http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 12 (11): 2138-2145, 2013
ISSN 1812-5638 / DOL: 10.3923/1t).2013.2138.2145
© 2013 Asian Network for Scientific Information

Ontology-based Active Repository System

Yang Tao
Key Lab of Information Network Security, Ministry of Public Security,
339 Bi Sheng Road, Zhangjiang Hi-tech Park, Shanghai, 201204, China

Abstract: Component-Based Software Development (CBSD) 15 becoming increasingly more important in

software engineering research and software development, however, it encounters many problems regarding

its application. Here, based on the active repository system CodeBroker, the authors introduce a new approach

to push components to end users according to their personalized information. The integration of the component
repository, retrieval methods, queries, and the developer coding process reduces the CBSD cost on traiming,
as well as renders CBSD applicable in research. Framework of this approach containing the following modules:
building domain ontology, repository access agent, code analysis, personality catch and ontology-based
component retrieval and push. Our experimental evaluation of the SowceForge projects on database field

shows that suitable components can be automatically pushed to user through this approach. Using ontology
reasoming and personality filtering, the proposed approach can improve the quality of the search results.

Key words: Active repository, ontology, CBSD, component

INTRODUCTION

Component-Based Software Development (CBSD) is
considered the most effective way to improve the
software productivity and enhance the capacity of
software reuse. However, it does not emjoy much
attention 1n terms of practical applications for several
reasons. First, an integrated and recognized repository, a
component search engine and a user-friendly mterface are
unavailable, making it difficult for users to find suitable
components for
components require different environments m order to

specific applications. Second, its

function; therefore, setting up in actual operation is
difficult. Third, end users encounter multiple problems,
likely stemming from the lack of quality control by
developers. Fowth, troubleshooting any technical
problem that arises upon installation 1s difficult. Fifth,
estimating the time, cost and manpower required to shaft
from the normal development method to CBSD can be a
challenge (Klein and Bernstein, 2004).

Numerous studies have been conducted to resolve
the 1ssues concerning CBSD execution, including
middleware-based software development (Sharma and
Gupta, 2010), aspect-oriented software development
(Filman et al, 2004),
development (Erl, 2004) and active repository (Ye et al.,
2000), in hopes of streamlining the CBSD process and
eliminate existing software issues.

service-oriented software

Ontology refers to the important concepts and

relationships 1n a particular domain, providing a

vocabulary for that domain and a corresponding
definition of terms (Motik et al., 2009). Ontology is now
central to many applications, including
knowledge portals (Maynard et al., 2008a), information

scientific

management and integration systems, electronic
commerce and other semantic web services (Fensel, 2011).

Based on the active repository method, CodeBroker
(Ye et al.,, 2000), a new approach aiming to customize
CBSD as required by its end users 1s mntroduced in the
study. The approach essentially combines
CBSD components with ontology, such that any
CBSD component specifically needed for the user
application is automatically detected and fetched by
the system. This ultimately results in easier CBSD usage
and application, as well as reduced time and cost for

training.

current

Ontology-based component retrieval: An important 1ssue
in CBSD deals with ensuring that the component fits the
user requirement. This issue 1s often bound with the
component query method that contans keyword,
interface and type, IOPE process-based and other
matches (Klein and Bernstein, 2004). These methods
require the same terminology to the component
description and the user query. For example, if a
component is designed for graphics support and
describes its function using the keyword “graphic, ~ the
user can only find this component by typing in this
specific word; these traditional search methods will not

27wl

include “drawing, ™ “image” and similar words.

2138

Inform. Technol. J., 12 (11): 2138-2145, 2013

Ontology-based component retrieval is the latest
research field on CBSD. Because this method can
recognize the semantic information of component
description and user request by ontology support, it
provides the knowledge match and reasoning functions
to improve the component search quality (Pande ef al.,
2010).

The ontology-based component retrieval method first
builds a common ontology library as knowledge base.
Based on this library (Paquette and Masmoudi, 2011), it
sets up the relationship between different concepts. It
operates by matching the user query and the component
description, providing results that are sorted by

relevance.

Repository and sourceforge: A software repository 1s a
storage location from which software packages may be
retrieved and installed on a computer. Such repositories
typically provide a software management system, as well
as tools to search, install and manipulate software
packages taken from the repository. The repository has a
key role in the repeated use of software: it provides the
software component description scheme, component
classification, component storage and component
retrieval functions.

