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Abstract: Spectrum sensing techniques have gained much attention due to their capabilities to improve the
utilization of the spectrum and lay the foundation of cognitive radio. In this paper, a new kind of modified
energy detection algorithm is proposed for the application on S-band uplink electronic surveillance. In this
scheme, first, the uplink signal of Unified S-band Telemetry Tracking and Control is derived from Matlab
simulation which is a multi-modulation signal of PCM-BPSK-PM. Then, a new kind of modified method is
proposed based on the study of classical energy detection algorithm which makes use of ratio threshold and
the coefficient of kurtosis. Simulation shows that the proposed method offers better performances than classical
energy detection method to a certain extent. At last, some filters are used to confirm the central frequency of
the uplink signal which 1s umfied S-band telemetry tracking and control signal. The simulation results show that
the proposed method 1s able to offer low estimation errors.
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INTRODUCTION

Cognitive Radio (CR) was proposed by Doctor
Joseph Mitola TIT in his PhD. dissertation in 1999
(Mitola I et ai., 2012). CR techmques have gained much
attention due to their capability to reuse the spectrum and
to solve the spectrum congestion nowadays. CR is often
considered as the key to next generation communication
system (Mao and Wolf, 2010; Liang et ., 2010). In
classical spectrum management mechanism, most of the
spectrun bands are exclusively allocated to a few
particular customers which results in the exhaustion of
limited frequency resource as wireless applications grow.
However, 1 contrast to spectrum scarcity, many results
show that spectrum utilization is often very low (Zhao and
Swami, 2007). For example, in the U.5., only 2% of the
spectrurn 15 used at any given time and location
(Chen et al, 2011). One feasible solution to solve the
spectrum scarcity is opportunistic spectrum access which
needs the help of spectrum sensing technique. Generally
speaking, there are largely three categories of methods:
energy detection, matched filter and cyclo-stationary
feature detection (Ozdemir et al., 2008; Maleki and Leus,
2013; Appadwedula et al, 2008, Wang et al, 2011).
Among them, the first one, energy detection, doesn’t
need any priory information, resulting in low complexity.
Tt can be affected by noise uncertainties easily, so the
detection probability can’t meet our requirements in low
SNR (the ratio of signal to noise).

Most of the previous work on energy detection
focused on setting absolute threshold. However, in this
paper, a new method 1s presented to make it work well
under low SNR. As coefficient of kurtosis is adopted, the
new method differed from previous work in threshold
setting. First, this study analyses the classical energy
detection algorithm and proposes a modified method,
where “Ratio threshold” 1s adopted. Siunulations are run
by using a multi-modulation signal of PCM-BPSK-PM
which 15 used m S3-bank uplink. Secondly, this paper
compares the two methods, classical algorithm and
modified algorithm. The results prove the feasibility of the
modified algorithm. At last, we use “adding windows™
method to estimate the central frequency of the carrier
signal. The overall structure diagram 1s showed as
follows. Figure 1 shows that: after receiving the signal of
S-band uplink, we should carry out spectrum sensing by
using energy detection algorithm. If there 13 no one using
S-bank, go on searching. If we find S-bank uplink is used
by someone, we will use “adding windows” method to
estimate the carrier frequency.

SYSTEM MODEL

The input signal: In fact, S-band uplink monitoring and
control signal (2025-2110 MHZ) is modulated in PCM-
PSK-PM or PCM-PSK-FM form. In this paper, we use the
former form: PCM-PSK-PM.
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Fig. 1: Overall structure diagram of S-band uplink electronic surveillance

—Input—$| Pre-filter —P| o

Fig. 2: Classical time-domain energy detection

The signal modulated by BPSK can be written as
car = carr.cos (2nft), where carr is the baseband code
sequence, {, 13 subcarrier; the whole signal 1s:

x(t) = cos(2nf, t+m car)
where, f,, is carrier, m, is phase modulaticn ratio.

The classical algorithm: The situation of mterest is
shown in Fig. 2. The energy detector consists of a square
law device followed by finite time mtegrator. The output
of the integrator at any time is the energy of the input to
the squaring device over the interval T in the past
(Hao and Zu, 2009). The pre-filter serves to limit the noise
bandwidth; the noise at the mput to the squaring device
has a band-limited, flat spectral density.

