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Abstract: Future smart grid has been conceived to be able to improve efficiency and stability of the gnid
operations. Based on the smart meter and advanced mechamsm of two-way commumnications, Energy-Users
(EUs) are able to receive real-time signalling (e.g., the electricity price) from the grid and schedule their energy
consumption to optimize their objectives of interest correspondingly. Besides the conventional fuel-based
energy supply, renewable energy supplies, e.g., solar and wind power, are expected to play important roles
i smart grid. Despite thewr advantages in lowering the electricity-provisioning cost and being
environment-friendly, renewable supplies usually suffer from uncontrollable and volatile generations, which
result in great fluctuations in their provisioning. Therefore, it is indispensable for EUs equipped with renewable
energy suppliers to take a careful tradeoff between exploiting the benefit from the renewable energy and
controlling the adversary mmpact due to its volatility. Based on this motivation, this study aims at jointly
optimizing the El's average energy-acquisition cost as well as its fluctuation. This problem is formulated as a
nonconvex optimization problem and this study proposes an efficient Layered Particle Swarm Optimization
(L-PSO) algorithm to determine the EUs optimal scheduling of energy consumptions. Our munerical results
show how EU can trade off between benefiting from the renewable supplies and suffering from the associated

fluctuation through tuning the weighting-factors.
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INTRODUCTION

Future smart grid, an advanced power grid system
which integrates efficient mformation infrastructure, 1s
expected to significantly improve stability and efficiency
of the grid operations (Pothamsetty and Malik, 2009).
Among those new features of smart grid, the efficient
demand-response and great exploitation of renewable
energy are believed to be of great importance to change
the way in which Energy-Users (EUs) consume electricity
(T1.5. Department of Energy, 2009; Frye and Cisco Internet
Business Solutions Group, 2008; Ghader ef al., 2006). In
smart grid, based on the two-way communication and
smart meters, each EU can receive real-time signaling (e.g.,
the real-time electricity price) from grid and thus schedule
its electricity consumption for different applances to
trade off between its performance of interests and the
associated electricity-acquisition cost, thus facilitating the
so-called efficient “demand-response”. Besides acquiring
the electricity from the grid, EUs in future smart grid are
expected to be able to reap renewable energy, eg.,
through the solar panel and wind turbine, forming the
so-called distributed generation system. Exploiting of

renewable energy gains the EUs great advantages in
lowering its electricity-provisioning cost and being
environment-friendly. However, the renewable sources
usually suffer from uncontrellable volatility, which results
i great fluctuation in energy-provisiomng. This
fluctuation in energy-provisioning from distributed
renewable sources i fact implies that the EU will have an
uncertainty in electricity-acquisition from the main grid as
well as an uncertainty in its acquisition-cost
consequently. Minimizing this acquisition-cost in long-
term is one of the key interests from the EU's perspective.
However, wmtuitively, mimimizing this long-term
acquisition-cost aggressively may incur a large
fluctuation, which in fact adversely impairs the El's
experiences. Imagine that the EUs usually dislike greatly
fluctuating and unpredictable monthly bill of their
electricity consumptions. Thus, a good scheme for each
EU to schedule its energy consumption is to take account
of both the long-term average acquisition-cost as well as
its fluctuation, and further to trade off between these two
aspects according to the EU's preference. This motivates
this study. Specifically, this study formulates an EUTs
energy scheduling problem which aims at jointly
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optimizing the EU's average energy-acquisition cost and
its fluctuation within a target period of interest.

The key contributions of this study can be
summarized as follows:

¢ This study formulates a multi-objective optimization
problem for the EU's energy scheduling which jomtly
takes account of the EU's average energy-acquisition
cost and its fluctuation within a target period of
interest. This study’s results verify that the EU has a
tradeoff between minimizing its average cost and
controling the comresponding fluctuation 1n
acquisition, and can obtain its satisfactory
operational point which trades off between these two
aspects by tumng their corresponding weighting
factors

¢ Despite the non-convexity of the formulated problem
in general, this study identifies a separable structure
of the problem and proposes a Layered Particle
Swarm Optimization (L-PSO) algorithm to determine
the ElTs optimal energy scheduling. In comparison
with the conventional PSO, this study’s layered
approach greatly reduces the number of decision
variables and hence speeds up the randomized search
via PSO to approach to the optimal solution

