http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 12 (9): 1857-1862, 2013
ISSN 1812-5638 / DOL 10.3923/1t).2013.1857.1862
© 2013 Asian Network for Scientific Information

Detection and Analysis of Software Aging in a Service-Oriented J2EFE Application Server

"Meng Haining, 'Hei Xinhong, *Liu Jianjun and "Wei Wei
'School of Computer Science and Engineering, Xi’an Technology University, Xi’an 710048, China
*Aeronautics Computing Technique Research Institute, Xi’an 710068, China

Abstract: Long-running software system tends to show performance degradation and sudden failures, due to
error accumulation or resource exhaustion over time. This phenomenon is usually called software aging. This
study presents a memory-related detection method to investigate software aging in a service-oriented J2ZEE
application server running on Java Virtual Machine (JVM). By studying the problem of memory leaks in TVM,
the memory analyzer tool referred as Profiler is designed and developed to collect the performance data of TVM
heap memory. Finally, the experimental results and statistical analysis of collected data validate the presence

of software aging in the application server.

Key words: Software aging, application server, web services, java virtual machine

INTRODUCTION

In the study of software reliability, the phenomenon
of software aging has been reported in the long-rummung
software system, 1n which system performance
gradually deteriorates over time and even sudden failures
occur (Avritzer and Weyuker, 1997). Software aging
phenomenon 1s closely related to system resource
consumptions. It has been observed m transaction
processing system, web server and Java virtual machine
and so on (Garg et al, 1998, Grottke et al., 2006;
Kourai and Chiba, 2011). In order to attack the
phenomenon of software aging, software rejuvenation
technique as a preventive maintenance policy was first
proposed by Huang et al. (1995) to ensure system
reliability, to reduce high maintenance cost and
breakdown cost and to improve system availability.

Web services are emerging as a standards-based
platform for application integration across wide area
networks and enterprises. Web services can integrate and
collaborate with various applications in a loosely coupled
way to achieve business goals. Tt also decreases the
complexity of application connection in order to reduce
the cost of maintenance and updating. So it is one of the
most promising solutions in web application environment,
(Tsalgatidou and Pilioura, 2002). Since deployment of web
services based architectures has grown over recent
years, it 18 necessary to provide reliable web services
(Zhang et al., 2012).

The application server is a kind of independent
software system or service program that provides
management of computing resources and network

communications. 1t shields the complexity and
heterogeneity between the underlying network and the
operating system, so that the whole system is transparent
to client access. In the area of network computing,
application server 1s the supporting runtime platform of
web services and the dynamic characters of web services
affect systematic behavior
application server. We study a service-oriented J2EE
application server to see whether it suffers from software
aging. Our final objective is to monitor system resources
and analyze the cause of software aging which plays an
important role in improving the availability and providing
more reliable web services of application server.

In this study, we demonstrate the simple
methodology for detecting aging in the service-oriented
I2EE application server. Since the application server is
runming on JVM, memory leaks in the JVM 1s firstly
analyzed. Then a memory analyzer tool referred as Profiler
is designed and implemented to collect performance
resource usage and system activity data from application
server at regular mtervals. Finally, the evaluation metric of
slope estimation technique in the linear regression method
is adopted to estimate the presence of software aging in
application server and the cause of software aging is
giverL.

and runtime state of

RELATED WORK

Numerous and valuable studies have been devoted
to detection and analysis of software aging. Garg et al.
(1998) first proposed a measurement-based method to
estimate software aging, the operating system resowurce

Corresponding Author: Meng Haining, School of Computer Science and Engineering, Xi'an Technology University,