The detection is a test of the following two
hypotheses. (a) Hy: The mput y(t) 1s noise alone: y(t) =
n(t); (b) H;: The mput y(t) 15 signal plus noise:
y(t) = n{t)+s(t). The output of the integrator is denoted by
V which will be compared with V.. If V>V, it represents
that there exists primary users (that 18 H));, or V<V, it
represents that there doesn’t exist any primary users (that
is Hy).

According to the sampling theorem, the noise and
signal process can be expressed as (Dotlic and Kohno,
2011

H, orH,
Integrator Measurement

0= aginc@WU-i),0< (=T, a, —n(_) (1)
s(t)igalsinc(ZWt-i),0<t< T, alis(ﬁ) (2)
= 3
b (3)
B = (4

2WN,

»  When there is no signal, that 1s Hy, y(t) = n(t):

T 2TW 2TW
V= ¥ (0dt /Ny = 3 8 1 (2WNg ) = 3 b (5
3 =]

71

So V can be viewed as the sum of the squares of 2TW
standard Gaussian variables with zero mean and umit
variance. Therefore, V follows a central Chi-square

distribution with 2TW degrees of freedom.

¢ When there exists signal, that is H,, y(t)=n({t)+s(t):

¥ =2§(ai +2,)8inc(2Wt -1) ()]
=
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jyz(t)dﬁg(aﬁﬂjf‘ (7
Then:
v :ijz(t)dt N, :g(b‘ +b,Y (8)
Where:
1= gbf - Isz(t)dt Ny, =E, / Ny, &)

So the decision statistic V in this case will have a
non-central y* distribution with 2TW degrees of freedom
and a non centrality parameter A. Following the short-
hand notations mentioned m the beginning of this
section, we can describe the decision statistic as:

v {xim . H,
Ll L H

The detection probability Q, and false probability Q;
can be written as follows:

Q, = Prob{V =V, | H} = Prob{c®,,, (I} = V. } (10)
Q: = Prob{(V > V; | Hy} = Prob{c;my, > V,} (1)

where, s(t) 18 signal waveform, n(t) 1s noise waveform, T
is observation time interval, W is bandwidth, A is the ratio
of signal to noise, N’ is two-side noise power density
spectrum and V; is the threshold.

Threshold

The modified algorithm: Most of the articles about
energy detection concentrate on the process of noise and
dual-threshold (Kalamkar and Banerjee, 2013, Song et al.,
2010; Wu et al., 2009) while few pay attention to the main
algorithm. Due to the disadvantage of the classical energy
detection algorithm, in this study the squaring device and
the threshold setting i frequency domain are modified as
follows. Figure 3 shows classical frequency-domain
energy detection algorithm and Fig. 4 shows modified
frequency-domain energy detection algorithm which is
proposed in this study.

As is known that the amplitude of the received signal
represents the size of the margin of the received signal,
the sum of the square represents the energy of the
recelved signal and the coefficient of kurtosis (the fourth
order) reflects the concentration and dispersion of random
variables (the degree of tip level). Here coefficient of
kurtosis 13 adopted to describe the degree of
centralization and decentralization of signal. As a result,
it is easy to find out the maximum of the signal spectrum
in frequency domain (Zhao and Swami, 2007; Zhao et al.,
2010). When noise is only input:

W
NWI= Y a b ) Jexpi=jiw)

IWIW (1 2)
~ W 1w ..
= ¢(ﬁ)(ﬁ)z a, exp(— jiw)

where, ¢p(x) =sinc(x), d(w) is the Fourier transform of ¢p(x)
and j* = -1. Then the amplitude of noise can be described
as:

~ 2TW
NP 0T 2 (13)
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Fig. 3: Classical frequency-domain energy detection
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Fig. 4: Modified frequency-domain energy detection
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The same approach is applied when the signal s(t) is
present, then:

oS o el 14

S =006 Y, e (i) (14)

e S o p 15

869 =180 Gl (15)

L Zsowf s B s B, s, o

ZIN(:WI N, W) B, [N, W) B, [Ngw)| 16)
S, W) A
> 2L ==
N, (W)

where, A is signal to noise ratio, S (w) and N_(w) is
separately the equivalent value of S(w) and N(w), B, and
B,. is the bandwidth of signal and noise separately and
B.. = eB,, that 15 to say O<e<].