There are many kinds of repository construction
methods, such as REuse Based on Object Oriented
Techmques (REBOOT) and JavaBeans Component
Library TBCI. (Hassan, 2008). However, few practical
applications use the repository and no large-scale
component providers and users have been 1dentified.

Currently, SowceForge (Koch, 2009) is the most
widely used open-source projects aggregation site to
provide project release, project search and project source
mformation, as well as download packages and
repositories. Most CBSD researchers use SowrceForge as
a large-scale repository to support their research. In this
study, SourceForge is used as a common repository for
further research.

Active repository: Active repository is a methodology for
software reuse. It includes the repository, source code
editing tools and provides the active component query
function for users.

CodeBroker (Ye et al., 2000) uses three agents to
support the active repository’s requirements: listener,
fetcher and presenter. The listener integrates with the
code editor and monitors the user input text containing
the annotation, class name and function name. It
generates the component query parameters which it then

posts to the fetcher. The fetcher searches the repository
using these parameters to find the swtable component.
The presenter then dynamically displays the results in the
code editor. Programmers can automatically access the
components they need by merely typing several
characters. However, because the query parameters
CodeBroker uses are wholly dependent on text mput, the
results of the query are not very precise. CodeBroker
currently supports only java; hence, the majority of its
users are java programmers and developers.

1SPARQL (Kiefer et af., 2007) 1s another approach
that supports the active repository. Tt provides a software
repository data exchange format, named EvoOnt, to share,
integrate and analyze data of various origins. Using the
support of semantic web query language SPARQL, it
provides the ability to mine software systems represented
in the OWL data format. iISPARQL, however, does not
support real-time code analysis and online component

query.

ONTOLOGY-BASED ACTIVE REPOSITORY
MECHANISM

The proposed ontology-based active repository
system is built on the following mechanisms: (1) A domain
ontology for component description and user query
understanding: (2) A web repository agent that retrieves
the component from the web repository and represents
the component using ontology: (3) a code analysis
method that retrieves user potential requests from the
source file: (4) A persomality catch module that encodes
user persconality, query history and
environment and (5) An ontology-based component

execution

retrieval and push method that searches for the suitable
component using code analysis and personality factor in
the web repository and which then presents the result to
the user’s code editor.

Build domain ontology: A universally applicable
description of the framework and standard terminology
set are required in all stages of a query, hence, the
proposed domain ontology was built to support these
functions.

The domain ontology contains three parts. The first
part, shown in Fig. 1, is called meta-ontology for CBSD
domain knowledge. It contains the knowledge scheme of
CBSD domam that represents the function m the
“action-object” style (Cai et al., 2008). Action means the
fimetion’s main work while object means the target of the
fimection. The second part, shown m Fig. 2 18 the

2139

Inform. Technol. J., 12 (11): 2138-2145, 2013

is-g

Fig. 2: Component meta-ontology

meta-ontology for component description. The profile is
the main content of the component which contains three
parts: description which refers to the functions of the
component CBSD domain;
relationship which means the dependence to other
components and binding which denotes the binding

associated with the

runtime. Interface is the detailed description of the
component’s functions. Each function’s interface has an

thentioation

1

5 "Acquisition

input and an output. Using this meta-ontology, the user
can represent a component and a component query.

The third part is the meta-ontology for personalized
user information description (Fig. 3). The personality
meta-ontology uses four properties to represent user
behavior:
codes

» Environment refers to the

roperty
auto-generated from the
environment

» Application property refers to information of the
program being also be
auto-generated from the source code

» Query history 1s the history of system which means
that every query and result is recorded for future use

¢ User habit is the pattern of behavior which is derived
from the user’s operation and coding preferences.
For example, a user who prefers JDBC uses the
connection and statement class, whereas a user who
prefers the hibernation system uses the data table

user’s Programming

used which can

entity class. By analyzing the code, the user habit
can be mferred using the java database check

2140

Inform. Technol. J., 12 (11): 2138-2145, 2013

Web repository agent: Most repositories are typically
web-based, unlike mainstream programs. To integrate the
programming environment with the repository, a
network-based code access agent or a repository access
agent must be provided. Generally, CVS and SVN can
support the network function and provide an appropriate
solution for collaboration programming; however, they are
not designed for repository access. A more consistent
tool is necessary for CBSD to support repository access,
as well as to help in active component search.

