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Abstract: Network motifs play an important role in biological networks but the detection is computing complex

and time consuming. Sampling method has been used in network motif detection to decrease calculated amount,

however the inevitable sampling error nfluences the result validity seriously. In order to reduce the sampling

error, a sub graph extending method is introduced to mmprove the computation performance and a sub graph

support value is proposed to get more potential topology information of the network and the sub graph support

value as a parameter 1s used to calculate the sub graph concentration of network. The experiment results
indicated that the using of sub graph support value reduced the sampling error and this study achieved better

computing performance and sampling stability.
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INTRODUCTION

One type of small connected subgraph which has
significantly higher frequency in a network than in
random networks 1s defined as network motif, it was
proposed firstly in 2002 by Milo et al. (2002). Network
motif 1s helpful to understand various complex networks
(Kong and He, 2010) and is useful for the research of
structure and function of biological network. The network
motif study on transcriptional regualtion network revealed
that the network motif have information processing
feature (Shen-Orr et al., 2002). And the application of
network motifs in the prediction of interaction and
function module finding shows good effects (Albert and
Albert, 2004; Saito et al., 2002a, b).

Although network motif detection 18 a very complex
problem, the importance of it in biomformatics urges
researchers to take part in further studies (Qin et al.,
2009). The detection of network motif typically consist of
three subtasks: the generation of random networks which
have the same vertices degree sequence with the input
network; subgraph isomorphism
classification; calculation of statistical metric and
determiming network motif (Wong et af., 2011).

As the definition of the network motif described,
subgraph frequencies are computed m both the real
network and random networks. Generating random
networks is one important part in detection of network

computation and

motif. The familiar algorithm generates the random graphs
by randomly switching edges between vertices from the
original graph. This
certain when proper randomization has been reached
(Wong et al., 2011), however from the statistical principle

switching techmque 1s never

pomt of view, the generated networks are required to
satisfy to the randomness enough.

Reducing the time consuming of the isomorphism
testing is crucial to an efficiency network motif detection
algorithm. Graph somorphism is known as a NP-complete
problem, the exponentially rise of computation time make
1t hard to deal with the big size graph (Foggia et af., 2001).
The best runtime of the n node graphs of the known
algorithm is 2°(Jnlogn) (Babai and Codenotti, 2008,

Johnson, 2005). Canomnical labeling of the network’s nodes
15 been used to solve the 1somorphism. For example, one
of canonical labeling-based isomorphism testing
algorithms named NAUTY has been used in many
network motif detection tools (Wong et af., 2011). The
GraphGen (L1 et al., 2007) algorithm divides the mimning
frequency subgraph into two parts of finding frequency
of subtree and extending the subtree to the subgraph, it
only need to compute the subtree isomorphism, also
improved the performance of the algorithm.

In order to determining statistical significance of the
frequency of a subgraph, it is necessary to get the
appearance proportion of all types of n_node subgraphs
inreal network and random networks (Kashtan et al.,
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2004). For the reason of computing time of enumerating
methods would increase sharply as the graph size,
Kashtan et al (2004) proposed an edge sampling
algorithm ESA. This method samples a set of subgraphs
to estimate their frequency in network, the runtime of this
method is not as the exhaustive method closely related to
the graph size. Compare with the enumerate algorithm,
ESA has great advantage of time consuming, however the
edge sampling strategy leads to sampling bias that the
possibility of each subgraph to be sampled 1s not equally
(Wernicke, 2005). To correct the bias of sampling
algorithm, A node sampling algorithm Rand Esu
(Wernicke, 2006) was presented and a tool named
FANMOD is implemented based on it (Wernicke and
Rasche, 2006). Rand HEsu used a node extension pattern
growth tree makes all of the leaf subgraphs have the same
possibility to be sampled. And the size of motifs
Rand Esu detected reached to eight vertices.

Sampling 1s a statistical method which deduces the
ensemble distribution from sample indicators. There are
two types of factors leads to the mcorrect sample
estimate. The one 1s nonsampling error, the reason of it 1s
violated the random sampling principle (Jin et af., 2002).
Edge sampling strategy ESA used leads to oversampling
of some subgraphs is belongs to the nonsampling error,
however, it is possible to prevent. For instance, by using
Rand Esu
eliminates the bias caused by edge sampling. The other
one is sampling which is inevitably
following the random sampling principle but it is
controllable (Jin et al., 2002). The evaluation of estimating
of overall distribution 15 according to the sampling error,

a node extension pattern growth ftree,

error even

if the sampling error is large that means the estimating 1s
incorrect (Iin et al., 2002). Thus it is important to reduce
the sampling error.

