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Abstract: In this study, interval analysis method 1s discussed for estimating the dynamical properties of the
rotor system with uncertain parameters. The error of dynamical parameters of an aeroengine rotor system 1s
unavoidable in the course of manufacture and installation. Parameters of the rotor will vary due to friction
during working. Critical speed and dynamical response are hard to be obtained by the traditional dynamical
theory. Based on the variation of the rotor system parameters, variation of the natural frequencies of the rotor
is obtained via interval analysis method and the variation range of critical speed is determined. The influence
of parameter perturbations on natural frequencies is investigated. The illustrative numerical examples are
provided to demonstrate the validity of interval analysis method. Compared with the Monte Carlo method, the

calculated results show that the proposed method in this study s effective in evaluating bounds of the

frequencies of uncertain rotor systems.
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INTRODUCTION

The concept of uncertainty plays an important role in
the investigation of various engineering problems. In
particular, all engmeering analysis and design problems
mvolve uncertamty to varying degrees. The inaccuracy
of measwrements, for example, 1s often called "uncertainty’
which differs from the concept of error. An uncertainty 1s
a possible value that error might take over arange and the
dynamical response of structures with the uncertainty
varies over a certain range.

Probabilistic medel 1s the most widely used methods
of solving uncertain problems in most engineering
researches. In this case, all information about the
structural parameters is provided by the probability
density function of the structural parameters. However,
probabilistic model 1s not the only way that one could
describe the uncertainty and uncertainty does not equal
randomness. In many practical problems, the sources of
the uncertainty are too complex to allow analytical
determination of the probability density fimction and
meanwhile 1t’s hard to obtain enough data to determine
the probability density function. So, it can be seen that
interval analysis can be used most conveniently.

Since, the mid-sixties, a new method called interval
analysis has been developed Moore (1979) have carried
out the pioneering work. Deif (1991) obtained the solution
theorem for interval matrix. Qiu et al. (1995) presented the
mterval perturbation method, semi-defimte solution

theorem and the inclusion theorem. Dimarogonas (1993)
discussed the natwral and forced vibration problems for
systems
developed using interval calculus. Hu and Qiu (2010)

interval rotor-bearing and solutions were

investigated the dynamical response of structures with
studied via
convex models and mterval analysis methods. Yang et al.

uncertain-but-bounded  parameters was
(2012) obtained the lower and upper bounds of dynamic
response of structures with uncertainty by Laplace
transform.

A substantial number of engineering vibration
problems are indeed mterval problems. All rotor dynamical
analysis is performed with single-valued bearing
properties (Ii et al., 2012, Zhang et al., 2011). Tt is well
known, however that the bearing properties change
substantially with temperatwre which is controlled in
machinery relatively  broad
Manufacturing  tolerances introduce another interval

within mtervals.
parameter, the bearing clearance which widens the bearing
parameters further.

In this study, a new method 1s presented for
computing the natural frequencies of a rotor system with
uncertain parameters which could not be treated as being
random, since no nformation is available on their
probabilistic characteristics. The set of possible states of
the system is described by interval matrices. By solving
the generalized interval eigenvalue problem, the bounds
on the critical speed of the rotor system with interval
parameters are evaluated.
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INTERVAL AND INTERVAL OPERATIONS

In the following, the field of real munbers is denoted
by R and its members are denoted by lower case letters.
An interval 1s a subset of R with the following form
(Sim et al., 2007, Chen et ai., 2003):

X =[xx]={t|x<t<xx xR} (1)

where, X is the lower bound and X is the upper bound.
The set of closed real intervals will be denoted by I(R) and
its members by upper case letters. Assume that I(R), I(R")
and I(R*™) denote the sets of all closed real interval
numbers, n-dimensional real mterval vecters and nxn real
mterval matrices, respectively. X' =[x,%] 18 a member of
I{R) and X' be usually written in the following form:

X' = [X-AX, X+AX] (2)
where, X° and AX denote the mean (or midpoint) value of

X' and the uncertainty (or the maximum width) in X!
respectively. Tt follows that:

o XX 3)
2

ax-XX (4)
2

In terms of the interval addition, Eq. 2 can be put into
the more useful form:

L= XEAX )
where, AX' = [-AX, AX].

