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Abstract: Taking into consideration the significance of normal distribution in statistical applications, it is
fundamental to have an efficient and reliable method to generate Gaussian random numbers. This study
proposes an mnovative method to generate normal random numbers. The mam novelties of this algonthm lie
in the following: using multiple layers of cellular automata in which central limit theorem is applied to generate
nommal random numbers; and employing binary cellular automata motivated by Pseudo-Neumann neighborhood
structure. To evaluate the functionality of proposed approach, extensive experiments have been carried out in
terms of normality of generated random numbers. Sinulation results show that multi-layer cellular automata
produce better normal random numbers than MATLAR’s random number generator which justifies its efficiency

and good performance in statistical tests.
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INTRODUCTION

Computational methods have roots in mathematics
and computer science. They are considered to play a
major role in various real world applications ranging from
engineering, science, finance and economics, to arts and
humamities simce. They can provide powerful algorithms
and computational techniques for analysis, modelling and
mterpretation of complex systems that would be too
expensive to study by direct experimentation (Bar-Yam,
1997). In recent decades, developing computational
methods for generating random numbers to simulate
sophisticated systems has attracted a lot of attentions
(Banks et al., 2004). Obtaining good random number 1s a
very difficult task. In some sense, accuracy and
performance of computational simulations extremely
depend on the entropy of applied random numbers.
Random number generation methods are computational
approaches which are widely used for divers purposes,
some of which are Lottery (Bar-Yam, 1997), computer
games (Viega, 2003), cryptography (Taberi et al., 2011,
Wolfram, 1986), calculation with Monte Carlo method
(Moghaddas et al., 2008), computer simulations
(Bar-Yam, 1997), operational research (Banks et al., 2004)
and most of intelligent numerical optimization approaches
such as genetic algorithm, particle swarm optunization,

tabu search and other meta-heuristics (Ayanzadeh et al.,
2009b, 2011; Shahamatnia et af., 2011).

A sequence of numbers can be taken as random, if
and only if the sequence involves no recognizable
patterns or regularities. Roughly speaking, these numbers
are sorted out mto three major categories of truly, pseudo
and quasi random numbers (Banks et al, 2004,
Moghaddas et al., 2008).

Since truly random numbers rely on unpredictable
processes, they cannot be generated by any specific
algorithm. Thus, it i1s unpractical to predict the next
random number of a sequence (Moghaddas et al., 2008).
Although, truly random numbers are statistically random,
developing methods to generate these series of numbers
deems impossible. In some sense, truly random numbers
come from external sources which are extremely time
consuming. To overcome the drawbacks of utilizing truly
random numbers in real world applications, pseudo
random numbers or low discrepancy sequences are
suggested. Pseudo random numbers are generated by a
mathematical formula or deterministic procedure, so one
could potentially predicts these random munbers. An
underlying property of all pseudo random sequences 1s
that initial state completely determines the sequence of
patterns produced thereafter (Moghaddas et al., 2008).
Although, a quasi random generator produces “less
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random” sequences than a pseudo random generator, it is
more applicable concerning computational issues.
Algorithms that use such sequences may have superior
convergence. Specifically, quasi random numbers are
suitable for calculaion with Monte Carlo methods
(Moghaddas et al., 2008).

Random Number Generators (RNGs) were introduced
when computational approaches were applied for real
world problem solving. For instance, a table with forty
thousand random numbers was designed by Tippet in

1927 to be used in computational applications. In 1939

Kendall developed a table with one hundred random
numbers. Smith designed first mechanical random number
generator in 1955 which had been inspired by Kendall's
table. These tables were filled without any specific
algorithm, so they were generating truly random numbers
(Banks et al., 2004).

The earliest Pseudo Random Number Generator
(PRNG) was introduced by Neumann in 1951. The
proposed algorithm was simple and relatively quick, it was
considered unsuitable due to its relatively low period and
tendency to degenerate rapidly. After Neumann, several
computational algorithms were developed to generate
random numbers. Linear congruential methods are the
most popular generators in use. These algorithms are
iterative and carefully chosen wutial state 1s required to
start a good generator (Ayanzadeh et al, 2009, 2010).

Equation 1 illustrates general scheme of linear
Congruential method:
¥, =(aX, ,+c) mod m (1)

where, “mod” denotes modulus or remainder, a and ¢ are
constant coefficients, X, 1s the (n-1)th term in the
sequence, m is congruential module (one unit more than
maximum allowed random number) and X, is (n)th random
mumber returned. Linear congruential method highly
depends on the starting values. Maximum period of this
algorithm is m. so, it is reasonable to have sequence with
long period so that it might look random.