For the reason of inevitable sampling error and
different subgraph distribution of wvarious networks,
sampling method leads to the estimating of the subgraph
frequency apart from the original frequency, especially
when sampling size is small. A method using subgraph
extending and Subgraph Support Value (SSV) called
SE&SSV was presented to reduce the sampling error, the
subgraph extending can reduce the time consuming and
the SSV can get more potential topological information of
network to correct the error of sampling distribution, the
experiments confirmed it.

MATERIALS AND METHODS

Networks
Real networks: The real network used in this study is
an immunoglobulin protein network which contains

95 nodes, 213 edges, based on the PDB database
(www rcsb.org/pdb/) and it’s PDB 1D 15 1A4].

Random networks: The subgraphs sampling from the real
networks have to compare with random networks to judge
whether it is significance in the number of appearance.
The random networks are required to have the same node
degree sequence to the real network, usually, exchange
several edges’ start node and end node to keep the
generated rand network have the same node degree
sequence to the real network (Wong et al, 2011),
however, the randomness of generated network is not
enough especially in highly dense PPI networks.
Furthermore the nodes with higher degree are key node
usually and may be the node within motif in greater
probability, the edge exchange strategy would keep more
edges of high degree node same to the real network, it will
make the subgraphs sampling unsatisfied to the statistical
principle enough. Tn this study, only undirected networks
are considered, Another generating method 1s adopted to
generate a series of random networks with the same
degree sequence to the real network and could completely
meet the randomness, details 1s described as Fig. 1.

Method

Subgraphs enumerating and sampling: Esu and
Rand Esu(Wernicke, 2005, 2006) are used to traverse the
network and sampling the subgraphs in this study. The
1somorphic subgraphs will be categorized as a same type,
a set of n_node subgraphs with corresponding number of
isomorphic subgraphs can be got, either in real network or
random networks generated by the method described
earlier.

Subgraph support value: In the step of isomorphism
judgement, usually, only when a subgraph 1s 1somorphic

Algorithm: Getting Random Network(G)(Get_RN)

Tnput: A real network G;

Output: A random network Gr;

1:  Create a matrix Gr with the dimension same to G;

2:  Get the node degree sequence(D) of G;
/D = {D| Dy is the degree of node i, =0 to n-1;} n is the node
numnber of real network;

3:  While(exist nonzero element in D){

4:  Select the maximum element D,, in D;

5 m=D,;

6 For(j=0 tom){

7. Get a random integer k between [0, n) which Dy, and Grm, k] =
0;

8 SetGrlm,k]=1,Gr[k, m]=1;

9 Dp—-; D}

100}

11: End;

Fig. 1. Algorithm of get random networks
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to the other one, the isomorphic number of this type will
plus one like ESA, Esu, Rand Esu (Kashtan et al., 2004)
(Wermcke, 2005, 2006). A Subgraph Support Value (S5V)
15 used m this study, subgraph support value 1s a
probability to measure the isomorphic of two subgraphs
emerge in network.

The computation of SSV was divided mnto two parts:
The first part 13 when subgragh’s node number 15 less
than the farther graph’s: Because of the (n-1) node tree
extend to n node tree will add only one edge, so for
simplicity using the subtree replace the subgraph when
the node number 15 less than the farther graph. There 1s
only one type of 3 _node tree, so starting at 3 node tree.
The support value of this part is called as Subtree Support
Value (STV). The process of get STV from 3 node to
5 node tree 1s shown in Fig. 2.

There is only one type of 3 node tree, extend t’ by
add one node and edge can get two types of 4 node trees
t,' and t,', we assume that all nodes have same probability
to connect to the added node, so the probability of t,*
extend from t' is 1/3, t,' is 2/3, then we can calculate the
isomorphic probability of two 4 node trees extend from t’;

1.1 2 2 5
STV, , =(—x—)H—x—)=—
T (3 3) (3 3) 9

If extend from 4 node trees to 5 node trees, the 4 node
tree have the probability of 1/3 to be t,* and the
probability of 2/3 to be t;. Then the isomorphic
probability of 5 node tree extend from 4_node tree:

stv,, <L [(2 2 (22 (L 22 )]
-3 4 4 4 4 31\3 3 3 3 27

can be calculated and:

alike and so on.

