtual Potter CC, while system
B is the authentic Potter CC. We mainly focus on variable
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static grouping, dual-system CC framework and its
coordination mechanism and improving the space
searching ability of heuristic algorithms.

The reasons why DCCDE can improve the diversity
of populations are: (a) a dual-system Potter CC framework
and a new migration pattern of the subpopulations (or
sub-individuals) between AAe and BBe are adopted; (b)
the improved DE 1s employed, therefore the searching
ability in the early stage of optimization is good and
the synergistic effect among subsystems BBe 1s
played. The reasons why DCCDE can improve the
comvergence are: (a) a variable static grouping strategy
that uses fixed number of groups to group the variables
randomly is used to keep the coupled relationships of
variables in a variable group the same as they are in
original problem (original system) and each variable
group (subsystem) is independent with others; (b) due
to the improved DE, the searching ability in the later
stage of optimization is good; (¢) system A optimizes
on the global level and system B optimizes based on
Potter CC, synchronously, the elitist preserving
strategy 18 employed, thus system B approximates
system A, which approximates system P (the original
problem).

The test results show that, for most of the
17 nonseparable Benchmark functions (D = 1000), the
proposed DCCDE is better than other algorithms in
computational accuracy. However, the proposed variable
grouping pattern is improper for some functions; thereby
our work will focus on the variable dynamic groupmng
pattern in the near future.
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