We denote Th_ 1 and Th 2 as:

2 4 2
TR T PP 'Y :m

Nl Nt e

When Th_1>1, that is to say Azg, Th 2>Th 1. It means
that the kurtosis algorithm can make the signal notable
among the noise and it’s also confirmed by the followmg
simulation results. In fact, the signal is a kind of

narrowband signal. If we set * as the classical signal to
€

2
noise ratio, [%J is the modified signal to ratio, then the

improvement in SNR(dB) is:
2
A8NR =10log [%} —10log [%J =10log(A) — 10log(e) (1 7)

Figure 5 shows the spectrum of ideal signal, where
there is no noise. Figure 6 shows the spectrum of signal
which noise 1s added into. From Fig. 5 and 6, we can see
that the useful signal is drawn in the noise. Figure 7
shows the modified signal spectrum, where the fourth
order of signal is used. Compared with Fig. 6, we can see
that the useful signal 1z more obvious from the
background noise in Fig. 7. The result is the same as
Eq. 17: using the fowrth order instead of square can make
the useful signal more obvious from the background
noise.

In classical energy detection algorithm, the threshold
is a single-value or dual, so when background noise
changes, the threshold has to be changed. However a
ratio threshold is developed in this paper which can void
the influence of the noise changes:
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Fig. 5: Ideal signal spectrum
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Fig. 6: Actual signal spectrum
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Fig. 7: Modified signal spectrum

+  First, input noise only and FFT it, then calculate the
fourth order
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¢+ Secondly, the spectrum is divided into fixed
bandwidth groups and sum each group, denoted by
Sy

* Thudly, find the maximum value among 3, and
denoted by S,, then the rest of S, denoted by S,

¢+ Fouwthly, take the average of S, and Se separately
and then defined R as both the ratio of S and S,

»  Fifthly, carry out the Monte Carlo simulation 10,000
times

¢ Finally, after sorting the results, we can obtain
correspondence between the threshold and the
probability of false alarm

From Fig. &, when there is noise only, R is very low;
while when there exist signal and noise together, R will
become obviously higher than before which means that
mean of signal only and mean of signal with noise can be
easily separated from each other. Tt is obvious that when
the SNR 1s too low, the modified algorithm does not work,
too. It can be explamed m “SNR Wall” theories.
Somebody may say why you don’t use the eighth order.
In fact, if we use the fourth order to simulate, we need to
simulate about 3N more multiplication than classical
algorithm; if we use the eighth order, we have to sunulate
about 7N more multiplication than algorithm (N is the
mumber of FFT). The larger N is, the more complex the
eighth order 13 and the more time 1t will cost, at the same
time 1t can’t improve the algorithm forever because of the
“SNR Wall” theory (Mariam et al., 2011; Ji and Zhu, 2010).
Taking these factors into account, kurtosis is used to
modify the algorithm.

In fact, R in Fig. & 1s just the ratio threshold in our
algorithm. The ratio threshold should be between 2 and 10
and the simulation result is showed below. In Table 1,
SNR is the ratio of signal and noise and R denotes the
threshold. When the threshold R is too low, for example
R = 3, the false alarm probability P;is higher than 90%.
And P; becomes lower as R becomes higher. Tt’s obvious
to see that when ratio threshold 15 9 or 10, the false alarm
probability can be lower than 5%. If the threshold is
higher, the missed alarm probability will be higher, too, so
we choose threshold = 9 or 10.

“Adding windows™ way to estimate the carrier frequency:
Besides all the things mentioned above, this paper also
proposes an “adding windows” way to estimate the
central frequency.