Multiple recursive generators are similar to linear
congruential generator, but they may use an initial
sequence rather than a single number (Ayanzadeh et al.,
2010, 2012). The recurrence equation for a multiple
recursive generator is defined by Eq. 2:

K
X,=¥aX_ mod m, i=12..k (2)

where, a, are constant coefficient, X, is the (n-1)" term in
the sequence and m is congruential module. k is called the
order of the generator. The advantage of this method 1s
that its maximum period is 2™ which 1s much longer than
the period of simple linear congruential method.

In Lagged Fibonacci generators which are based on
Fibonacei sequence, the new term 1s the sum of the last
two terms in the sequence (Brent, 1994; Moghaddas et al.,
2008). A typical lagged Fibonacci random number
generator 15 demonstrated by Eq. 3:

X, = (X +X, ) mod m, O<k<] (3

where, m and X ; are the same as these parameters in
multiple recursive generator. Blum-Blum-Shub generator
was introduced in 1986. The Blum-Blum-Shub is a
generator with the following simple form:

X =(X,)' mod m h

where, m is congruential module and usually the product
of two large distinct primes. In spite the fact that Blum-
Blum-Shub is fairly slower than aforementioned methods,
its strong cryptographic properties make it appropriate for
cryptography applications (Ayanzadeh et af, 2010,
Moghaddas et al., 2008).

Cellular Automata (CA) are discrete mathematical
models of Turing machine which have been widely used
to generate random numbers. To be applicable in
generating random number, states of a specific cell are
assumed as random numbers. Binary cellular automata
with specific Wolfram primary transition rules, such as
rules 30, 110 and 165, are mostly applied to generate
random bits and mumbers (Ayanzadeh et af., 2012).

Undoubtedly, random number generators must be
adaptable with various statistical distributions like
umform, normal, exponential, Poisson and Erlang. Despite
the fact that umform random mumbers are more popular for
both researches on developing random number
generators and utilizing these numbers in computational
simulations purposes, normal random numbers serve
significant performance so-more preciously in scientific
simulations. On the other hand, owing to the special
characteristics of normal distribution, almost normal
random number generators only try to map umform
random numbers to a Gaussian shape. To answer this, n
this study novel multi-layer cellular automata for
generating normal random numbers is proposed. This
method uses central limit theorem to map umform random
numbers into Gaussian distribution. Simulation results
demonstrate that multi-layer cellular automata generate
normal random numbers of much higher quality than
traditional methods.

CELLULAR AUTOMATA
John V. Neumann began studying Cellular Machines

i 1940. Cellular Machines are Computational models or
dynamical systems which can compute functions and
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solve algorithmic problems. CA with suitable rules can
emulate a universal Turing machine. Indeed, they can act
as Turing machine. Many novel methods were proposed
based on Neumann theories (Ayanzadeh et al, 2010,
2012; Sarkar, 2000). In the same time, Ulam also proposed
a hypothetical two-dimensional fimite lattice 1s defined for
cellular machine which consist of components called
“cell” and these cells are locally associated with each
other (Bar-Yam, 1997, Sarkar, 2000, Schifi, 2008).

CA are evolved by updating the cell lattice one pixel
at a time based on a set of determimstic rules. Cellular
automata can be defined as discrete dynamic systems in
time and space. They consist of an array of cells that each
of which usually synchronously or asynchronously
changes its state according to rules. The state changes
take place sumultaneously at discrete time steps. The new
state of each cell 13 determined by its current state and the
current state of its nearest neighbors (Bar-Yam, 1997,
Sarkar, 2000). To be more precise, state of each cell at time
t is a function of:

*  State of cell at ime t-1
*  State of neighbor cells at time t-1
*  The rule govermng the change of state for each cell

Cell arrays can be in any finite numbers of
dimensions; however, cellular automata are often
sinulated on at most two or three dumensional cell arrays.
Cellular machines have several basic characteristics. The
ability of acting as Turing machine has made this
mathematical model suitable in different scientific areas
such as computer, complex computing, biology, physics,
social sciences, artificial intelligence, graphics and so on
(Ayanzadeh et al., 2010; Bar-Yam, 1997).

Cellular automata are designed in form of
neighborhood structure in which for each cell, a set of
cells called its neighbourhood (usually including the cell
itself) is defined. Several neighborhood structures have
been proposed but Moore and Newman are the two most
common types of neighborhood. Figure 1 depicts the
Moor and Newman neighborhood structures with

@ ()

neighborhood radius = 1 and 2 (Ayanzadeh et al., 2012;
Sarkar, 2000; Schifi, 200%).