RELATED WORK

The mechanism of two-way communications between
grid operations and energy-users 1s critical to enable the
demand response of smart grid Based on this two-way
communications mechanism, Mohsenian-Rad e# al. (2010)
proposed autonomous and distributed demand-side
energy management schemes. Samadi et al (2010)
proposed a Vickrey-Clarke-Groves mechanism to maximize
the social welfare. However, these previous studies did
not take account of the renewable energy in their demand
response model. Future smart grid will be featured by its
great exploitation of renewable energy, which helps
reduce the marginal energy-provisioning cost and the
emission of greenhouse gas. However, the generation of
renewable energy from renewable sources (e.g., solar
panel and wind turbine) is usually uncontrollable and
volatile, which result in a great uncertainty in
energy-provisioning when mcorporating renewable
energy. This uncertainty will impose instability and
inefficiency to the grid operations. Hxisting studies
proposed different schemes to predict the generation of
renewable energy (Jiang and Low, 2011a, b). However,
these schemes usually suffer from limited accuracy.
Hence, the volatility of renewable energy provisioning
needs to be carefully taken care of in demand response to
ensure it’s efficient and stable usage.

The efficient demand-response is also of great
importance to change the way in which EUs consume
electricity. Conejo et al. (2010) maximized the utility of the
consumer while minimizing the load per hour. Their
studies mostly focused on optimizing the average
performance. i et al. (2011) maximized each household's
net-benefit while satisfying users’ consumption and the
system’s physical constraints. Pedrasa et al. (2010)
maximized the net-benefits of system by scheduling their
distributed energy resources. Mohseman-Rad and
Leon-Garcia (2010) achieved a tradeoff between the
electricity cost and the waiting time for each appliance’s
operation by using an optimal residential energy
consumption scheduling method. Although the above
schemes proposed by different studies perform well under
different scenarios. However, because of the stochastic
nature of renewable energy, EU's energy acquisition-cost
is naturally random. In this case, this study proposes to
jointly optimize the EU's average energy-acquisition cost
as well as 1ts fluctuation with guarantee of its
consumption requirerment.

SYSTEM MODEL AND PROBLEM
FORMULATION

This study considers the model of a residential smart
grid. Specifically, in this model, the grid and Energy-Users
(EUs) are comected by both power lines and two-way
communication network. Each EUJ 18 equipped with a smart
meter to receive the electricity price and control its
electricity scheduling for its group of appliances. The
electricity-acquisition from the grid as well as its
allocations to different appliances is all control-variables
to be optimized in the following problem formulation. As
stated earlier, in addition to the electricity acquisition from
grid, each EU is able to reap renewable energy (e.g.,
through the solar panel and distributed wind turbine)
as a supplementary electricity supply. In this model,
this  study considers a group of EUs denoted

by U = {1, 2,..., Ut. This model 1s shown in Fig. 1, in
which “app™ denotes ELTs appliance.

Model of EU's energy consum ption: Each EU is ecquipped
with a smart meter, which is in charge of its electricity
scheduling for different appliances. Specifically, this
study uses ¢,. to denote the scheduled electricity
consumption for appliance a of EU u at slot t. Since this
study focuses on the optimal energy scheduling for a
single EU, tlus study does not explicitly mclude the
subscript “u” mn the rest of this study. Let H = {1, 2, .., H}

denote the scheduling horizon of interest. This study
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Fig. 1: The model of a residential smart grid

considers two representative types of appliances, i.e.,
appliances with fixed demands (denoted by Type-A) and
appliances with shiftable demands (denoted by Type-B),
respectively.