SourceForge was chosen as the web repository and
a tool to access its component was designed. The tool
has two major functions. First, a spider 1s provided for
background retrieval from SowceForge, retrieving
mformation such as keywords, URLs and function
descriptions. These are then saved m a local database
using the pre-defined component scheme. The
component’s description 15 also generated using the
“action-object” style defined m the CBSD domain
knowledge by an Natural Language Processing (NLP) to
ontology processor (Maynard et al., 2008b). Second, a
component access method is then provided for users to
access the suitable component list and automatically
download the selected component from SourceForge or
view the information through a web browser.

Code analysis: The most important piece of mformation in
technical research 15 usually a code. For example, the user
writes a function, such as the following:

Query
history

User
habit

Environment
property

Fig. 3: Personality meta-ontology

2141

boolean userLogin (String strName, String strPassword)

This means that a string of codes and parameters are
used, such that the user can log into a system via
usernames and passwords. The active repository system
would perform a component query in the field of user
login or user authentication and present a list of
usernames similar to what the user has typed in.

There are three types of analyses to process code
editing: name, memo and detail code. Name analysis
processes the file name, class name and function name
and obtain semantic content from these names. Memo
analysis then uses a NLP tools to obtain the main words
and mapping these with ontology to obtain its semantic
content. Detail code analysis processes the code to
identify the object creation and call statements, for
example, new () 13 an object creation code and user. Login
() is a call code and then generate the relationship
between objects to help the system recogmze the
application property and user habit. Table 1 shows a code
analysis sample.

Personality catch: Nommally, each user has a umique
programming environment and coding habit and this
information will evidently affect the repository search
result. For example, a function name in a Java project with

Table 1: Code analysis sample
UserProfile java
class UserProfilef
private String m_Tlser;
public boolean userLogin (String strName, String strPassword){
Aprocess user login

}
public boolean checkAuthority (Authority target){
fcheck if current user has target authority

}
}
Analysis result

| Query
—>|Sub query 1

[Description = user profile

—>|Sub query 1

Description = user login
Description = process user login
Input = string str. name, String
str password

Output boolean

->| Sub query l|

Description = check authority|
Description = check if current user has
target authority

Input = Authority target

Output boolean

Inform. Technol. J., 12 (11): 2138-2145, 2013

Linux environment uses a component different from a C#

project with Windows environment. Another example, a
programmer familiar with TDBC and a programmer familiar
with hibemate will each write different codes using
different components when faced with a database
application.

Meta-ontology for personalized user mformation
description accumulates the user data and search patterns
whenever a user accesses the active repository. The data
in the active repository filters and sorts the results in a
manner that is reflective of the previous search patterns.

Ontology-based component retrieval and push method:
Component retrieval and push 1s the mam process of the
active repository. Component description has been
recorded mto the database by ontology ammotation and
by domain ontology; user’s query parameters are also
presented n ontology format to support the query
execution.

The component retrieval process is split into two
phases. In Phase 1, the ontology-based query engme
uses code analysis to obtain data from the query, then
stores the data in the local database. In Phase 2, the
combined with the
component description ontology of the results list which
will further refine the results.

Upon completion of component retrieval,

personality factor ontology is

the
repository access agent will take the result set to edit
interface of the user. The user can access the suitable
component list by automatically downloading the selected
from SowceForge or view the detail
information on SourceForge in web browser. System will

component

record the user’s operation log to fill the personality
information.

Eclipse

Components request

Match|maker

A 4

Eclipse plug-in

Personalized information
collector

EXPERIMENT

Experiment background: The research was patterned after
an agriculture project, named massive agriculture
knowledge and resources management system. The main
aim of this project was to integrate massive data from
many agriculture knowledge systems and resource
databases into one portal to make it more user-friendly.

Many of programming applications can be used
accomplish this project, however, authors used CBSD
because many components can be used to reduce
development time and cost. For example, a project issue is
to comnect to multiple databases and integrate the data
1nto a common interface. If this function 1s developed from
scratch instead of integrating pre-existing components,
more work will be required to make this function
executable.

The authors provided an ontology-base active
repository prototype system called OntoAR, based on the
Eclipse platform and its plug-in module. The authors then
evaluated the system function on automatic component
push in the database domain.

System framework: OntoAR contains several modules,

including code analysis, personalized information

collector and component matchmaker. The overall
framework of OntoAR is shown in Fig. 4.