Butterworth filter has
frequency characteristics, but under the same transition
bandwidth conditions, the higher the required filter order
results in the higher corresponding costs; Chebyshev
filter has ripples in pass-band or resistance, but under the
same pass-band conditions, the required filter order 1s
lower. Although the type T Chebyshev analog prototype
filter has a narrower, steeper transition zone, this feature
is at the expense of the smooth monotonic pass-band
characteristics (and results in ripples). So we choose
type IT Chebyshev filter.

For type I Chebyshev filters and type II Chebyshev
filters, the gain (or amplitude) response as a function of
angular frequency w of the nth-order low-pass filter is
given by:

monotonic and smooth

1
G, %)= [H, ()] - e 18
/1 +2T (Y (18)
Wy
1

G, ww) )= —m—m—m——
R R (19)

£ (72)
w

80 1 Signal-and-noise R

70 4 —4—Noise-only R

60 +

50 1

30 4

20 4

0 T T T T T 1

SNR (dB)
Fig. 8 Correlation between threshold R and SNR

Table 1: Under different thresholds R, correlation between false alarm probability and SNR

SNE. (R) -20dB -18 dB -16 dB -14 dB -12 dB -10 dB -8 dB -6 dB -4 dB -2dB 0dB
2 1 1 1 1 1 1 1 1 1 1 1

3 0.97 0.973 0.961 0.971 0.969 0.971 0.961 0.964 0.962 0.971 0.97
4 0.711 0.703 0.084 0.702 0.693 0.693 0.716 0.693 0.697 0.720 0.68
5 0.42 0.429 0.413 0.416 0.418 0.424 0.414 0.408 0.419 0.413 0.39
6 0.209 0.213 0.218 0.224 0.232 0212 0.242 0.202 0.229 0.194 0.20
7 0.105 0.124 0.102 0.095 0.111 0.116 0.114 0.121 0.125 0.118 0.10
8 0.064 0.043 0.076 0.068 0.053 0.068 0.078 0.071 0.061 0.075 0.07
9 0.027 0.026 0.035 0.038 0.037 0.033 0.032 0.04 0.031 0.038 0.03
10 0.018 0.016 0.015 0.019 0.018 0.027 0.021 0.025 0.027 0.010 0.02
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where, € is the ripple factor, w, is the cutoff frequency and
T.(x) is Chebyshev polynomial of the nth order with
variable x.

Make the mput signal pass through a few groups of
“window” filters and each group has a different center
frequency. Find out which group’s output energy is the
maximum, then divide this group’s bandwidth again nto
new groups and go on as the first step. At last, we use the
last filter’s center frequency to estimate the input signal’s
center frequency.

SIMULATION AND ANALYSIS

Input PCM-PSK-PM signal: Generally speaking, paper
will set the signal modulated by BSK, FM or any other.
After all, they just pay attention to the algorithm itself and
have no background of application. In this paper, we use
the system to S-band uplink electronic
survelllance. Depending on the particular background of
application m this study, the signal of this paper 1s multi-
modulated by PCM-PSK-PM and the variables are set as
follows: the baseband code rate is 200 kHz, the subcarrier
1s 2 MHZ, the main carrier 1s 2070MHz, m, 1s 1.5 and
sampling frequency 1s 184MHz.

Figure 9 shows the PCM-PSK-PM signal in frequency
domam which 1s used for smnulation later. After
undersampling by 184 MHZ, carrier frequency of signal
can be moved to 46 MHZ which can be got as Eq. 20:

simulate

2070-184x11 = 46 MHZ (20)

Detection performance of the modified algorithm: Above
in Table 2 and 3, respectively, when threshold = 9 and
threshold = 10, the false alarm probability P; and
undetected probability P, and the error probability P, (the
sum of P; and P.) are measured. According to
Table 2 and 3, we can find that, when threshold = 9, the
error probability P, can be about 5% at -10dB, while the P,
is only 0.074 when threshold = 10. However if SNR
become higher than -8dB, the performance under
threshold = 10 is better than the performance under
threshold = 9. It’s easy to understand that the higher
threshold is, the lower the P, is. In this study, we want to
make the system work well as low SNR as possible, at the
same time P, is lower than 5%. So we here take
threshold = 9.