XKi'an 710048, China

1857

Inform. Technol J., 12 (9): 1857-1862, 2013

usage and system activity data such as memory usage
were collected via a SNMP-based distributed monitoring
tool and then software aging in UNIX workstation is
estimated and verified based on a statistical model.
Cassidy et al (2002) explored the feasibility and
practicability of exploiting advanced statistical pattern
recognition for detecting software aging in large OLTP
DBMS servers. To estimate aging trends in a Apache web
methods and

applied by
Grottke et al. (2006) which demonstrating a numerical

server, the non-parametric statistical
parametric time series models were
validation based on collecting the data of resource usage
and activity parameters such as used swap space,
response tune, free physical memory. By adopting the
aspect-oriented programming technology, Alonso et al.
(2010) uyected the momtoring solution mn runtime J2ZEE
applications to determine the component root cause of
software aging. Kourai and Chiba (2011) collected and
analyzed data of throughput loss and memory depletion
and then adopted both parametric and non-parametric
statistical techmiques to reveal the presence of software
aging phenomenon in the Sun Hotspot Java virtual
machine. The virtual and resident memory utilization was
investigated by Araujo et al. (2011) to indicate the
presence of software aging in the cloud computing
mfrastructure. Matos et @, (2012) monitored and collected
the data of RAM memory exhaustion, swap memory usage
and CPU utilization, to analyze the software aging effects
on the elastic block storage management of eucalyptus
framework.

The statistical analysis method and the resource
usage parameters including memory usage monitored in
this study are similar to the above studies. In contrast to
these studies, various system workloads are considered
n this study for detecting software aging. In addition, our
investigation focuses on the J2ZEE-based applications and
takes into account memory leaks in TVM to analyze the
root cause of software aging.

MEMORY LEAKS IN JVM AND THE MEMORY
ANALYZER TOOL

Memory leaks are known to be a major cause of
reliability and performance issues in software system and
they are often a contributing factor to software aging.
Despite the built-in garbage collector in TVM, memory
leaks can exhaust available system memory as an
application server runs on JVM. Therefore, the TVM
memory management mechanism is firstly introduced to
analyze the problem of memory leaks.

Memory leaks in JVM: JTVM memory region, also called
runtime data area, can be divided into the area of method,
heap, stack, register and native code stack. While a
program 1s runmng in JVM, IVM memory region can store
data such as byte codes, objects, parameters, return
values, local variables and intermediate results and so on.
Where, the heap memory 13 used to store instances of
classes or array of a runtime Java program. TVM provides
the instruction of allocating a new object, but doesn’t
support memory release which is implemented by garbage
collector. However, garbage collector only reclaims
useless and unreferenced object as shown in Fig. 1, so
that the useless and reachable objects cannot be released
from memory area by garbage collector. Therefore, such
potential defects of garbage collection mechamsm
probably cause memory leaks m JVM.

If the problem of memory leaks can not be resolved,
IVM memory usage will continue to mcrease over time
and reach to the maximum memory usage for IVM. At the
moment, the garbage collection mechamsm automatically
starts up to gradually release VM memory for a period
time and JTVM will occupy a large amount of CPU time and
system resources for garbage collection. Nevertheless,
the resource is finite, thus it will eventually result in
system crash or software aging.

The memory analyzer tool: In view of memory leaks in
ITVM, a special tool 1s required to monitor and detect JVM
memory, so that developers can easily estimate whether
software aging exists in application server.

Application server provides the bidirectional
interface JVMPI (JTava Virtual Machine Profiler Interface)
between TVM and external programs, as shown in Fig. 2.
Agent is loaded when IVM is starting up. Agent
commumcates with JVM via JVMPI and it can receive
various events from JVM and send control information to
IVM. The Agent module is realized by local language C.
Based on Java’s platform independence, JVM can call the

Useless and reachable objects

Useless and reachable /vo
objects

I

Useless and unreferenced objects (O O

Memory leaks
inJVM

Fig. 1: Memory leaks in JVM

1858

Inform. Technol J., 12 (9): 1857-1862, 2013

JIVM
JVMPI
A
" 2 JVM Process
= =]
2 g
& <
A 4
Agent Protocol Front-end
Fig. 2: IVMPI working principle
JVM JVMPI Agent
Initialization
v
Enable event Eai

A

registration

= ify ev Y __
£ Notify event Event receiving/
g processing
& i ;
8 Notify event Event receiving/
& processing
Enable event 3
M Finish and quit
(Shutdown)

Fig. 3: Event triggering mechanism of the agent

Agent module. In the Agent module, the pointer to an
instance of T'VM is obtained by using the TNI (JTava Native
Interface).

