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Abstract: Gathering sensed information m an energy efficient manner 1s an important design challenge in the
application of wireless sensor networks. The readings of sensors generally exhibit both spatial and temporal
redundancies due to redundant node deployment and spatial and temporal correlations between the sensed
data. Therefore, in this paper, the distributed regression theory 1s used to remove the correlation in wireless
multivanate momtoring sensor networks. Sensor nodes need not transmit data to one another or the sink and
only commumcate the regression model parameters. The proposed algorithm reduces amount of data and
energy consumption during the data transmission process, thus prolongs the lifetime of the whole networks.
In order to validate the algorithm, simulation is carried out to evaluate the energy consumption and prediction
accuracy. The result of simulation shows that the proposed algorithm 15 very suitable for the compression of

multivariate monitoring data.
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INTRODUCTION

In Wireless Sensor Networks (WSNs), one of the
main challenging research topics is to save severely
constrained energy resources and effectively extend the
lifetime of the network (Anastasi et al., 2009). The power
consumption in a sensor node can be divided into three
parts:  sensing  consumption, — data  processing
consumption and transmission consumption. Most of
power consumption in WSN 1s used for data transmission
(Kimura and Latifi, 2005). Thus, minimizing the size of data
will reduce transmission consumption (Ciancio and
Ortega, 2004, 2005; Shan et al, 2011; Guo et al., 2010;
Wei et al., 2010). Due to the redundant sensor node
deployment for fault tolerance of commumecation
comectivity, W3Ns exhibit naturally lgh redundancy in
spatio-temporal sampling. The sampled redundant
attributes allow a significant reduction of commumcation
overhead by data compression (Tulone and Madden,
2006; Mehmet et al., 2004). The reduction of power
consumption directly bring into lifetime extension by
using the data compression for the network nodes
(Kolo et al., 2012; Srisooksai et al., 2012; Marco et al.,
2012). The studies of Chou et al. (2003), Zixiang et al.
(2004) give examples of applying the Slepian-Wolf
theorem to compress collecting data in WSNs  where
correlated data streams are physically separated or each
sensor node has limited computation capability. The

compression schemes allow sensor nodes to compress
their sensed data without collaboration and negotiation
but need to know prior knowledge of the precise
correlation i the data. However, many civil applications
of WSNs, such prior knowledge is usually wvague.
Therefore, the compressive sensing techmiques are
presented by exploiting compressibility without relying on
any specific prior knowledge or assumption on signals
(Donoho, 2006; Zheng et al, 2012). These schemes
provide decentralized compression i WSNs, but they
cannot support multi-resolution compression. Wavelet-
based compression support multi-resolution storage in a
WSN by organizing the network into multiple levels. The
Genesan et al. (2003) adopt the three-dimensional discrete
wavelet transform (3D-DWT) to generate spatio-temporal
summarization of sensing data in each level. The different
resolutions of sensing readings are obtained from
different levels wia drill-down queries. Although
DIMENSIONS meets the data compression requirement,
it 18 too complicated for sensor nodes because wavelet-
based compression would incur high computation and
storage complexity. Also, such complicated wavelet
operations are performed at each level of the
DIMENSIONS hierarchy. Ciancio and Ortega (2004)
analyze the energy consumption of data compression
and data reconstruction accuracy m using distributed
and non-distributed wavelet transform mode. From
the energy pomt of view, the literatwe (Ciancio and
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Ortega, 2004) studies local coefficient quantization
distortion of data reconstruction and local coefficient
quantization rules. Ciancil et al. (2006) based on a DWT
propose an energy efficient data representation and
routing scheme. Wagner et al. (2005, 2006) propose WSN
distributed irregular wavelet transform schemes. The
program take into account the sensor nodes deployed in
space distribution is irregular, uneven and therefore can
not be directly applied traditional wavelet transform.