Von Newman neighborhood comprises a central cell
{(which 1s updated) and four neighbor cells, Moore
neighborhood contains more cells that von Neumann
neighbourhood, the eight cells surrounding a central cell,
completing nine cells.

Binary cellular automata are one of the most common
modeling tools in which cells states can be either zero or
one. Transition rules m these type of automata can be
constructed using some simple logical operators such as
AND, OR, NOT and XOR. Some of the most useful
Wolfram. Some of the most useful Wolfram transition
rules m linear binary cellular automata are given in
Table 1 where first row is the current state of left
neighbor, the cell itself and right neighbor respectively.
The next states of cells are illustrated in other rows by
using the specified rules. By applying transition rules in
Table 1 and starting from a random configuration, CA can
generate pseudo random  bits. Locality of rules leads
to generate pseude random bits with desirable period
(Ayanzadeh ef al., 2010, 2012; Wolfram, 1986).

Avyanzadeh ef al. (2009a) mtroduced another
neighborhood strategy which 1s called Pseudo-Neumann
and has dynamic behavior. Tt is based on Moore model,
however; its behavior is similar to Neumann strategy. In
this strategy, a random variable is used for each neighbor
cell to determine active neighbor cell. That is, the number
of neighbors and their positions in Pseudo-Neumann
neighborhood strategy are not known 1n  advance.
Figure 2 shows some instances of Pseudo-Neumann
neighborhood strategy (Ayanzadeh et al., 2010).

Owing to comprehensive and flexible properties of
cellular machines, they have been used to solve a wide
range of computing problems. In image processing, for

Table 1: Transition rules in binary cellular automata

Rule 000 001 010 011 100 101 110 111
30 0 1 1 1 1 0 0 0

90 0 1 0 1 1 0 1 0

105 1 0 0 1 0 1 1 0

150 0 1 1 0 1 0 0 1

165 1 0 1 0 0 1 0 1

) (d)

Fig. 1(a-d): (a, b) Newman and Moore neighborhood models with neighborhood radius = 1 and (¢, d) Newman and
Moore neighborhood models with neighborhood radius = 2
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(@) (b

() (d)

Fig. 2(a-d): Instances for Pseudo-Neumann neighborhood strategy

example, each cell corresponds to a pixel and the rule
describes the nature of the processing task. They also can
generate large sequences of random numbers. CA are able
to address some of the most difficult problems in
computer science like  NP-Complete  problems
(Ayanzadeh et al., 2010).

PROPOSED METHOD FOR NORMATL RANDOM
NUMBER GENERATING

Generating a sequence of binary bits and combining
them is the most common method in cellular automata
based random number generators. Obviously, the quality
of generated random numbers in these methods depends
on the quality of utilized random bits. Using wolfram
transition rules 30, 90, 105, 110 and 165 m either 1solated
or hybrid form will lead to generation of high period
pseudo random bits.

Base mapping 15 another technique to generate
Gaussian random numbers in which the sequences of
generated random bits are framed. This method suffers
from appearing repetitive patterns in final sequences
which can cause the low quality of randomness and
entropy. To overcome this problem, employing parallel
CA was proposed mn which the range of generated random
mumbers can demand much too large number of required
bits. In this case using independent cellular automata per
bit will extremely increase time consumption and memory
usage. Another drawback is mismatching between the
range of random numbers before and after base mapping
that will cause improper and less accurate results. In
binary numerical systems, the range of binary number
with length n can be from zero to (2°-1). Thus, if it is
umpossible to map the desired range of random numbers
to this range, numbers of specific sub range are more
likely to be generated. For example, five bits are needed to
generate random numbers i the range 0-20; but five bits
envelope numbers in the range of 0 through 31.

The easiest way to address this problem is ignoring
those random numbers which are greater than 20. Still, this

Fig. 3: Multi-layer CA to generate normal random numbers

method may produce repetitive patterns. As a result, the
quality (randomness) of generated random numbers will
be decreased. Another approach to work out this issue is
using linear or nonlinear mappings. Clearly, if the length
of primary range is bigger than the length of desired
range, odds of generating random numbers will differ.

To rectify this drawback, a different structure for
cellular automata is presented in order to generate random
numbers with normal distribution. The propesed structure
possesses several distinct layers of CA. Fach layer
involves independent two dimensional cellular automata,
all of the same size.