The event trigger mechamsm is shown in Fig. 3. As
the event receiver, Agent registers its interesting events
(such as the memory allocation) to TVM which is the
event trigger, so that JVM can notify the Agent when the
event 1s triggered.

Based on TVMPIL, the memory analyzer tool called
Profiler is designed and developed. The maimn functions of
the Profiler include: monitoring memory usage through the
visualization window in real-time, selecting sampling
frequency of memory data according to the need of users
and filtering the output information. The Profiler can
collect the data from four modules: TVM runtime module,
system data module, web thread module and transaction
manager module. TVM runtime module 1s responsible for
extraction of the size of TVM memory and used memory.
System data module extracts the CPU usage and free
memory usage. Web thread module 13 i charge of

extracting the count of created threads, destroyed
threads, concurrent threads. Transaction manager module
extracts information of global transactions. Among the
four modules, TVM runtime module and system data
module are the two most important modules.

AGING DETECTION AND ANALYSIS OF
APPLICATION SERVER

The experimental platform simulates a monitoring and
recording system for a service-oriented J2EE application
server.

Experimental environment: As shown m Fig. 4, the
experimental environment consists of a J2EE application
server, multi-clients and a database server. In the clients,
the load generator is used to generate web service
requests to the application server through standards-
based HTTP or SOAP protocols. The application server
receives the requests, connects and queries the database
server and then returns results to the clients. The memory
analyzer tool referred as profiler is used to monitor and
collect the data of JVM heap memory from the application
server.

All the servers involved are 3.0 GHz Pentium IV
system runmng Windows XP, with 1.0 GB of memory. The
application server is Websphere 5.1 with maximum JTVM
heap memory 256 MB and the use case deployed on the
application server is Petstore 1.3.1-02. The database
server 18 MySQL. The machines are connected on a same
local area network with 100 Mbps Ethernet.

The dynamic parameters in the clients and the
application server are periodically monitored and recorded
ina certain format separately. The sampling interval is ten
minutes. The online access behavior of users obeyed the
Poisson distribution in the form of a week period. The
load density is different between business days and rest
days.

Note that the Profiler s on the application server
and 1t also occupies part of system resources. Hence, the
resources data obtained by this method are in fact the
accumulation data of the Profiler and the application
server. Nevertheless, the memory analyzer tool Profiler
only occupies fewer system resources, so its effect on the
aging detection results can be ignored. Thus, the aging
detection results can be regarded as the ones of the
application server itself.

Peak load test: The peak load of application server is the
maximum amount of concurrent client requests that an

1839

Inform. Technol J., 12 (9): 1857-1862, 2013

Use Case
(per store 1.3.1-02)

SOAP/HTTP
Request

Data Base

Clients MySQL

Load
Generator

Fig. 4: Software aging detection model for the service-
oriented J2EE application server

Response

Memory Analyzer tool
(profile)

application server could respond within a certain time
period. In order to simulate the peak load, load requests
with the equivalent intensity are sent to an application
server in a short time. If all these requests are successfully
responded by the application server, then the load
mntensity 1s increased wuntil there 18 no response from the
application server, when the load mtensity 1s regarded as
peak load.

According to the value of peak load, different
scenarios with various load intensities are designed to
detect and analyze software aging in the application
server. Due to the request number per umt time and the
mean service time are the main factors influence the load
mtensity, they are selected as the preconditions in the
following aging tests.

Aging test under heavy load: In the heavy load test, the
average load mntensity i1s designed to 30% of peak load
and the load mtensity in the peak period is determined as
50% of peak load. The default imitial size of TVM heap
memory usage is 1 28MB and the maximum is 256MB. The
application server 1s unable to respond to client requests
after rummmg 43 h, when IVM heap memory usage
reached about 250MB.