Marcelloni and Vecchio (2009)  introduced
Huffiman coding into wireless sensor nodes. Their simple
lossless entropy compression algorithm which was based
on static Huffman coding exploits the temporal correlation
that exist in sensor data to compute a compressed version
using a small dictionary, the size of the ADC resolution.
The algorithm was particularly suitable for computational
and memory resowrce constrained sensor nodes. The
algorithm is static. Hence, the algorithm cannot adapt to
changes in the sowrce data statistics. Tharini and Ranjan
(2009) proposed algorithm was a modified version of the
classical adaptive Huffman coding. The algorithm does
not require prior knowledge of the statistics of the source
data and compression is per for med adaptively based on
the temporal correlation that exists in the source data.
The draw back of this algorithm is that it is
computationally intensive. Mawya et al. (2011) proposed
a compression algorithm that uses median predictor to
decorrelate the sensed data. The proposed algorithm is
simple and can be implemented in a few lines of code and
uses the LEC compression table. The algorithm has similar
compression complexity as LEC but lower compression
efficiency. Since the LEC algorithm outperforms it, the
algorithm will not be used for comparison with our
algorithm. Liang and Peng (2010), proposed a scheme
called two-modal transmission for predictive coding. In
the first modal transmission which is called compressed
mode, the compressed bits of error terms falling inside the
interval [-R, R].

The algorithm of distributed regression has been
addressed by many researchers till date. The problem of
performing global regression is considered in a vertically
partitioned data distribution scenariod (Hershberger and
Kargupta, 2001). The authors propose a wavelet transform
of the data such that, after the transformation, effect of
the cross terms can be dealt with easily. The local
regression models are then transmitted to the central
station and combined to form the global regression model.
The drawback of the algorithm is the need to the
synchronization techniques that are unlikely to scale in
large, asynchronous systems. Guestrin et «l. (2004)
presented a linear regression framework in a network
of sensors using in-network processing of messages
(Guestrin et al., 2004). Instead of transmitting the original
data, the proposed technique transmits regression
coefficients only, thereby reducing the commumcation

energy consumption drastically. However, the major
drawback is that their algorithm is not suitable for
dynamic data. An algorithm based on multivariate
correlation is proposed by Zhu et al. (2009). The algorithm
can effectively reduce spatial-temporal and multivariate
correlations, but all the raw data of cluster members in a
cluster must be transmitted directly to the Cluster-Head
(CH) and be compressed in the CH. The readings with
different attributes but from different nodes are not
differentiated and abstracted into a column of the
processed data matrix. Before sending data, the CH must
perform data preprocessing algorithm to analyze and find
out the attribute pairs between which the correlation is
large. Song et al. (2012) presented a distributed linear
regression-based data gathering framework in clustered
WSNs. The raw readings can be approximately
represented under less than a prespecified threshold while
the communication energy consumption can be
significantly reduced by the framework. CH nodes perform
linear regression operations and use historical sensory
data to complete estimation of the actual monitoring
measuwrements. Rather than transmitting original
measurements to the sink station, CH nodes transmit
constraints on the regression parameters.

In this study, we take into account the data collected
by different sensing units in the same sensor node that is,
multivariate data or multi-attribute data. In our method, all
non-CH nodes collect the original data and select one
variable as the base function of the other variables. Each
node calculates the regression coefficients of the base
variable by using the time as independent variable and the
regression coefficients of the non-base variable by using
the base variable as independent variable. Non-CH nodes
transmit their coefficients to the CH. While the CH
receives the coefficients from the active cluster members
and sends the model coefficients to the remote sink node.

REGRESSION MODELS IN SENSOR
NETWORKS

A wireless sensor network is composed by a set of N
energy-constrained sensor nodes that are randomly
deployed in two-dimensional field Nodes can
simultaneously a set of environmental attributes, such as
temperature, humidity, light intensity, sound intensity,
acceleration, video, etc., in which certain correlation
umversally exists.