Figure 10 shows that the detection probability P,
changes with the SNR in the classical and modified
energy detection algorithm. Tt’s obvious that when
SNR = 4 dB, the classical detection probability can reach
93%; however the modified algorithm shows that when
even SNR =-10 dB, the detection probability can reach

Table 2: When threshold=2, detection performance of the modified algorithm

SNR (dB) Pr (%0) Py, (%0) P,
-20 2.5 97.5 1

-18 28 97.2 1

-16 3.5 97.5 1

-14 38 88.5 0.923
-12 3.7 432 0.469
-10 33 2.2 0.055
-8 32 0.0 0.032
-6 4.0 0.0 0.040
-4 31 0.0 0.031
-2 38 0.0 0.038
0 27 0.0 0.027

Table 3: When threshold=10, detection performance of the modified

algorithm
SNR(dB) P: (%) Py (%) P,
=20 1.8 98.2 1
-18 1.6 98.4 1
-16 1.5 98.5 1
-14 1.9 92.1 0.940
-12 1.8 50.5 0.523
-10 2.7 4.7 0.074
-8 21 0.0 0.021
-6 2.5 0.0 0.025
-4 2.7 0.0 0.027
-2 1.0 0.0 0.010
0 2.2 0.0 0.022
2500 A
2000 -
g 1500 4
£
20
<
= 1000 A
500 4
0 T b . T T T T i T T 1
0 02 04 06 08 10 12 14 16 18 20
f %10

Fig. 9: PCM-PSK-PM signal in frequency domain

95% and meanwhile the error probability is less than 5%.
So the improved algorithm is at least 10 dB better than the
classical energy detection algorithm. In theory, according
to Eq. 14, € 1s about 0.25, so the improvement is about
10log(e) = 14 dB. The two results comeide. In this study
Song et al. (2010) which uses two thresholds for energy
detection, the detection probability can reach about 95%
at SNR = -7dB which 1s not better than the result of this
study. The algorithm just needs one threshold. Since the
variability only needs to compare with threshold just
once, it will be faster than two thresholds algorithm and it
will not leave signal mto area of uncertainty as two
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Fig. 11(a-f): Filters n digital domain, (a) All-pass filter, (b) The first component of filter (a), (¢) The second component
of filter (a), (d) The third component of filter (a), (¢) The fourth component of filter (a) and (f) The fifth

component of filter (a)

thresholds  algonthm. Meanwhile, most
published studies just pay attention to false alarm
probability P; without considering undetected probability
P... In fact, we should take total error probability P, in
account which 1s the sum of P; and P, which 1s used in

thus study.

previously

Estimate the center frequency of the carrier signal: We
use an “adding windows” way to confirm carrier
frequency which consists of a set of filters. Figure 11

shows the frequency range of six filters in digital domam.
InFig. 11a shows an all-pass filter in digital domain (b»-(f)
show filters of different frequency in digital domain. Tt can
be considered that filter (a) is separated into filters (b)~(f).
In simulation of this study, we find that signal that passes
through filter (d) has the maximum of energy. It 13 clear
that the carrier frequency is in the range of this filter. Then
filter (d) is separated into new filters just as what is done
to filter (a) above. At last, we can get the carrier frequency
by the last filter’s center frequency. In Fig. 12a shows the
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Fig. 12(a-b): Estimation of carrier frequency, (a) Carrier frequency in digital domain and (b) Carrier frequency in

frequency domain

last filter’s center frequency in digital domain and (b)
shows the same result in frequency domain. From (b) of
Fig. 12, we can see that the estimate of carrier frequency
is 2070. 0275 MHZ which is obtained by the inverse of
Eq. 14 and the error of estimation is only 0.0275 MHZ.

CONCLUSION

The main contribution of this study is that energy
detection algorithm in cognitive radio spectrum sensing
technology has been improved and an "adding windows"
way is proposed to confirm the signal’s center frequency.
After simulation on the S-band monitoring and control
signal, we come up with the conclusion that the improved
energy detection method can effectively overcome the
shortcomings of the classical energy detection method
which is sensitive to background noise. The measuring
results show that the improved algorithm is at least 10 dB
better than the classical energy detection algorithm
and the error of carrier frequency estimation is only
0.0275 MHZ.
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