An n-dimensional real interval vector X'el(R") can be
written as:

X = (XKL, Xy (6)

The mean value and uncertainty of x' are:
X* = (X0, X5, -, X0 (7
AX = (AX,, AX,, —,AX,)" (8)

Similar expressions exist for an nxn interval matrix
Al =[A Al I(R™).

Al= ASHAA! %)

where, AA' = [-AA, AA] A" and AA dencte the mean
matrix of A' and the uncertain (or the maximum width)
matrix of A, respectively. It follows that:

A Ay . 3 tay) (10)
2 K 2

AA=(K_é) or Aa =(E‘]71“) (11)
2 h 2

where, A" = (a’)) and AA = (Aa).

Let X,V eIlR)LX =[xX.Y =[v.¥] Two sets
X' =[x.%] and Y'=[y,y] are equal if x=y and x=y. An
interval of zero width [x, x] will be called as the point
interval and it 1s a regular real munber. The operations for
XYL XYL XRY!, XY and XYY are;

XY =[x X+ [y §]=[x+ y.% 1 7] (12)

X =Y =[x %]-[y, F]=[x-F.%-y] (13)

X' %Y =[x X]x [y, ¥] = [min(xy, x5, Xy, Xy). max(xy, Xy, Xy, ¥y)]
(14)

)
|4
=4l

5

==—=[xX]x

-
et
el
| =

(15)

>

It | =

It is apparent that division is not defined if 0€[x.X]
and that [X.X =[cx.cX] for ¢>0 and [X.Xle =[cX.¢X] for ¢>0.

While commutativity and associativity are preserved
in interval algebra, distributivity is not preserved that is:

X(YHZY # XYHNZ! (16)

However, the following subdistributivity, or inclusion
rule 1s true:

XYHZHeXYHXZ! (17

The subdistributivity law, or mclusion theorem, 1s of
fundamental importance to the interval calculus, because
1t proves that interval arithmetic operations always yield
an upper bound for the interval of the function. Thus they
provide a conservative estimate for it.

BOUNDS OF INTERVAL FIGENVALUES

The generalized eigenvalue problem is expressed as
follows:

Ku = AMu (18)
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where, K = (k;) is stiffness matrix, M = (m;) is the mass
matrix, u is the eigenvector and A is the square of the
frequency of free vibration.

Generalized interval eigenvalue problem: Tn a variety of
applications it is often desirable to obtain solutions to the
eigenvalue problem m which K and M are affected by
uncertainties as subjected to:

=

K<K<Kor i,j=12-.n (19)

=
1A

k; <k

i

M<MzMor GEmy <m i j=12---.n (20)

K=k, and K=k, are the minimum and maximum
allowable stiffness matrices of system M=(m,) and
M={(m;) are the minimum and maximum allowed mass
matrices of system. With the use of the interval matrix
notation, the above equations can be rewritten as:

KeK', K'=[K.K]=[K‘-AK,K® + AK] 20
MeM M =[M M]=[M"-AM, M" + AM] (22)

where, K'=[K,K] 18 a positive-semidefimte symmetric
interval matrix and M'=[M,M] is a positive-definite
symmetric interval matrix. Then K® and M" are interval
stiffness and mass and AK and AM, respectively radius
mnterval stiffness and mass which are given by:

_K+K

K + ,M°=M+M K
2 2

For the sake of simplicity, Eq. 18 can be expressed by
Eqg 10

K'u = M (23)

The above equation is called a generalized interval
eigenvalue problem. Because K' and M' are defined as
interval matrices, the associated eigenvalue of K" and M'
similarly constitute interval variables A'=[xA2]=(a). The
objective is to find all the possible eigenvalues AeR®
satisfying the equation Ku = AMu, where, K and M are
assuming all possible values inside K' and M. This
infinite number of solutions constitutes a region inside R*
which we will call I' and is expressed as follows:

I'= {i: A€R", Ku = AMu, u = 0, KeK', MeM'} (24)

Solving the generalized interval eigenvalue problem
23 18 synonymous to finding a multi-dimensional rectangle

containing all eigenvalues Eq. 24 set for interval matrix
sets (21) and (22). In other words, we seek the lower and
upper bounds, or interval eigenvalues, on the eigenvalue
set (24), 1.e:

= [aT)= (), M =3 ELi=12 0 (25)
Where:
A= rqin A (< K,M>) (26)
Kek L Me
A= mmx A (<K,M>) (27)
Kek ! MeM!
in which:
T
A, (<K,M >} = min max u Ku (28)

acR? wed 1 Mu
u=l

where, @'cR" 1s an arbitrary 1-dimensional subspace of
n-dimensional real space.