The Type-A appliances include all the background
appliances, 1.e., each Type-A appliance consumes a fixed
amount of energy per unit time within its working peried.
Examples of Type-A appliances lighting,
refrigerator, computer, etc. Next, this study introduces the
energy consumption constraints of Type-A appliances.
As a background appliance, each acA appliance works in

nclude

a fixed working period T .€H during which it consumes ',

energy per time slot. Mathematically, it is given by:

teT,aca (1)

otherwise

For each Type-B appliance, its total energy
consumption within a preferred time period should be
greater than a fixed total energy. The electricity
consumption of each Type-B appliance is shiftable in the
sense that it can adjust its consumption of electricity at
each slot within its working period. Examples include
washer/dryer, dishwasher, plug-in hybrid electric vehicle,
etc. For each appliance acB, this study denotes T', as its
preferable working time period and E,* as the total energy
required within T, Thus, the constraint for each Type-B
appliance 1s given by:

> qizE®™, acB

1T,

(2

Meanwhile, for some physical conditions, there is
usually a limit on the total energy consumption for
apphances at each time slot. In practice, such constraints
can be used to protect the total energy consumption from
exceeding the system capacity. This limit is denoted by
E™* which can be set by the power grid to impose the
following set of constraints on all users' energy
scheduling:

0 ¥ ¢ <E™, teH

asAB

3

Model of renewable energy generation: In addition, since
the generation of renewable energy 1s a random process,
and more mportantly, the prediction of its generation 1s
still limited based on the current technicques. Hence, this
study models the generation of renewable energy as
w'=w"+¢' (Tarasak, 2011; Wu et al., 2010). The first part w*
denotes a predictable wvalue for renewable source
generation, which 1s based on empirical data. The second
part ¢' denotes the predication error, which is usually
random variable and is bounded as ¢* € [-8, &]. Here, &
denotes the maximum possible deviation of the estimation.
Notice that as an initial step, the current model of this
study does not include the energy storage, a promising
tool to mitigate the volatility of renewable source.
Nevertheless, this study’s model helps us focus on
analyzing the tradeoff between the energy-acquisition
cost and its fluctuation. And this result can be considered
as a benchmark performance when the energy storage 1s
further incorporated into the model in future study.
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Model of the acquisition-cost of EU: Due to the volatility
of renewable energy, there are two different cases the EU
will face in its electricity scheduling, i.e., case-1: The
stantaneous electricity-provisiomng from the renewable
supply falls short than the totally scheduled consumption
for all the appliances; and case-2: The nstantaneous
electricity-provisioning from the renewable energy
exceeds the totally scheduled consumption for all the
appliances. This study will illustrate the corresponding
costs for these two cases in depth as follows.

For case-1, the electricity-provisioning from the
renewable supply falls short than the totally scheduled
consumption for all the appliances, 1.e.,:

Y qew

asAE

Let the random variable:

o(ze e

acAE as 4B

Denote the electricity-deficit due to the short supply
of the renewable energy. In other words, D' represents the
amount of electricity that the E1J has to purchase from the
grid to fulfill its scheduled consumption. Suppose '
denotes the marginal price for purchasmg energy
acquisition of EU from the main grid. Therefore, ©* D!
denotes the EU's instantaneous acquisition-cost at slot t.
Here, indication function I(x) = 1 when x>0, and I{x) = 0
otherwise.

For case-2, the electricity-provisioning from the

exceeds the scheduled

consumption for all the appliances, 1.e.:

renewable energy totally

2 q<w

acAE

Let the random variable:

sz

acAUB aEAUB

Denote the electricity-surplus due to the over-
provisioning of the renewable energy. In other words, S
represents the instantaneous amount of electricity which
the EU wastes. This waste of renewable output usually
should be penalized, for instance, Miranda and Hang
(2005) state that it 1s reasonable for the energy users
to pay for the waste of available renewable power.
Hetzer et al. (2008) model the cost for wasting renewable

output as a simple penalty function G(S). This study
assumes this penalty cost function is linear, i.e., denoted
by 03, where 0 is the penalty-cost coefficient. Therefore,
65" in fact denotes the EU's instantaneous surplus-cost.