Simple linear regression model: The current solutions of
data reduction by means of linear regression are
performed by using simple linear regression based on the
least squares 7. In that case, each sensor node calculates
regression coefficients by using the epoch/time as
independent variable. Then, the sensor node sends its
coefficients to the sink, instead of sending the readings.
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Over time, a sensor node measures a function at
some time t (e.g., temperature). Then, it collects a set of
data points (t,, x,), (t,, X5)s..., (f, X Assume a set of basis
functions B = (b, b,,.., by are given, the measuwrements
can be approximated by these basis functions. That is, to
find basis function coefficients w = (w,, w,,.., w,)7 such
that the measurements are approximated as:

T whbit)

1=l
where:
kD=3 wbit)

and k 1s the number of coefficients. When the mumber of
coefficients 1s equal to the number of sampling (k = m),
each x can be calculated exactly. However, such high-
degree x(t) fit the noise into the momtoring data and
generally generates poor results when used to predict
unseen data points (t,x). When the number of coefficients
1s far smaller than the munber of sampling (k = m), the
coefficient vector w becomes a compressed
representation of the sampling data.

Let X = (x(t), x(t)..., x(t, )" denotes the actual
measurements vector with one row for each measurement.
The basis matrix of the basis functions at the
corresponding sampling time points was defined as matrix
B:

bl (tl) b2 (t1) bk (t1)
b(t)) b,(t,) ... bt (1)
b, (t;n) b, ttm) : bkr(tm)

where, B 15 an m>k matrix and x 1s an mx1 vectoer. Let
X = (&{t,),%(t,),..%(t, )" denote the mx1 vector with one
row for each approximation values at t, sampling time
points, then:

j"{(r'l ) bl (tl ) b2 (tl )
o | %) b(t,) by(t,) ..
H =Bw = H H .

bo(t) | @
bola) | o | (2
x({,) b(t,) bylt,) byt ) ), @y

To guarantee the error bound of each approximation
data and the comresponding sampling data, the
approximation errors & on Root Mean Squared error
(RMS) are defined:

_ ]l gn EPYAS
S_Jm2j=l(x(t1) ()

LS - 3L by

3)

To minimize approximation errors, the optimization
problem is stated as:

W* =arg min &

Ten e
f\/m):ﬁ(x(t,-) %(t,)

4

Setting the gradient of this quadratic objective to
zero gives the optimal coefficients in matrix form:

w*=(B™B)"' B'X (5)

Let A=B"B and ¢ = B™X. The equaticns are following

as:
<bpsb > <bpb, > .. <bpb, >
A—RTR = <byeb, > <byeb,> .. <b,b, >
<bsb; > <bsb,> .. <bb, >
<bx>
<h,x>
c=B"X = ?
<b, x>

We can transform the Eq. 5 to w* = (A)™' ¢, namely:
c=Aw* (6)

where, A denotes the dot-product matrix, where each
element is the dot product between two basis functions.
¢ is the projected measwement vector, where each
element denotes simply the projection of the measurement
vector into the space of a particular basis function. When
the measurement vector and the basis functions are given,
the optimal regression weights can be computed with
simple matrix operations.

Over time, it is necessary to update the linear
regression model for reconstruction of sampling data. We
fit the coefficients of our basis functions with respect to
the sampling data collected in the last T minutes. Suppose
that the matrix A and ¢ have been computed for the
sampling data at times t,,..., t,, and a new measurement at
time t,, are obtained as the following:

<by(t, )b {t,) > <b(t,)eb,(t, ) >
| byt )by () > <by(t, )b (t,)>

. o<byt, )b, (t >
. <by(t b (t 3>
<b,(t )b, (t, 0> <-bk (tmj-bz(tm) > -. <b,(t »b. (t )>
<b,(t, )ex(t,)>
_ | < byt dex(t, ) >

<b, (tm)--x(tm) >

2288



Inform. Technol. J., 12 (12): 2286-2295, 2013

So, the matrix A of the basis functions and the
projected measwrement vector ¢ are updated by the
increment operation expression 7:

AAFA() cecte(t,) )]

Similar to the operation expression (7), if
measurement t, falls outside the time sliding window, the
linear regression model is updated according to the
Eq &

A+A-AL) e+c-o(t,) (8)

Thus, when new measurements are received at any
time, the dot-product matrix A of the basis functions
and the projected measurement vector ¢ can be
updated by implementing the increment operations as well
as the basis function coefficients of linear regression
model can be computed by solving the linear system
¢ = Aw*,

Multivariable linear regression model: In wireless
multivariate monitoring Sensor Networks, a sensor node
1s able to perform monitoring of more than one variable.
Moreover, the multivariate correlation is usually strong.
The correlation happens due to the fact that each sensor
node gathers correlated data from one or more attributes
at a given time. It 13 observed in the nature of physical
phenomena (Mehmet et al.,, 2004). The simple linear
regression model is able to work over correlation, but it is
not able to work over the multivariate correlation (more
than one variable). In our solution, we use multivariate
linear regression model to work over the multivariate
correlation. The purpose of our paper 1s to apply the
multivariate correlation method to improve prediction
accuracy on W SN data reduction.

Suppose that a sensor node has P sensing units, the
collected attribute is %, j =1, 2,..., P. The overall operation
of the regression-based compression scheme 1s as
follows:

= 1+BX1,1+BXL2+---+1 +Bpxi,prl 9)

where, v, denotes an attribute called response value and
X 1. Xizo, X, are the remaining p-1 attributes at a given
time i. We can pack all response values for all actual
measurements into an m-dimensional vector:

We can pack all predictors into a mx( p-1)+1
matrix:

1 X X 7 Xy

1 Xy Xp — Xy
X=| : : ] (_11)

1 Kt Xmz xm(l—p)

We can pack the regression coefficients mto a
p-dimensional vector:

Using linear algebra notation, the model 9 can be
compactly written:

Y =Xp

In order to estimate [J, we take a least squares
approach to mmimize Eq. 10:

E::ll:yx —(U+Bx, +Bx, +-t E’pxwfl )]2 (10)

And the regression coefficients can be determined by
Eq. 11 through the least square evaluation:

B=(X"X)"XY (11)

Then, the missing sense data can be predicted
according to Eq. 11.

Distributed algorithm using regression: The network
model was assumed that a set of energy-constrained
sensor nodes were randomly deployed m MxM
two-dimensional field. The following assumptions are
made for the sensor network. All sensor nodes are not
mobile and unaware of their location. The immobile sink
node 1s only and considered to be a powerful node
endowed with enhanced commumecation and
computation capabilites and no energy constraints.
Sensor nodes  can adjust the transmitting power
according to the distance, namely, radio transmitting
power of nodes is controllable. Sensor nodes are fitted
with the same radio commumcation model. The radio
channel is symmetric so that the energy required to
transmit m-bit message from node 1 to node ] 1s 1dentical
to the energy required to transmit m-bit message from j
to1
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The existence of the temporal as well as spatial
correlations brings the potential to significantly develop
and mmplement the efficient communication protocols
wellsuited for the WSN paradigm. Here, the distributed
algorithm is presented to exploit the spatio-temporal
correlation characteristics of the clustered sensor network
based on regression model that can approximate the raw
data while sigmficantly reducing the commumnication
energy consurption.

In order to take advantage of the existence of
nodes of different abilities inside a WSN, data gather
processing makes use of the classical LEACH
protocol (Heinzelman et al, 2002, Heinzelman et al.,
2000). The nodes organize themselves into local
clusters, with one node acting as the CH. All non-CH
nodes collect the original data, calculate the coefficients
by performing regression for original measurements and
transmit their coefficients to the CH. While the CH
receives the coefficients from the active cluster members
and sends the model coefficients to the remote sink node.
The processing principle of the distributed solution is
derived as following.