Before the second part, 1t 1s necessary to know the
definition of inside edge and outside edge: in the process
of graph extending, if the added edge introduces a node
to the graph, the added edge was defined as outside edge,
else defined as the inside edge (L1 et al., 2007).

The second part is extending the generating tree to
the graph which has the same edge number to the farther
graph. When subtree 1s the generating tree of father
graph, the extension is adding all mside edges. The
nmumber of different edge adding patterns without regard
to the graph symmetry is used to calculate the probability

o—0—-"0

3_node tree £
213 | 1/3

4_node tree t,* 4_node tree t,'

24| 24 314 | 14

5 nodetreet 5 node treet,’ 5_node tree t,*

Fig. 2: Process of getting STV from Subtree extending

of different patterns. And the probability of different
patterns 1s took as the support value of generating tree to
father graph called generating tree support value (SGV).
Formula (1) 1s given for the calculation of SGV:

en-1 2 _
1= ! - e=en+ew$l[n(n71)}
=0 C,—ew—1 2 2
SGV =1 ruteny 2
2 1 1 n(n-1)
11 = - | |[e=en+ew > —| ——=
itp oCL—ew—i 2 2

where, n is the node number of the subgraph, en is the
inside edge number, ew 1s the outside edge number.
Through two parts above SSV of two graphs can be got,
the procedure is shown in Fig. 3.

As 15 an example given in Fig. 4 to describe how to
get S8V, there are two unisomorphic 5 node subgraphs
g15 and gri5. The max size of 1somorphic subtree they have
is 4 node like t4 and trd, For the reason of gi5 and gri5 is
a proper subgraph of random network, at least there have
another node connect to it. If we extend trd to 5_node tree
tr5 by adding an external node and edge, the probability
to get two isomorphic 5_node trees is STV, ., = 5/9. And
extend the 5 node tree by adding inside edges also have
a certain probability to get two 1somorphic graphs in this
example are gi5 and greS. In this situation there 1s only
one inside edge, thus the probability to get two
isomorphic graphs is:

(1)

:
SGV = ,1 -L
ci-4) 36

So the SSV of gi5 and gri5 is STV*3GV = 0.0154.
From the way of get S5V, it can be seen that the
subgraph  support more potential

value consider
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topological information of the network and could estimate
the total distribution of subgraph in network more
globality and accuwracy than simply plus one, the
experiments could confirm 1it. The other way round, it 1s
possible to sample less subgraphs to estimating the
distribution in order to improve the computation
efficiency at the same accuracy level.

Subgraph extending: Isomorphic graphs at least have one
type of isomorphic subgraph, for this reason a subgraph
extending method is proposed to cut off the unisomorphic
graphs by judging whether there i1s an isomorphic
subgraph. And because of the subtree is the simplest
subgraph and there is the least time consuming in
computing isomorphic, the subtree isomorphism is took to
prune umsomorphic graphs. Based on subgraph
extending, subgraph support value 1s introduced to
measure the significance of subgraphs. The description
of subgraph extending and SSV algorithm is shown in
Fig. 5.

Through subgraph extending a SSV 1s got to evaluate
the isomorphic probability of two subgraphs. Then take
the SSV to calculate subgraph concentration which

Algorithm: Getting Subgraph Support Value(g, g(Get_SSV)
1: TInput: Two graphs g and g', STV;
2:  Output: Subgraph support value SSV;
3:  Calculate the SGV of g and g’ use the Formula (1);
4. For(i = 4ton-1){
5: If (there is not isomorphic i node subtree of g and g"
4 Retumn
T}

8. If (g isomorphic to g Retumn 1;
9:  Else Return SGV;
10 End;

Fig. 3: Algorithm of get subgraph support value

(39}

1 2 1

AN
/ \5 \

gis t4

5

Get a pair of isomorphic subtree  Add external node and edge
>

_______________ >

gris tr4

Fig. 4: An example of getting subgraph support value

External \ / !
2

described in next section. SSV considered the connection
of subgraph’s neighborhood mclude in network, it can get
more potential topological information of the whole
network.