The relationship diagram between J'VM heap memory
and runmng time of application server 18 shown mn Fig. 5.
Our practical task 13 to verify whether software aging
exists in the application server, namely, whether the
system performance gradually degrades over time. A
reasonable approach 1s to analyze the relationship
between JVM heap memory and runmng time of
application server via linear regression method. And the
estimated times to JVM heap memory exhaustion
was computed using the linear regression equation
Y = m*X+c, where m 1s the slope, ¢ 1s the intercept or the
mitial value and Y 1s the final value (Grottke et al., 2006).
In this heavy load test, the linear regression equation 1s
fitted as follows:

Y = 25.8527*X+137920 (1)

“10°
25F —
Original data
Fitting line
o
il I Tih
3 ll
w u
! d”“ 1'1 I"H l” '
g 15} |I||| |||WH
g |
5
2 1.0
§ Y = 25.8527* X +137920
05 ‘
0 500 1000 1500 2000 2500

Time (unit:min)
Fig. 5: JVM heap memory usage of application server
under a heavy load

“10°
25

Original data
Fitting line

N
o
T
L

=
o
L

JVM heap memory usage (unit: kB)
=
[6;]

Y =11.7365* X+139380

05 . L L . . \ | .
0 1000 2000 3000 4000 5000 6000 7000 8000
Time (unit:min)

Fig. 6: IVM heap memory usage of application server
under a light load

where, X 15 the runming time of application server and Y 1s
the JTVM heap memory usage. It can be seen that the slope
of regression line in the Eq. 1 is positive which indicates
that the JVM heap memory usage increases with the
running time of application server. Thereby, it 1s evident
that software aging exists mn the application server.

Aging test under light load: In the light load test, the
request number in unit time 1s decreased. The average
load intensity and the load intensity m the peak period are
being reduced by 20% of the heavy load test. In this test,
the application server is unable to respond to client
requests after runming 140 h. The TVM heap memory of
application server 1s shown in Fig. 6.

1860

Inform. Technol J., 12 (9): 1857-1862, 2013

“10°

30
Original data
Fitting line

N
o

A "il. ’ |||\]lll‘ lf

I\ k! | er.||_ ”I ‘

N
o

| i J‘||| i .Il[h .‘I‘”n I

JVM heap memory usage (unit: kB)
[
[$;]

=
o

Y =174.8472* X+160260

05

0 50 100 150 200 250 300 350 400 450
Time (unit:min)

Fig. 7. TVM heap memory wsage under prolongation of
the mean service time

Similarly, when JTVM heap memory usage reached
about 250MB, the application server crashed. The linear
regression equation which describes the relationship
between JVM heap memory and runmng time of
application server is as follows:

Y = 11.7365*X+139380 (2)

Note that the slope of regression linear Eq. 2 is positive
and it is smaller compared with that in the heavy load test.
It verifies that software aging exists in the application
server and the depletion of IT'VM heap memory over time
is the major cause of software aging. In addition,
compared with heavy load test, the load ntensity n the
light load test is being reduced by 20% yet the running
time mcreases three times. Therefore, it can be concluded
that the load intensity is a major factor that influences
software aging.

Aging test under prolongation of the mean service
time: Next, the mean service time is prolonged six times
and the load intensity is equivalent to that of light load
test.

The application server crashed after nmning 43
howrs. The TVM heap memory is shown in Fig. 7 and the
linear regression equation is as follows:

Y = 174.8472*X+160260 (3)

Likewise, the slope of regression linear Eq. 3 is positive
and it is greater than the ones of the above two kinds of
test. This is because of the prolongation of the mean
service time, namely, increasing the residence time of

users in application server which requires more available
system resources. Thus it will greatly accelerate resowrce
consumption and aging process in the application server.