Suppose that a sensor node has N sensing units, the
collected attribute is A, j =1, 2, L, N. Initially, each node
selects an aftribute as the base attribute according to the
correlation coefficient matrix of multivariate sampling data.
The correlation coefficient of the attribute between X and
Y 1s denoted as Eq. 12:

> [, — G, —E(X, )]

- Cov(¥X,.X,) _
s D)D) JZE(XI‘—E(XE))E,JEIJSD(XE‘—E(XZ))z
(12)
Where:
EX)=4Y %,
and:

Cov(X,, X;) = BI(X-BXOCG-ERG))

When the absolute value of 1y, is 1, the relationship
between X1 and X2 is complete correlation. If sensor node
uses attribute X, as independent vamable, all the data
points of attribute X; lie on the regression line. The
smaller the absolute value r, of is, the lower the
correlation is and the more scattered the data points are.
If each node can collect H attributes, the relationship
among all attributes 1s defined as the correlation
coefficient matrix R with the size HxH, in which the

Dis_regress(i)

{/initialize pararmeters

Max_time window+size of the sampling time sliding window
MSG interval-timer interval to send messages.

g+precision

CLUSTER. id+the cluster id number of sensor nodes.

For (each node I) do //select the base variable

)

For (each node i) do {A+0; ¢+ 0 we0;}
For (each node 1) do //build the regression model
{if (T<Max_time window)}
{A=ATA(T), w =wtw(I);}
else
(A =A+ACD), w=wrw(T), A = A-A(T1);, w=w-w(T1))
For (each MSG_interval)
wr=(A"g
p=XX)y" XY;
Send_message (CLUSTER_id, w, B);
}
}
}

Fig. 1: Regression algorithm

element of the jth column in the ith row denotes
correlation coefficient between the i-th and the jth
attribute. The best attribute Xj as independent variable is
selected by Eq. 13:

opt_fit, =m{2|g \} i=12--H,j=L2--1 (13
i i

If the estimate error of the attribute opt_fit using the
time as independent variable 1s higher than the threshold,
a node will re-selected sub-optimal attribute Xj as
independent variable.

When the base attribute has been chosen, the node
performs the regression algorithm, shown m Fig. 1. Each
node N, mamtains a matrix A(1) and a vector ¢(1) that
summarize, respectively the effect of this node’s
measuwrements in  the dot-product matrix and the
projected easurement vector for its base attribute.
When the node collects a new value, its local matrix
and vector are updated using the incremental rule and
an event is scheduled to delete this value when it
falls outside the time window. The node computes the
non-base attributes on the base attribute and
transmits the calculated regression coefficients to the CH.
The raw data of nodes 13 no longer required to be
transmitted.

Analternative to transmitting all of the measurements
1s to build a regression model of this data mn the network
and transmit only the model coefficients. These lead to
lesser packet transmissions and reduce redundancy,
thereby helping in prolonging the network lifetime.
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Table 1: Ten successive measurements for different environmental attributes