Subgraph concentrations: The support value of
appearance of subgraphs of type 1 1s SP1. SP1 18 the total
S5V of subgraph i got in network traverse. The
concentration of n_node subgraphs of type 1 1s the ratio
between their support value and the total support value
of n_node subgraphs in the network:

Ci= —h (2)

The normalized value is used to measure the
distribution proportion of one type of subgraph in random
network, then compare with the proportion of it in real
network to judge whether it is a network motif.

RESULTS

In order to evaluate the performance of our algorithm
and Rand Esu, both of the algorithms were implemented
in Java and testified the superior performance from two
aspects, the one is time consuming, the other is sampling
accuracy and stability. All these tests were done on a
computer with an AMD Athlon{tm) 7850 Dual core
Processor 2.80 GHz and with 2 Gb of memory.

The comparison of time consuming: Firstly on the time
consuming, ran the program of subgraph extending
without consider the S5V on the real network which was
mentioned earlier. For the reason of edge number of
subgraphs would influence the time consuming of
1somorphic judging and the number of edge of each

2

5 1
\ \/
3

/\ /N

4 5 4 5
5 gis

Add inside edge

1

>
External / 1
2

/ / \
4 —5

trs gres

4
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Algorithm: Subgraph extending and 88V(G, K)(SE&SSV)
Tntput: A network G, subgraph size k;

Output: A set of sampled subgraphs 8 = {8G,, SG,, ..
commesponding SV = {8P;, SP; ..., 8P,};

1: Call Rand Esu(G, k);

For each subgraph g get by Rand FEsu do{

For(i = 0 to size of 8§){

Call Get_SSV(g, 8G) to get S8V, 55

8p; = SP1+SSVg_SG1;}

Ifithere is not 88V, 5= 1)

Add the g into § as a new type and add the corresponding SP, =
1 into SV;

D)

0: End;

. 8G,} and

g PRl ol 54

Fig. 5: Algorithm of Subgraph Extending and SSV

aQ

15 @

—{|1+ Subgraph_extend
—— Esu

Runtime/10° seconds

3 4 5
Subgraph size

— "} Rand-subgraph_extend

—— Rand_Esu

0.5 1

Runtime/10° seconds

0.0
3 4 5

Subgraph size

Fig. 6 (a-b). Comparison of (a) Emunerating runtime and
(b) Sampling runtime

sampled graph is indeterminate, in order to reduce the
umpact of this, the average run time of ten times was took
as the value to measure the algorithm performance,
subgraphs in the size of 3, 4 and 5 have been executed in
both of enumerating and sampling programs, the average
run time 1s shown n Fig. 6.

Compare to the Esu, subgraph extending algorithm
have excellent performance in run time either in enumerate
or sampling method. Because there 1s only one type of
3 node tree subgraph extending algorithm degrade to Esu
and when the size of subgraph is 4, because there is only
two types of 4 node trees and 6 types of 4 node graphs,
s0 there are few umsomorphic graphs have been cut off
at the extending procedure, the improvement is not

-0~ Rand_Esu -O- Average of rand_Esu
I Subgraph_extend - Average of subgraph_extend
-i- Enumerate proportion

70

60

AR NI N A AN
AN, u a7 u 7%
u ]

Percent of one type subgraph (%)

50 T T T T T T T T T 1

Ten times of tests

Fig. 7. Detail concentration distribution of 4 node
subgraph tests

obviously. As the subgraph size increasing there are more
umisomorphic graphs been cut off, accordingly the
computing time reduced much more like the size 5 in the
experiment. From Fig. 6a, the average runtime of Esu is
about 13.6x10 seconds when the subgraph size is 5 and
the average runtime of Subgraph Extend is about 10.7x10°
seconds that 1s 21% less than Esu’s. Figure 6b shows the
average runtime of sampling methods. The sampling
probability was set as 0.1 in both methods. When the
subgraph size 1s 5, the average runtime of Rand Esu i1s
about 1.4x10" seconds and of Rand Subgraph Extend is
about 1.24x10° seconds, the average rtuntime of
Rand Subgraph Extend is nearly 11.5%
Rand Esu’s.

less than

Performance on sampling accuracy and stability:
Secondly compare the stability and accuracy. There are
three groups of experiments were took to testify extending
method more stable and accuracy, the type of subgraph
with the highest concentration in real network was
selected as the metric and record the concentration of this
type of subgraph got by sampling algorithm each time.
The concentration was calculated by Formula (2). Both of
the methods were ran ten times at the subgraph size of 4,
5, 6. The detail parameters and results are shown in Table
1 and Fig. 7-9.