Problem formulation: Because of the stochastic nature of
renewable energy, the EU's energy acquisition cost 1s
naturally random. Therefore, to optimize the ElT's total
average energy-acquisition cost as well as its fluctuation,
this study formulates the energy scheduling problem as
Problem P1:

min @, -E[;(E‘D‘)}+Qz-va{§(nt -D‘)} @
+Q, -E{Z(e -st)}% -vm[E(e-S‘)}

teH teH

Subject to: Constraints (1), (2), (3)
decision variables: g}, Vae AUBVte M

In the objective function (4), the first and third part
EU's average
surplus-cost, respectively, and the second and forth part

indicate  the acquisition-cost and

indicate their fluctuations, respectively.
PROPOSED LAYERED ALGORITHM

In this section, this study proposes an efficient
algorithm to solve Problem P1. This study first
equivalently transforms Problem P1 to Problem P2 as
follows. Specifically, £, (¢') denotes the probability
density function (PDF) of the random variable ¢ and
£ gn (97,0%) the jomt probability density
function. Problem P2 is as follows:

denotes

i g_%ﬂwws)n(ﬁ_fd@l)ww%_%%ﬁwwﬂmﬂﬂmmslﬁw.D"D‘a.fv_o,,(tb"_tp's)dmhdrpa
z o=

I e g4t * gt
—fzg-[kzﬂn‘-f; D, @ ]’w:g-kzﬂﬁm,ﬂ;,g,es G
ST0.35.3) NP MU T S O

tertter!

£y '[';‘Em'-a-s)esl' £y (‘p‘)ap‘:r

(3

Subject to: Constraints (1), (2), (3)
decision variables: ¢\, Vac AUB,Vte X

The objective Eq. 5 of Problem P2 strongly depends
on the distribution of renewable output and it is usually
non-convex in general (Boyd and Vandenberghe, 2004). In
particular, the objective function cannot be expressed
analytically because it is non-integrable in general. Thus,
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constraints or not

\ ~/

Fig. 2: Tlustration  of  the L.-PSO

algorithm

proposed

this study takes a randomized approach to solve this
problem and choose the Particle Swarm Optimization
(PS0O), one of the artificial intelligence algorithms, which
1s especially suitable for problems without the objective
functions given in analytical forms. The key idea of PSO
15 as follows. PSO 1s an artificial intelligence method,
which improves a iteratively
guaranteeing a given measure of quality to optimize a
problem  (Arumugam et al, 2009; Gao et al, 2009,
Luand Chen, 2011). However, directly using PSO to solve
Problem P2 15 computationally intractable because the
number of decision-variables is very large. For example,

candidate solution

suppose there are 10 time slots and 10 appliances for the
EU, it will produce 100-dimensional decision vanables. So
this  study proposed a Layer Particle Swarm
Optimization (I.-PSO), which is shown in Fig. 2. Firstly,
this study substitutes the group of {d,} with a single
decision variable A", which denotes the total consumption
electricity of all appliances at slot t. Then, at the top layer,
L-PSO algorithm gets a profile {A'} by using PSO and
updates 1t until the L-PSO algorithm finds the optimal
solution; at the bottom layer, this study proposes a
subroutine to determine whether this given profile {A%}
can yield a feasible solution {q,} that meets the
constraint:

A=Y gz0

acAUB

and constraints (1), (2), (3) or not.

At the top layer of L-PSO algorithm, this study uses
PSO algorithm to get a profile {A"} and updates 1t until the
L.-PSO algorithm finds the optimal solution as showed in

Algorithm. 1. Specifically, this study assumes each

particle x(k) denotes a possible profile of {A%}, ie., the
decision variables at the top layer. J(.) represents the
fitness function of PSO algorithm. For a given profile {A'},
this fitness function T() is determined by Eq. 5 and the
value of O* obtained from the output of subroutine at the
bottom layer. If O*:0, the fitness function J(.) 1s
evaluated by using Eq. 5. Otherwise, (1.e., O*<0), thus
study sets J(.) = "%, where J™* denotes an extremely large
value.

At the bottom layer, to determine whether a given
profile {A%} canyield a feasible solution {¢'}, 1.e., meeting
the constramt A'- Y ¢\ 20 and constraints (1), (2), (3),

asAUE
or not, this subroutine as the

follows:

study proposes a

* =max z (6)

subject to: A — E q, zzVteH
kB

and constraints (1), (2), (3)
decision Variables:q;,Va c AUB,Vte H

The above problem (6) i fact is a linear optumization
problem and it can be solved via the standard simplex
algorithm quickly. Thus, the proposed subroutine outputs
the optimal value of which O* indicates whether the given
profile {A'} can yield a feasible electricity scheduling
method for all E1Ts appliances, i.e., meeting the constraint
A'- Y ¢l =0 and constraints (1), (2) and (3). IfO*=0, it

aesUB

means that the given profile A% can find a
feasible solution {q,}. Otherwise, O*<0 it means the

given profile {A"} cannot find a feasible solution

fq.}.