Frequency Power Current Voltage Panel temperature Pipe temperature Tank temperature Tank level
50.00 6.29 11.32 378.00 11.16 21.20 2891 1.21
50.00 .29 11.40 377.00 11.18 21.22 28.91 1.21
49.78 5.98 11.05 377.00 11.18 21.21 2892 1.21
49.15 5.79 10.88 378.00 11.18 21.22 2891 1.21
50.00 0.14 11.10 379.00 11.18 21.21 2891 1.21
49.52 5.95 11.02 381.00 11.20 21.22 2891 1.21
49.71 o.11 11.29 383.00 11.19 21.21 2891 1.21
50.00 0.09 11.20 378.00 11.19 21.23 2892 1.21
50.00 6.07 11.05 372.00 11.20 2122 28.90 1.21
49.04 5.60 10.55 365.00 11.20 2122 2891 1.21
Table 2: Coefficient of the correlation analysis
Frequency Power Current Voltage Panel temp erature Pipe temperature Tank temperature  Tank level
Frequency 1.000000 0.911674 0.820903 0.3865990 -0.355050 -0.218040 0.031860 -4.1E-15
Power 0911674 1.000000 0.957566 0.5610840 -0.545530 -0.367800 -0.028420 2.03E-15
Current 0.820903 0.9575606 1.000000 0.6952360 -0.509100 -0.287040 0.090692 7.01E-16
Voltage 0.380599 0.561084 0.0952306 1.0000000 -0.345800 -0.256770 0.241327 2.38E-15
Panel temperature  -0.355050  -0.545530 -0.509100 -0.3458600 1.000000 0.666667 -0.247590 2.96E-14
Pipe temperature  -0.218040  -0.367800 -0.287040 -0.2567700 0.666667 1.000000 0.092848 1.78E-13
Tank temperature  0.031860  -0.028420 0.090692 0.2413270 -0.247590 0.092848 1 1.98E-13
Tank level -4.1E-150 2.63E-15 7.61E-16 2.38E-150 2.96E-14 1.78E-13 1.98E-13 1
Time -0.315590 -0.552600 -0.557840 -0.4743500 0.870388 0.565752 -0.226280 0
384~ o Measurement and w,. More generally, given a set of basis functions of
382 ~— Regression curve o the voltage readings (e.g., 1, t, t* and t*), we would like to
continuously fit their parameters and thereby reduce the
3807 > dimensionality of the voltage readings. The model
3784 coefficient vector was computed by Eq. 6 that is, -0.1340,
[}
%" 276 - 1.7494, -5.9044, 382.4667. Therefore, the degree-three
E 3724 polynomial 1s Eq. 14. The real line denotes the regression
% prediction curve of ten voltage values in Fig. 2:
o 3724
#
370 Y (1) = -0.1340-+1.749t+-5.901 44£°+382. 4667t (14)
368 1
3664 The  other variables  use  voltage  as
independent variable to extract 2 parameters from
304 . .
1 2 3 4 5 & 71 8 o 10 temperature readings: 3, and 3, which was computed by
Sampling time points Eq. 11. The red lines denote the regression estimate

Fig. 2: Voltage regression curve of ten sampling time
points

For example, instead of extracting the original
measurement from node Ni every 10 sec, suppose that we
have ten raw readings for every attribute during the
sampling time, shown in Table 1. The correlation
coefficient r results in Table 2 show that there 15 a greater
correlation between the voltage variable and other
variables gathered by the sensor nodes than with the time
variable. Thus, we select the voltage variable as the base
attribute. In order to perform simple computing, we wish
to fit the last 10 sampling points with a degree-three
polynomial: f{t) = wytw t+w 4w t* and only need to
extract 4 parameters from the voltage readings: w,, w,, w,

curves of ten prediction values other than voltage
readings in Fig. 3.

EXPERIMENTS AND EVALUATION

Here, to analyze the wvalidity of the regression
strategy, we implemented it in a small WSN which
contains frequency, power, current, voltage, panel
temperature, pipe temperature, tank temperature and tank
level readings gathered by multisensors in a solar water
pressure momnitoring system at intervals of 10 sec. These
readings were held during the day, between 1 February
and 5 April 2013, Thus, the data gathered for our
simulation comes from a reality scenario. We compare the
distributed linear regression-based strategy against the

standard clustered LEACH and regression algorithm
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Fig. 3(a-h): Regression curves of different environmental attributes under voltage variable as independent variable
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presented above. We provide a particular analysis of the
proposed algorithm for the energy consumption and the
prediction accuracy. The NS-2 software 15 used to
umnplement and simulate the network system.