In Table 1, the column of enumerate proportion
recorded the actually proportion of network that got by
enumerate method. The column of average concentration
recorded the average concentration of ten times tests of
both Rand Esu and Subgraph Extend, the values closer
to enumerate proportion means the corresponding method
has better accuracy. The records of standard deviation
column are used to evaluate sampling stability, the smaller
value mdicates the more stable performance.
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Table 1: Parameters of experiments and the results of enurnerate proportion, average concentration and standard deviation

Subgraph Total Sarmple Sample Emunerate Average Standard
size subgraphs subgraphs probability proportion (%) concentration (20)  deviation Algorithm
4 node 2043 200 0.1 58.05 59.52 0.060 Rand Esu

58.35 0.029 Subgraph_Extend
5 node 0825 700 0.1 34.96 40.94 0.058 Rand Esu

35.64 0.031 Subgraph_Extend
6 node 23511 2000 0.1 20.05 27.66 0.040 Rand Esu

23.06 0.029 Subgraph_Extend

-0~ Rand_Esu -O- Average of rand_Esu DISCUSSION

41 Subgraph_extend  -% Average of subgraph_extend

-2 Enumerate proportion

Percent of one type subgraph (%)

Ten times of tests

Fig. 8: Detail concentration
subgraph tests

distribution of 5 node

40 - -0~ Rand_Esu

F Subgraph_extend

=& Enumerate proportion

35 4 -O- Average of rand_Esu

% Average of subgraph_extend

Percent of one type subgraph (%)

Ten times of tests

Fig. 9: Detail concentration distribution of 6 node
subgraph tests

From Table 1, it can be seen that the average
concentrations of subgraphs got from this study are
closer to the actually proportion than Rand Esu. And the
standard deviations of our method are smaller, they are
about a half of Rand Esu's at 4 node and 5 node
subgraph size and about two thirds of Rand Esu’s at
6 node subgraph size It also can be seen from the
Fig. 7-9 that the fluctuation of fold lines of our method 1s
smaller than Rand Esu’s. Tt is proved that the SSV can get
more potential topological information of whole network,
this study can improve the accuracy of sampling
algorithm and have more stable performance.

Sampling error 1s a factor that cannot be ignored in
the sampling method wheih directly affect the correction
of results. The common method to reduce the sampling
error is expands the sample quantity, however it will
relatively mcrease the amount of calculation (Jin ef of .,
2002). Kashtan et al. (2004) discussed the error ratio of
ESA. The method they utilized to keep the error in a
reasonable range 1s sample quantity expansion. The same
to the Wernicke in discussion of Rand Esu (Wernicke,
2005). To enhance the accuracy by expanding sample
population is feasibility in some extent but the excessive
expansion will lose the runtime superiority of sampling
method. In this study, instead of enlarging the sampling
population, a value of SSV that include more topological
information 1s utilized to reduce the sampling error. And
because of the subgraph extending and the easy
calculation of SSV, reduction of sampling error is
effective.

CONCLUSION

Because of the complex computation of network motif
detection, subgraph sampling algorithm has
proposed. Sampling network motif detection is computing
efficiency and could find larger motifs, however the
accuracy of motifs it found is based on reasonable
sampling error range. For the reason of uncertamn of
subgraph distribution of networks and simple random

been

sampling will take m sampling error in large, a method of
subgraph extending and introduce S5V 1n the
computation of concentration has been proposed wheih
can depress the sampling error. From the results of
experiments it can be seen that our algorithm achieved the
improved performance both in time consuming and
sampling stability.

In future work, we will make further research to
introduce more useful network characteristics and protein
function information to improve the estimating accuracy
of subgraph distribution, like the degree sequence of the
nodes, essential proteins etc.
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