In OntoAR system, Eclipse and SourceForge serve as
the IDE and repository. Local Compoenent Database 1s a
local cache generated by the spider called Component
Broker of repository access agent. The main data in local
database are composed of the component index, its
semantic parameters and the TJRT, on SourceForge. The

Eclipse Plug-in module contains two main functions: (1)

Depend on

Local
component
database

[Matched components]

]

Personalizeg information
coflector

(Candidate components]4/

Fig. 4: System framework

Personalized information]

2142

Inform. Technol. J., 12 (11): 2138-2145, 2013

code analysis which processes the project file and code
file in Eclipse and generates the potential Component
Request and the push candidate component, used in an
Eclipse internal window, whether either downloads the
component necessary for a project, or opens a web
browser to view the component page on SourceForge.

After the code analysis, component request is
generated and sent to Matchmaker for component
retrieval. Matchmaker is an ontology-based component
retrieval engine that matches the component request and
the repository data and then retwns the Matched
Component by order of relevance. Matched components
are then refined by Personalized Information Collector.
This module provides the function that collects the user
environment, application properties, user habit and query
history and then uses these personalities to filter and sort
the result.

Experiment and evaluation: OntoAR was developed via
Java 1.7, with MySQL as the local database. The local
database server 1s an Intel Core 17 PC with 4 GB RAM,
running Windows Server 2003, with the component broker
installed. The client, an Intel Core 15 PC with 2 GB RAM
running Windows7, was installed with Eclipse software
and the OntoAR in Eclipse plug-in format.

Before using the system, domain ontology 1s set up
based on the computer ontology created by the Owl
language. A ontology database 1s
containing 165 classes, 31 restrictions and 52 properties
in computer field, 131 of which are specifically related with
the database field. To sunplify matters, all of the
individuals are ignored or converted into a subclass.

small created

10007 — Component retrieval

900 4 —/\— Semantic matchmaking

800
700 A
600
500
400 1
300

200+

Average time in component retrieval step (min)

100

0 T T T T T T

The all of the
database-related projects from SourceForge, saves them
into the local database and annotates them with the
ontology tag. Prior to the experiment, the total amount of
grabbed projects was recorded at 13, 012.

After the domain ontology and the local component

repository spider then grabs

database were ready, an experiment was conducted to
examine the prototype system’s ability. An empty project
was built and a java file was created using the file name
and code listed in Section 3.3. The component
matchmaker initially found 130 results and, after filtering
using personalized information as environment, were
pared down to 63, some of which contain suitable
components such as “SQLRunner” and “IBAccess.” In
contrast, after a direct query of the “user profile” 1 the
database category of SourceForge, it returned 587 results,
with the first appropriate component for the project
located on page 3. Finding an appropriate relevant
component in such a large results list 1s therefore more
cumbersome.

A Time-consuming Analysis (Fig. 5) was also
performed based on the total component number. The
results in red with square nodes indicate the time cost of
the component retrieval step which retrieves the
component information from SowceForge and saves it to
local component database. Figure 5 shows that the
average time costs of one compoenent are similar and the
total time cost shows linear growth according to the total
compenent number. Another result with triangle nodes 1s
the time cost of semantic matchmaking step which uses
Eclipse plug-n to analyze the user’s code and generates
the component query, retrieves the candidate components

r 2000
- 1800
- 1600
- 1400
1200
- 1000
- 800

I- 600

- 400

Average time in semantic match making step (min)

1000
2000
3000
4000
5000

(=1
(=
° o~

(==}
(==
SIS

10000
11000
12000
13000

Total component count

Fig. 5: Time-consuming analysis of 2 main steps in OntoAR

2143

Inform. Technol. J., 12 (11): 2138-2145, 2013

and shows the results. The main operation in this step is
an ontology-based component retrieval. The ontology
inference is most time-consuming process. The time cost
of this step 1s a cubic growth of the total component
number in the local database.

EXISTING PROBLEM AND FURTHER RESEARCH

In this study, the authors have introduced an
ontology-based active repository approach to produce
relevant components to the end users according to their
personalized information. However, this mechanism still
has a few 1ssues, the most critical of which is the ability to
support different programming environments. This
approach combines the repository, automatic component
query generation and component retrieval mto an
integrated TDE. In order for this method to be feasible,
platforms aside from Eclipse and repositories other than
SourceForge should be developed. Another problem 1s
the automatic component composition and code
adjustment method which, if resolved, will enable extreme
ease of usability.