Special model of prediction error of renewable energy: In
this subsection, this study further considers a special
case of the distribution of prediction error for renewable
energy output. Using this special case of distribution, this
study obtains the objective function in a closed-form
expression. Specifically, this study assumes that
estimation error 1s uniformly distributed within the
range of [-§, 8]. Meanwhile, it also is reasonable that the
estimation errors of renewable source output at
different slots are independent with each other. Therefore,
under this special case, for a given profile {A'} by PSO,
the objective function (5) can be given by the following
Eq. 7:

F{{a])- ZR(A)+ TR IR() (7)

£H, 1,
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Specifically, F ({A"}) can be illustrated as the
following three different categories.

Category a: H, = {te H|A-#>d}, the function F, (ADat slot
t'H, is given by:

F,(A'):_Ql-n‘(A'7€v‘)+§ﬂz-(n‘)282 (®)

Category b: H, = {te H|A-%'<-8}, the function F{A") at
slot t € M, is given by:

Algorithm 1: PSO Algorithm at the top layer
Initialization:

Initialize the iteration index M, the number of particles’ N, the
dimension of time slot H, the learning factors ¢, ¢;
and the maximum and minimum weight
coefficients w,,,, and w,;

Fori=1,.Ndo

Randomly initialize particles® position x; (1)
(x;(1} denotes {Al(1), AX(1),... AR}

Tnitialize the local optimal position pi1) = (1);

Ewaluate fitness function J(5(1)) (based on equation (3) and the value of
O* obtained from the subroutine at the bottom layer):

IfO*20 then

Evaluate J(x;(1)) using equation (5);

Else

TGa(L)) = e

End il
Randomly initialize the particles velocity w(1);

End for:
Tnitialize the global optimal g(1);
Fori=1,.Ndo
g1)=p(1);
If J{p;(1)=J(g(1)) then
g1y =pi1);,
Else
g)=g(L)
Endif;
End for;
While k<M do
W= (Wi W) PR M AW,

Fori=1,..Ndo
vi(k) = wk)*vi(k-1)+e, *rand(1, H)*(pik- 1-xk-1))+c,
*rand(1,H)*(g(k-1)=x(k-1))

Update k) = xk-1+wik);

Ewaluate the fitness fimction J3g(k)) (based on equation (5) and the value
of O* obtained from the subroutine at the bottom layer):

IfO*20 then

Evaluate J(x;(k)) using equation (5);
Else
TGk = e
Endif;
If TGk ) = J(pik-1)) then
pik) = xi(k);
Else
pilk) = pilk-1);
End if;
If J(p,(k))=J(g(k-1)) then
gk) =gk-1);
Else
gk) = pik-1;
Endif;
End for;
k=k+1;
End while

E(A‘):QE-B-(V"V'—A‘)+%Q4-8282 ()

Category c: H, = {te H|-8< A=W <d}, the function F,(A") at
slot te’H, 1s given by function (10):

Ela)za L F(Au‘;ﬁ)ua(/\ua»“%}n, @ [ (A'—W)HS(A'—\:7')“+5‘(A'—u7')+%s*}

2% |2

- % I:%(A‘—W‘)1+S(A‘—W)+%S"T+ﬂ = [%(w‘—/x‘)%&(w‘—a‘ﬁ%}

+n‘.% E(uf —af el -t et -A')+%§‘J-n, (;—;)q[%(w —a) en (e —A‘)+%§“T

(10
SIMULATION RESULTS

Here, this study provides numerical results to show
the performance of our L.-PSO and the tradeoff between
the EU’s average cost and 1its fluctuation. In this
numerical example, the scheduling horizon is given by
H=1{1,2,3, 4,5, 6}, the predictive value of renewable

energy 1s given by w = {2, 4, 3, 5, 3, 5} KWH and the
parameter of the estimation error is given by 8 = 1. Then
assume that the EU has two different Type-A appliances
denoted by a,, a, and two different Type-B appliances
denoted by b,, b,. And the group of energy consumption
per slot for a,, a, is given by r,={01111.0} KWH and
L, ={0.5,0.5,0.5,0.5,0.5,0.5} KWH, the mimmum energy
consumption for the whole working period of b, b, is
given by E=10KWH, Ef*=13kwH, the group of working
period for by, b, is given by T, ={3.4.5}.T, ={4.5.6} . The
maximum energy consumption for all appliances of EU is
given by E* = 12 KWH. In addition, the algorithm
parameters are set as N = 30, ¢, = ¢;= 1, w.= 09,
Wi = 0.4. The detailed setup is presented in Table 1.