Cells of the first layer are binary which include only
digits zero or one. The goal is to generate normal random
numbers 1n the range [0, n] and the pivot 1s n/2, then the
cells of second up to m(th) layer will include integer
numbers between zero and n. The structure of the
proposed model 1s illustrated in Fig. 3. In first layer, each
row encompasses independent linear binary cellular
automata. Therefore, each cell has two adjacent
neighbors: one to the left and one to the right. Associated
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values of cells in each row are updated using one of the
transition rules 30, 90, 105, 110 or 165.

A novel neighborhood structure named Pseudo
Neumarmn 1s applied in other layers. In this model, sumilar
to Moore standard neighborhood structure, for each cell,
eight directly adjacent cells are considered as neighbors.
The only way to distinguish Pseudo Neumann from
Moore structure 1s that cells with the same positions from
first layer with state equal to one are defined as active,
otherwise they will be considered passive. If cells of the
first layer generate umform random bits, cells of other
layers will be activate/passive with the same probability.
In this sense, about half of the neighbors about four cells
like Neumann structure will be active. Pseudo Neumann
neighborhood structure 1s taken into account as Neumann
neighborhood structure with dynamic adjacency due to
the interaction between the first layer and other layers.

States of each cell in every layer excluding the first
one 1s calculated as follows: at first, the sum of cell value
and active neighbors’ values 1s computed; then the result
is divided by n+1. Remainder of this division is the next
value of cell. According to this rule, the values of cells will
be between zero and n. Initial configuration of automata
should be uniform. Whereby a finite number of values are
equally likely to be observed; every one of values
between 0 and n has equal probability 1/n. Now each cell
i the second to m(th) layer 1s a umformly distributed
random number. To generate a normal random number, a
cell is chosen from each layer (second to m(th) layer).
Final normal random number is the mean of candidate
cells’ values.

As stated m central limit theorem, since each cell m
second to m(th) layer is an independent random variable,
final result will be a random variable with normal
distribution. If lower bound of needed random number is
not zero, generated random number can be mapped to the
desired range by using a simple linear transformation. Tf
random number is in the range [-100,100], for example, n
will be mitialized with 200 and consequently output result
will be in range of-100 to 100. In this method, number of
layers affects standard deviation. In fact, according to
central limit theorem, more layers will cause smaller
standard deviation.

EXPERIMENTS AND RESULTS

In all experiments m this section, multi-layer cellular
automata consisting of a 1000x1000 cellular automata in
each layer are used to generate normal random numbers.
Besides, the cells states in the first layer are updated by
rule 30. In the first experiment, the capability of binary
cellular automata for producing umform random bits 1s

examined. In second experiment, uniformity of generated
random numbers of proposed method is compared with
random mteger numbers generated by MATLAB. In last
experiment, quality (normality) of final results 13 assessed.

Experiment I: Tn this experiment, umformity of generated
random bits by linear cellular automata 1s evaluated. For
this purpose, linear binary cellular automata possesses
100 cells. In this simulation, neighborhood radius is taken
one and the rule 30 is used in order to change the cell
states; 10° random bits were generated and total numbers
of ones m the sequence were counted. This simulation
had been executed 100 times and some significant
statistical parameters such as mean, standard deviation
and scattering length were calculated. The wvalues of
meary, standard deviation and scattering length for the
numbers generated are 499.9484, 10.6328 and 86
accordingly which indicate that the quality of generated
random bits using cellular automata 1s very desirable. In
addition, the output random bits by cellular automata are
uniformly distributed. Thus, it can be concluded that if
rule 30 is used to update the values of first layer in the
suggested model, the cells of other layers will be active or
passive with approximately the same probability.

Experiment IT: This experiment swveys the umformity of
random mumbers generated by proposed model. To do so,
at first a sequence of random numbers from a specific
layer of the proposed model and random number
generator of MATLAB are generated. Then, following
steps are executed 100 times:

»  Generate N = 10 random integer numbers in the
range of [0,100]

*  Classify the generated numbers in ¢ = 10 classes with
equal sizes

»  Compute the frequency of numbers m each class (f))

Finally, mean, standard deviation and scattering
length of frequencies of numbers in each class are
computed. Table 2 demonstrates experiment results.