In future research, the followimng topics will be focused on:

+ Completion of the realization of the prototype system
and practical projects to examine the usability and
query accuracy

* Support of different kinds of repositories by a
repository metascheme

CONCLUSION

Based on the active repository system CodeBroker,
the authors
components to end users according to their personalized

mtroduce a new approach to push

information. By combining five steps of domain ontology
building, repository agent access, code analysis,
persenality catch and ontology-base component retrieval
and push, this approach provides an easy method for
analyzing the user requirement and retrieves the suitable
component for the user. Additionally, using ontology
reasoming and personality filtering, the proposed
approach can improve the quality of the search results.
This integration of the component repository, retrieval
methods, semantic queries and the developer coding
process reduces the CBSD cost on training and improves
the CBSD user-friendliness,
Experimental evaluation of the SourceForge projects on
database field shows that suitable components can be

especially for research.

automatically pushed to user through this approach.

ACEKNOWLEDGMENTS

This work 1s supported by the National Key
Technology Research and Development Program of the
Ministry of Science and Technology of China under Grant
No. 201 2BAH95F03.

REFERENCES

Cai, Y.F., X. Peng and 1..Q. Qian, 2008. An interactive
query generation method for semantics-based
component retrieval. Acta Electron. Sin., 8 28-28.

Erl, T., 2004. Service-Oriented Architecture. Prentice Hall,
Englewood Cliffs, USA.

Fensel, D., 2011. Semantic Web Services. Sprmger-Verlag,
London, UK., ISBN-13: 9783642191930, Pages: 357.

Filman, R.B., T. Elradand S. Clarke, 2004. Aspect-Oriented
Software Development. 1st Edn., Addison-Wesley
Professional, USA.

Hassan, A E., 2008. The road ahead for mining software
repositories. Proceedings of the Frontiers of Software
Maintenance, September 28- October 4, 2008, Beijing,
China, pp: 48-57.

Kiefer, C., A. Bernstemn and J. Tappolet, 2007, Mining
software repositories with isparel and a software

ontology. Proceedings of the 4th
International Workshop on Mining Software
Repositories, May 19-20, 2007, IEEE Computer Society,
Washington, DC, USA., pp: 01-10.

Klein, M. and A. Bernstein, 2004. Toward high-precision
service retrieval. IEEE Internet Comput., 8 30-36.
Koch, 3., 2009. Exploring the effects of source forge. Net
coordination and commumecation tools on the
efficiency of open source projects using data
envelopment analysis. Empirical Software Eng.,

14: 397-417.

Maynard, D., Y. Li and W. Peters, 2008a. NLP techniques
for term extraction and ontology population.
Proceedings of the 2008 Conference on Ontology
Learning and Population: Bridging the Gap Between
Text and Knowledge, June 16, 2008, TOS Press,
Amsterdam, The Netherlands, pp: 107-127.

Maynard, D., Y. L1 and W. Peters, 2008b. Nlp techniques
for term extraction and ontology population. In:
Ontology Learning and Population: Bridging the Gap
between Text and Knowledge, Buitelaar, P. (Ed.). IOS
Press, Amsterdam, Netherlands, pp: 107-127.

Motik, B., P.F. Patel-Schneider and B. Parsia, 2009. OWL
2 web ontology language: Structural specification and
functional-style syntax. W3C Recommendation 27
October 2009/ http:/fwww.w3.org/TR/2009/REC-ow|2-
syntax-20091027/.

evolution

2144

Inform. Technol. J., 12 (11): 2138-2145, 2013

Pande, J., R.K. Bisht, D. Pant and V K. Pathak, 2010. On Sharma, V.K. and N.P. Gupta, 2010. Component-based

some quality issues of component selection in CBSD. software development. Int. J. Comput. Sci, Network
1. Software Eng. Appli., 3: 556-560. Secur., 10: 132-134.

Paquette, G. and A. Masmoudi, 2011. Ontology-based Ye, Y., G. Fischer and B. Reeves, 2000. Integrating active
software component aggregation. Comp. Eng. information delivery and reuse repository systems.
Concepts, Methodol. Tools Appli., WVol. 223, ACM SIGSOFT Software Eng. Notes, 25 60-68.

10.4018/978-1-61520-839-5.¢h013

2145

	2138-2145_Page_1
	2138-2145_Page_2
	2138-2145_Page_3
	2138-2145_Page_4
	2138-2145_Page_5
	2138-2145_Page_6
	2138-2145_Page_7
	2138-2145_Page_8
	ITJ.pdf
	Page 1