CONCLUSION AND FUTURE WORK

Although the garbage collection mechanism can be
regarded as the special Java function to release objects
automatically by the garbage collector, the problem of
memory leaks still exists in Java applications. And memory
leaks are a major cause of software aging. In this study,
the aging detection method for the service-oriented J2EE
application server is presented and the design and
implementation of aging detection are described. Through
monitoring the performance parameters of runtime
application server, the TVM data is extracted for aging
analysis and verification. Finally, through the experimental
and statistical analysis of IVM usage, the gradual
increase in JVM heap memory usage is visible and the
existence of aging is evident. Tt can be concluded that
memory exhaustion is the main cause of software aging in
application server and the system workload has great
influence on the memory usage. The aging symptoms
detected in this study may also occur in other systems
based on J2EE architecture.

Future research mainly includes monitoring and
analysis of other system parameters of resowce
consumption. And the study on software aging
mechanism is another avenue for new development.

ACEKNOWLEDGMENTS

The author would like to thank the sponsors of the
National Natural Science Foundation of China under Grant
No. 61100173, Scientific Research Plan Project of Shaanxi
Education Department of China under Grant No. 09JK 642,
Doctoral Fund No. 116-210912 and Scientific Research
Plan Project of Xi’an Technology University under Grant
No. 116-210907.

REFERENCES

Alonso,T.,] Torres, L. Berral and R. Gavalda, 2010. J2EE
instrumentation for software aging root cause
application component determination with Aspectl].
Proceedings of the TEEE International Symposium on
Parallel and Distributed Processing, Workshops and
Ph.D. Forum, April 19-23, 2010, Atlanta, GA., USA.,
pp: 1-8.

Araugjo, 1., R. Matos, P. Maciel and R. Matias, 2011.
Software aging issues on the eucalyptus cloud
computing infrastructure. Proceedings of the TEEE
International Conference on System, Man and
Cybernetics, October 9-12, 2011, Anchorage, AK.,
USA., pp: 1411-1416.

1861

Inform. Technol J., 12 (9): 1857-1862, 2013

Avritzer, A. and E.J. Weyuker, 1997. Monitoring smoothly
degrading systems for increased dependability.
Empirical Software Eng., 2: 59-77.

Cassidy, K.J., K.C. Gross and A Malekpour, 2002.
Advanced pattern recognition for detection of
complex software aging phenomena in online
transaction processing servers. Proceedings of
Dependable Systems and Networks, June 23-26, 2002,
Washington, DC., USA., pp: 478-482.

Garg, S., A. van Moorsel, K. Vaidyanathan and
K.8. Trivedi, 1998. A methedology for detection and
estimation of software aging. Proceedings of the Sth
International Symposium on Software Reliability
Engineering, November 4-7, 1998, Paderborn,
Germany, pp: 282-292.

Grottke, M., L. L1, K. Vaidyanathan and K.3. Trivedi, 2006.
Analysis of software aging in a web server. IEEE
Trans. Reliab., 55: 411-420.

Huang, Y., C. Kintala, N. Kolettis and N. Fulton, 1995.
Software rejuvenation: Analysis, module and
applications. Proceedings of the 25th International
Symposium on Fault Tolerant Computing, Tun 27-30,
1995, Pasadena, CA., USA., pp: 381-390.

Kourai, K. and 8. Chiba, 2011. Fast software rejuvenation
of virtual machine monitors. TEEE Trans. Dependable
Secure Comput., 8: 839-851.

Matos, R., I. Araujo, V. Alves and P. Maciel, 2012.
Experimental evaluation of software aging effects in
the eucalyptus elastic block storage. Proceedings of
the IEEE International Conference on System, Man
and Cybernetics, October 14-17, 2012, Seoul, South
Korea, pp: 1103-1108.

Tsalgatidou, A. and T. Pilioura, 2002, An overview of
standards and related technology in web services.
Daistrib. Parallel Databases, 12: 135-162.

Zhang, H., H. Chai, W. Zhao, P.M. Melliar-Smith and
L.E. Moser, 2012. Trustworthy coordination of web
services atomic transactions. IEEE Trans. Parallel
Distrib. Syst., 23: 1551-1565.

1862

	ITJ.pdf
	Page 1