Performance of our L-PSO algorithm: Figure 3 and
Fig. 4 show that the consumed computational time for

42
—= Perposed L-PSO
40F =e= Conventional PSO
c J—
6§ 3 Benchmark performance |
B
j
2 36
[}
Z 34
8
g C ional PSO
5 y Convention
3 30 —
g
28 Proposed L-PSO ]
Benchmark performance
26 [, e ]
24 2 2
0 20 40 60 80 100

Interation index

Fig. 3: llustration of the complexity of L-PSO under
0 =08
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44
—= Perposed L-PSO

42 F =&= Conventional PSO
- — Benchmark performance
o
g 40t
j
2
o 38}
2
g 361
8
= onventional PSO
S 341 ¢
s
> 32

Proposed L-PSO
30F / Benchmark performance]
28
0 20 40 60 80 100

Interation index

Fig. 4 Tlustration of the complexity of L-PSO under
=1

Table 1: Detailed setup for numerical example
H={1,2,34,5, 6}

m={$15,$1.2,$1.1, $2.0,81.0,$1.7}
w={2,43535} KWH, §=1

The scheduling horizon

The electricity price
The predictive value of
renewable energy

For Type-A appliances

rn=1{0,1,1,1, 1, 0}KWEH, r,; = {0.5, 0.5,
0.5,0.5, 0.5, 0.5} KWH

Ept=10 KWH,T, ={3,4,5]
Ep1=13 KWH, T, ={4,5,6}

B =12 KWH
N=30c=c=1,w,,=09 w, =04

For type-B appliances

For the EU
The algorithm parameters

Table 2: Average computation time at different precision (take the average

of 30 tests)
Precision 1% 2% 3% 4%
Proposed L-PSO 81.33s 60.75s 34.81s 29.46s
(the successful rate) (100%%) (100%%) (100%4) (10P)
Conventional PSO 181.13s 123.63s 49,965 32.13s
(the successful rate) (67%) (70%) (87%%) (90%)

this proposed algorithm to reach a benchmark
performance. Specially, this study uses a commercial
solver Matlab, to generate the optimal solution for
Problem P2. The results in Fig. 3 and 4 show that the
proposed L-PSO can quickly reach the optimal solution in
comparison the conventional PSO. Or in other words, to
get the solution with same prescribed accuracy, L-PSO
can save computational time compared to conventional
PSO method.

From Fig. 3 and 4, thus study can also find that L-PSO
algorithm has advantages for solving this energy
scheduling problem at different situations 8 = 0.8 and
0 = 1. To further verify this result, this study does more
simulations at different situations by changing the
penalty cost coefficient 6 and the weight-factor €2,
Figure 5 shows that given the same value of maximum
iteration lirnit (1.e., M = 25), L-PSO can obtain a sclution

457 m Conventional PSO
o Proposed L-PSO
o Benchmark performance M
£ 401
5 —
2
14
5 354 m
£
<
o
S
[
=
£ 301
25 T T 1
1.0 1.2 1.4 1.6 1.8

Penalty cost coefficient 6

Fig. 5: Effect of the algorithm at different scenes by

tuning the penalty cost coefficient 6
309 & Conventional PSO

O Proposed L-PSO
O Benchmark performance

Value of objective function

0 10 20 30 40
Weight-factor €,

Fig. 6: Effect of the algorithm at different scenes by
changing the weight-factor Q,

more close to the benchmark one on comparison with the
conventional PSO method. Figure 6 shows the similar
results by changing the weighting-factor (2,.