From statistical perspectives, less standard deviation
and scattering length mean more uwmformity. In other
words, Table 2 reveals that the distribution of generated
random numbers by MATLAB 1s greater than output of
proposed multi-layer CA. Thus, it can be concluded that
this method generates more uniform nmumbers than
MATLAB. Inthe same way, mean indicator demonstrates

Table 2: Statistical parameters of experiment 2

Method Mean Standard deviation Scattering length
MATLAB 926.23 111.93 504
MLCA 944.86 83.10 308

2444



Inform. Technol. J., 12 (12): 2440-2446, 2013

that frequency of generated random numbers (odds of
being generated) in MATLAB random number generator
is less equal than proposed CA. In other words, it can be
observed that proposed multi-layer cellular automata
generate more umform random numbers with less
scattering length and standard deviation. Tt means that
generated random numbers by proposed cellular automata
have equal probabilities.

Experiment III: On account of special characteristics of
normal distribution, investigating the normality of
random numbers will be different. To evaluate the
normality, to date, many methods have been introduced
(Ayanzadeh et al., 2010), including:

+  Kolmogorov-Smirnov test

¢ Shapiro-Wilk test

¢ Anderson-Darling test

+  Lilliefors test

*  Ryan-Joiner test

»  Normal probability plot

*  Jarque-Bera test

»  Spiegelhalter's ommbus test

Most of these methods are experimental and based
on empirical information. Kolmogorov-Smirnov is widely
known and discussed among all of above-mentioned
methods. The Kolmogorov-Smirnov test for normality is
a nonparametric test which can be applied to check
whether data follow any specified distribution, not just
the normal distribution. In order to apply this test, sample
cumulative distribution and the hypothesized cumulative
distribution should be computed. Afterward, the greatest
discrepancy between the expected
cumulative distribution 1s found, which 1s called the
"D-Statistic" (Ayeanzadeh et af, 2010, Lilliefors, 1967,
Stephens, 1974). The Kolmogorov-Smirnov test 1s based
on the Empirical Distribution Function (ECDF). Given N
ordered data points X, X, ..., Xy, the ECDF is defined by
Eq. 5

observed and

E, (x) =% (5)

where, n(i) is the number of points less than X;. And X are
ordered from smallest to largest value. Hypothesized
distribution function Fu(X) can be computed through
Eq &

Fy(x) = :!;S\;Eexp(—z—iz(t—i)z)dt &

0.75

0.5

0.25

Fig. 4: Maximum distance between distribution functions

Where:

£=0-10"Y (x-%) N
x=n" ixi (8)
1=1

The maximum difference between the two distribution
functions 1s computed and evaluated by Eq. 9:

D = sup|F, (x)- B, (x)| (9)

Figure 4 15 a plot of the empirical distribution function
with a normal cumulative distribution function. The K-S
test 1s based on the maximum distance between these two
curves. In this figure, y axis specifies the probability of
random variable x or cumulative probability. In this
experiment, the maximum distance between numbers
produced by MATLAB normal random number generator
and the ones produced by proposed multi-layer cellular
automata are calculated. Fy(X) is assumed to be the
desired normal probability distribution function. Results
for 10% 10°, 10%, 10° and 10° normal random numbers
generated by proposed model and MATLAB random
number generator are shown in Table 3. As can be seen
from Table 3, the proposed multi-layer cellular automata
generate more “normal” results than MATLAB random
number generator. To be more precise, outputs of multi-
layer cellular automata are more similar to standard
Gaussian distribution (with zero mean and umt variance)
than MATLAB normal random number generator. From
the perspective of statistics, probability distribution
function of generated random numbers by proposed CA
has less distance with standard normal distribution in
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Table 3: Statistical parameters of experiment 3

MATLAB Multi-layer CA

0.1066 0.0982 =107
0.09714 0.0860 107
0.09646 0.0688 107
0.0899 0.0437 10°
0.0881 0.0220 1¢¢

comparison to MATLAB random number generator.
Thus, generated random numbers are more likely to be
considered normal.

CONCLUSION

In this study, a umque method for generating
high-quality normal random numbers 1s described in
which multilayer cellular automata concept is employed
along with Pseudo Neumann neighborhood structure. In
this model, cells of automata which are responsible for
producing random numbers contain integer values,
contrary to previous methods in which random bits were
generated using cellular automata. Binary cells in first
layer are assumed to be active or passive by cells of
binary automata; as a result, cellular automata obtained
dynamic neighborhood structure.

The experiments were intended to assess the
normality of random numbers generated from the
proposed method. It was experimentally validated that
multilayer cellular automata generate random numbers
more nommally distributed than random numbers generator
of MATLAB. The main drawback for this method 1s
umnproper initial configuration which may cause Garden of
Eden. Different neighborhood structures and appropriate
hardware implementation could improve the performance
of multi-layer cellular automata model by applying hybrid
transition rules.
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