Interval analysis method: Here, we will calculate the
generalized interval eigenvalue problem making use of the
interval mathematics. Clearly, the eigenvalue A, is
considered a function of the element k; and m,. Then, by
means of the natural interval extension, from Eq. 28 we
obtain:

Tyl
. uKu
A= min max ———— (29)
PRt v U Mu
u

In terms of the interval operations (Moore, 1979,
Qiu et al, 1995), Eq. 29 can be rewritten as:

T Tiz
A = min mnw (30)
#irt ey [ Mu,u” Mu]

By the interval division, we obtain:

T T~
. u Ku u Ku
Al = min max[———, 31
= °D,[uTMu UTMU]

us
u=

In terms of Eq. 21-22 and 31 can be rewritten as
follow:

T © T ©
A = min max] uT (KC —AK)u , uT (KC +AK)u ] (32)
PR vy Y (M°+AMu u (M° —AM)u

Then, to obtain the lower and upper bounds on a
particular A, we can introduce Dief’s assumption, ie.,
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signs of components of the associated eigenvector u'
remain unchanged, when matrices K and M range over the
mterval K'=[K,K] and M'=[M,M]. Then we define:

ij=12-n
(33)

S = diag(sgn(u ), sgniu; ), sgn(u, ) ;=0

where, 5' 1s a diagonal sign matrix expressed by the sign
of row elements (u,, u,., u)" of the ith centered
eigenvector u'. In the sign matrix § of the eigenvectors
within the mterval of the eigenvalues, the bounds found
for the eigenvalues are exact. Then:

Siu' = >0 (34)

Substitution of Eq. 34 mto 32, we have:

2, = min max
DR ued,
uel

U (K -S'AKSHu  u' (K + S'AKS U (35)
uT(M° + SAMSHU uT (M —S'AMSH

Thus, from Eq. 35, we have:

Tipe _qi i Tipe 4ol i
A =70 | min max (K° ~S'AKS )u min max (K* +8'AKS u
PO e e g T (M 4+ S'AMS et s uT(MT - S'AMS u
u -

(36)

According to the necessary and sufficient conditions
of equality of interval variables, we obtain:

Tepre i i
A, = min maxw (37
iR uety {M*® +S'AMS"u

T [ i i
i‘ — min max uT (KC +S‘Ast)u (38)
PR v ) (M° —S'AMS

The stationarity condition of the Rayleigh quotient
is equivalent to the algebraic eigenvalue problem. Thus,
the eigenvalue problem corresponding to the lower bound
of Eq. 37 1s:

(K° —SAKSH, = A, (M® + S'AMSH, (39)

u; 18 the eigenvector associated with A, Similarly,
the eigenvalue problem corresponding to the upper
bound of Eq. 38 is:

where, u,

(K° +SAKS)T, = % (M® - S'AMSHT, (40)

where, u, is the eigenvector associated with A,

Thus, we arrive at the following theorem.

If K =[KK]=[K'-AK,K°+AK] 1is a positive-
semidefinite interval matrix and if M"=[M,M]=[M* - AM,
M® + AM] is a positive-definite mterval matrix, AK and AM
are also positive-semidefimte real matrices. Signs of
components of the associated eigenvect U, ie., S' = diag
(sgn(u'), sgn(uy),..., sgn(u ) u; # O 1, j =1, 2,.., n, remain
unchanged, when matrices K and M range over the
interval K'=[K,K] and M' =[M,M], thenthe eigenvalue A,
i=1,2,.,n, of KeK' and MeM' range over the interval,
le.

M=[%AL i=12-n {41)
where, the lower bounds 2, satisfy:
(K* —S'AKS")u, = A, (M° +S'AMS ), (42)
and the upper bounds 2, satisfy:
(K* +S'AKS)T, = &, (M —S'AMS))T, (43)
NUMERICAL EXAMPLES

The error of dynamical parameters of an aeroengine
rotor system 18 unavoidable in the course of manufacture
and installation. Parameters of the rotor will vary due to
friction during working. Critical speed and dynamical
response are hard to be obtained by the traditional
dynamical theory. Interval analysis method can deal with
the uncertainty problems effectively.