Table 2 shows the computational time consumed by
L-PSO to reach a prescribed accuracy. Here, x% denotes
the prescribed accuracy for the solution. In particular, the
simulation sets the limit on the running time as 400 sec. If
the algorithm cannot reach a solution with a prescribed
accuracy within 400 sec, this study considers that a
failure occurs for the algorithm. Thus, this study can
take account of the successful rate that L-PSO reaches
the solution with the prescribed accuracy. The results
show that L-PSO performs than the
conventional PSO m both computational time and
successful-rate. Notice that even with a medium size of

much better
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T T T T T 1
16.4 16.6 16.8 17 17.2 17.4 17.6 17.8
Sum of average of acquisition-cost and surplus-cost

Sum of variance of acquisition-cost and surplus-cost

Fig. 7. Sum of the average
surplus-cost vs. Sum of the variance of
acquisition-cost and swrplus-cost at different
weighting-factors €, = Q, with the weighting-
factors Q,=Q, =1

acquisition-cost  and

Q,=05

Variance of acquisition-cost

T T T
13.3 13.4 13.5 13.6 13.7

Average of acquisition-cost

[
(38

13.1 1

Fig 8: Average acquisition-cost and its variance at
different  weighting-factor €,  with  the
weighting-factors (3, = Q,=Q, =1

example the sinulation considered, the conventional PSO
stills cannot perform well frequently.

All the above mumerical results show that our
proposed PSO is computationally efficient to reach the
optimal electricity scheduling. The reason can be
attributed to the layering idea.

Tradeoff between the average energy cost and its
fluctuation: Tn this subsection, this study shows the
tradeoff between user's average energy cost and its
fluctuation. Figure 7 shows that, by changing the
weighting-factors €2, = Q, from 0 to 10, there exists a clear
tradeoff between user's average electricity cost (which
mcludes its average acquisition-cost and surplus-cost)

0.77
0.684
0.66 :
0.64
0.62

0.6+
0.584
0.56

Variance of surplus-cost

0.544
0.524

05 T T T T 1
13.15 13.2 13.25 13.3 13.35 13.4

Variance of acquisition-cost

Fig 9: Variance of acquisiton-cost vs. variance of
surplus-cost at different weighting-factor €, with
the weight-factors (3, = Q,=Q, =1

3.59

3.454

(5]
'S
1

W

)

w
)

Average of surplus-cost

w
W
1

3.25 T T T T 1
13.15 132 13.25 13.3 13.35 13.4

Average of acquisition-cost

Fig 10: Average  acquisition-cost  vs. Average
surplus-cost at different weight-factor €, with the
weighting-factors Q, =€, =Q, =1

and its corresponding fluctuation. This result in fact
matches our mtuition very well Through tuning the
weighting-factors, the user 1s able to flexably trade off its
preferences between a low average cost and a low
fluctuation.

Figure 8 further shows that there exists a tradeoff
between the EUs average acquisition-cost and its
fluctuation. Through adjusting the weighting-factor, the
EU can adjust its preference between these two
aspects.

In addition, Fig. 9 shows that by tuning the
weighting-factor £1,, there also exists a tradeoff between
the variance of acquisition-cost and the variance of
surplus-cost. The acquisition-cost's fluctuation increases,
the surplus-cost's fluctuation reduces. Moreover, Fig. 10
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shows that by tuning the weighting-factor €;, there exists
a tradeoff between the average acquisition-cost and the
average surplus-cost, i.e., when increasing the EU's
average acquisition-cost, the average surplus-cost
reduces.

CONCLUSION

This study proposes to jointly optimize the EU's
average energy-scheduling cost as well as its fluctuation
based on user's preference between these two aspects.
This problem is formulated as a non-convex
optimization problem and this study proposes an
efficient Layered Particle Swarm Optimization (L-PSO)
to determine the FHUs optimal scheduling of
electricity consumption for its appliances. In particular,
compared to the conventional PSO algorithm, our
proposed L-PSO can save the computational complexity
significantly. In addition, this study’s extensive numerical
results show how the EUJ can trade off between benefiting
from the renewable supplies and suffermg from the
assoclated fluctuation through tuming the weighting-
factors. The future study is to further incorporate the
energy storage into owr model and investigate how it
helps mitigate the fluctuation of the EU's electricity-
scheduling cost.
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