Evaluation of the energy consumption: For power
consumption used for transmitting and receiving, we
adopt a simple radio model by Heinzelman et al. (2002).
Specifically, each node needs to run the circuitry for the
power amplifier. Let e (T bit™") be the power consumption
over the link 1, when it receives one unit of data and
e' (T bit™) be the power consumption when one umit of
data 1s sent over the link 1. We have:

r_
g =¢

elec

t_ =
€ =€ T Eampdl

where, €,. 18 a distance-independent constant that
denotes the energy consumption to run the transmitter or
recelver radio electromos and €., 1s the coefficient of the
distance-dependent term that denotes the transmit
amplifier. @ 1s the path loss exponent which 1s usually
between 2 and 4 for free-space and short-to-medium-range
radio commumecation. For the experiments described in
this study, the main simulation of the W3N are set as
Table 3.

For these experiments, each node begins with only
0.5 T initial energy and 200 bytes control packets to send
to the sink node. The CH node was determined at the
beginning of each round which lasts for 20 sec. Node will
generate energy consumption whenever a sensor in
network transmits or receives data or performs regression
operation. Figure 4 shows how the total energy
consumption of the network at each round varies as the
simulation time runs on for the proposed protocol and
LEACH protocols. The simulation results demonstrate
that the CH nodes of the proposed algorithm required less
energy in the simulation time than LEACH protocol. This

Table 3: System parameters of the simulation scenarios

Value/
Parameter Acromnym type
Transceiver average power consumption (nJ bit™)  &,,. 50.0
Transmitter power gain coefficient (pJ/bit/m?) Eanup 100.0
Path loss coefficient o 2.0
Tnitial energy of the node () Eini 0.5
Regression estimate energy cost (nJ bit™!) Ecom 5.0

The bandwidth of the channel (Mb sec™)
Data message size (bytes)

Transmission delay (usec)

The interval of each round (sec)
Simulation time (sec)

Regression period (sec)

Band width 1.0
Data size 500.0
Tran_delay 25.0
Round_time 20.0
Sim_time 600.0
R-period 30.0

is because a much smaller amount of packets was
transmitted to the sink by CH using the regression
estimate model to provide a structured prediction of the
original data. The energy consumption increased slightly
in each regression period for computing the model
coefficients. The number of dead nodes in the network at
each round 1s shown in Fig. 5. It can be seen from the
figure that the number of dead nodes in our scheme 1s less
than leach protocol. The reason is that each node just
transmits the coefficients whose amounts are far less than
the original amounts of data. So, the proposed algorithm
saves energy and belongs the network lifetime.

Figure 6 shows that the base attribute regression
estimate curve deviates from the actual measurements
spot. The absolute value error between the measurements

1007,
. *— pProposed algorithm

90 \ —0— | each

80
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60
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Fig. 4: Total energy consumption of the network at each
round
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* Proposed algorithm
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Fig. 5: Number of dead nodes in the network at each
round
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Fig. 6: Base attribute regression curve at the varied
sampling time points
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Fig. 7. Absclute value error between the measurements

and regression prediction values

and regression prediction values are shown in Fig. 7. The
variations in the absolute value error per round over time
are small for each attributes. For the power sampling, the
absolute value error of the last sampling time point 1s the
biggest up to 9.5% which 1s below the certain prespecified
error threshold.

CONCLUSION

In this study, an effective distributed regression
model is used to implement the wireless multivariate
monitoring sensor networks. The proposed algorithm
uses the correlation between base and non-base variables
to compute the regression coefficients of non-base
variables. The algorithm runs independently on each
node. Rather than transmitting sensor readings at a
continuous rate, our scheme allows each node to locally

compute the regression coefficients. After finding the
optimal  base and distributed
computing, the node transmits the regression coefficients
to sink by the CH nodes. The sink has the coefficients of
the estimate model to predict the approximation of the
monitoring data. Experimental results demonstrate that the
algorithm 15 capable of accurately summarizing and
estimating values of sensor measurements small amounts
of communication and obtain more savings in the energy
as compared with LEACH.

variable regression
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