Example: An application is presented for the dynamic
response of a rotor with interval bearing properties. The
dynamical model of the aercengines rotor can be
simplified by a Jeffcott rotor shown in Fig. 1 a rotor
system consists of a massless shaft, a disk mn the middle
of the shaft and two self-contamed bearings at the ends
of the shaft. When the stiffness matrix, K and the mass
matrix, M, of the structure are influenced by uncertain
parameters, it is significant to solve the eigenvalue
problem, Ku = AMu. The physical parameters of this

m;.

M- 1< [ 1 2 m,.
K.

K, C. K, C,.

Fig. 1. Dynamical model of the
simplified by a Jeffcott rotor

aeroengines rotor
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Table 1: Eigenvalues and eigenvectors for the nominal parameters K- and M~

At A Asg
Ay 10211 18538 52084
U;, 0.5755 -0.6509 0.4950
0.7277 0.1314 -0.6732
0.3732 0.7477 0.5493
Table 2: Comparison between interval analysis and monte carlo method on the natural frequency of the rotor
Interval analysis method Monte carlo method
s * Al A 2 Ak
At 0.8543x10¢ 1.1729x10* 3186 0.8772x10% 1.1672x10% 2950
A2 1.5715%1¢¢ 2.1911x10* 0730 1.5933%104 2.1817x10% 5884
A2 5.0282x1¢¢ 5.4027x10% 3745 5.0646x104 5.3972x10¢ 3326
4; Lower eigenvalue bounds using the present method, % Upper eigenvalue bounds using the present method, j1: Lower eigenvalue bounds using monte

carlo method, fi; Upper eigenvalue bounds using monte carlo method and sk, apy Uncertainty

system are as follows m, = m* = m, = 300 kg, K, = 8.8x10°
N/m, K, and K, are interval values, K' = [4x10°% 6x107
N/m, K',=[5%10°, 7.1x10°] N/m. For simplicity, we assume
that the horizontal and vertical vibrations are not coupled.

We can obtain the dynamical equation of the system

easily, as follows:
MX+KX=0

The system mass matrix is:

[300,300] 0 0
M= 0 [300,300] 0
0 0 [300,300]
The interval stiffness matrix is:
4 2 4
K= _& K _&
2 ’ 2
4 2 4
[62.82] [-44,-44] [22.22]
=|[-44,-44] [8888] [-44,-44] |x10°
[22,22] [-44,-44] [72,93]

The eigenvalues and eigenvectors for the nominal
rotor system K¢ and M® are summarized in Table 1. The
upper and lower bounds on the eigenvalues are listed in
Table 2. To facilitate comparison, the upper and lower
bounds obtained by Monte Carlo method are also listed.
Monte Carlo solutions approach to the exact results.

Tt can be seen from Table 2 that very good agreement
between the interval evaluation and the Monte Carlo
solution 1s obtamed. But the mterval of eigenvalues
obtained by the Monte Carlo method 1s contained by that

yielded by the interval analysis. That 1s to say, the lower
bounds yielded by the interval analysis are smaller than
those predicted by the Monte Carlo method. Likewise, the
upper bounds furnished by the interval analysis are larger
than those yielded by the Monte Carlo method.

CONCLUSION

A rational method for the solution of the generalized
interval eigenvalue problem was presented with an
application to rotor dynamics. Interval analysis method
doesn’t need the information of probability mformation of
the uncertain parameters but only need the top and
bottom limitation of the uncertain parameters and the
frequency set relevant to the boundary of the uncertain
parameters can be obtained. A Monte Carlo method was
used to provide an exhaustive alternative to test the
proximity of the evaluated interval solution to the true
one. The numerical example shows that mterval analysis
can predict the range of the eigenvalues with sufficient
accuracy and the interval of eigenvalues interval obtained
by the Monte Carlo method are contained by that yielded
by the interval analysis. So more possible solutions
yielded by the interval analysis method are obtammed. The
Monte Carlo method can only get a part of solutions of
frequencies. Compared with the traditional probability
method, nterval analysis method possesses the property
of high accuracy and low calculated amount and can be
easily realized in computer. Interval analysis method has
a great potential role in the design and manufacture of
rotors.
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