http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 12 (14): 2690-2696, 2013
ISSN 1812-5638 / DOL 10.3923/1t).2013.2650.26956
© 2013 Asian Network for Scientific Information

Central Causal Logging Rollback Recovery Scheme for Mobile Computing

'Zhenpeng Xu, *Yu liu and 'Weiwei Li
Jiangsu Automation Research Institute, No.18, RD>.Shenghu, Xinpu District, Lianyungang, Jiangsu, China
*Department of Computer, Weifang University, NO. 5147, RD. East Dongfeng, Weifang, Shandong, China

Abstract: Checkpointing and rollback-recovery 1s one of the most important techniques for fault-tolerance in
mobile computing. Different from the traditional wired distributed computing, mobile computing puts forth some
new high requirements for fault tolerance. Therefore, various log-based fault tolerant schemes were proposed
to accommodate its characteristics. However, these schemes may still lead to dramatic loss of system
performance or inconsistent recovery. In this paper, a central causal logging rellback recovery scheme 1s
proposed combining checkpointing with message logging based on perfect PWD assumption. The checkpoint,
message logs and happened-before relations are all recorded in the antecedence graph maintained by the local
mobile support station. The antecedence graph is logged synchronously into wvolatile memory and

asynchronously nto the persistent storage upon the specific event and the proposal supports the independent
consistent recovery with the complete log and propagated consistent recovery without the complete log. The
performance analysis shows that the proposal incurs a low failure-free overhead.

Key words: Mobile computing, fault tolerant, checkpomt, rollback

INTRODUCTION

In log-based rollback recovery schemes, the events
experienced 1s also recorded mto a location that waill
survive the process fault. That action 1s called logging
(Chen et al., 2005, Li et al., 2005; Wang and Shao, 2003,
Yang et al., 2006).

Many new characteristics are introduced in mobile
computing, such as mobility, disconnections, finite power
source, vulnerable to physical damage, lack of stable
storage (Brzezinski et al., 2006, Elnozahy et af., 2002,
Gupta et al., 2008; Li and Wang, 2005; Ono et al., 2004,
Pradhan et al, 1996). Therefore, the wireless network
connection is more fragile and mobile host is much less
reliable than the traditional wired distributed computing.
Mobile hosts may discommect from the rest of the network
due to doze mode, abrupt power off or permanents
damage.

Research on rollback recovery fault tolerant scheme
for mobile computing systems has received tremendous
interests in recent years. Various schemes have been
presented to accommodate the characteristics of mobile
computing (Cac and Singhal, 2001; Men et al., 2006;
Park et al., 2002; 2003b). However, how to minimize the
failure-free overhead
consistent recoverability, requires to be investigated

further.

incurred and to ensure the

PRELIMINARY

As shown in Figure 1, mobile computing system,
MCS = =N, C>contains a set of nodes N and a set of
channels C. The set of nodes N = M?S can be divided into
two types, M={MH,, MH,, ..., MH} 1s the set of Mobile
Hosts (MH), which are able to move around while
retaiming wireless network commections, while S = {MSS3,,
MSS,, ..., MSS,} 1s the set of static nodes acting as the
mmm———————

| Reconnect |-

e et e e e e e -

Fig. 1: Mobile computing system

Corresponding Author: Zhenpeng Xu, liangsu Automation Research Institute, No.18, RD.Shenghu, Xinpu District, Lianyungang,

Jiangsu, China

2690

Inform. Technol. J., 12 (14): 2690-2696, 2013

access point with extra processing power and storage
capabilities, static backbone node named Mobile Support
Station (MSS) (Elnozahy et al., 2002; Gupta et af., 2008).
The set of charmmels C = W?W' can also be divided mto
two disjoint sets, the set of high-speed wired channels W
and the set of low bandwidth wireless channels W'
W = Sx8, that 1s the static MSSs are comnected by wired
channels, while W' = SxM, means that MHs communicate
with the network through the wireless channel existing
between them and MSSs, by wing a wireless LAN
protocol like TEEE 802.11 (Ono et al., 2004). All the
channels W and W' provide reliable, sequenced FIFO
delivery of messages, with finite but arbitrary message
latency (Gupta et al., 2008). A cell is a geographical area
covered by the transceiver of a M3S. A MH within the
radio range of the cell of MSS, can directly commumecate
with MSS_ through the wireless channel. Logically a MH
belongs to only one cell at any given instant. This
mnplication can be drawn by assuming that the
geographical cells around each of MSS do not overlap.

The cell of MSS, C1, = {MH, | MH,eMS5,,0<i<n+1}
is the set of the active nodes and sleeping nodes
1dentified by Active MH_List, and
Disconnected MH_List, respectively, then there exists a
channel <MSS,, MH>eW' only if MH, eCL, = MH,¢CL,,
7q#p. Due to the mobility, an active MH can move freely
from one cell to another and the local MSS responsible for
the MH 15 changed correspondingly. This process 1s
called handoff.

For simplicity, only one process running on a MH is
assumed. Thus, the terms ‘MH’ and ‘process’ can be
used interchangeably. A MCS consists of a set of N
processes denoted by P, P,,... , P, Processes do not
share a global memory or a global physical clock. To
cooperate to complete a distributed computation, these
distributed processes communicate each other only
through exchanging computational messages and interact
with the outside world only through input/ output commit
(Elnozahy et al., 2002).

The execution of the process 1s assumed to follow
Piece-wise Deterministic (PWD) model, in which a process
experiences a sequence of state transitions for its
execution and the atomic action caused by the event
experienced. The underlying computation 1s
asynchronous (Elnozahy et al., 2002). PWD states that a
process always produces the same sequence of states in
its execution for the same sequence of events and the
system can detect and capture sufficient information
about the nondeterministic events that initiate the state
intervals. The event experienced by processes can be
classified into two categories: nondeterministic event and
determimstic event.

The transient independent fault of the process
follows fail-stop model (Elnozahy et al., 2002). Upon a
fault, the process 1s able to stop its execution and does
not perform any malicious action.

RELATED WORKS

Commonly, the fault tolerant techmques for mobile
computing, that do not require user interaction can be
classified into two categories: checkpoint- based and log-
based rollback recovery scheme (Elnozahy et af., 2002).
So many coordinated checkpoint-based variations for
fault tolerance are proposed to reduce the number of
participating process required to checkpoint, overhead in
terms of synchromzation messages required to coordinate
and avoid the dommo effect (L1 and Wang, 2005).
However, an abrupt disconnection or doze mode of a
single MH may lead to fail to achieve the entire
coordinated checkpointing or rollback recovery in mobile
computing. Therefore, log-based rollback recovery
approach based on independent checkpointing, is
preferable to checkpoint-based approach for fault
tolerance of mobile computing (Gupta et al., 2008).

Log-based rollback recovery scheme combimes
independent checkpointing with message logging
techniques. Depending on how the determinants are
logged to stable storage, log-based rollback recovery
scheme 1s classified into three types: pessimistic logging,
optimistic logging and causal logging (Elnozahy et al.,
2002).

In pessimistic logging (Park et al., 2003b), the process
has to block waiting for the determinant of each
nondeterministic event to be stored on stable storage
before the effects of that event can be seen by other
processes or the outside world. Pessimistic logging
simplifies recovery and garbage collection but hurts
failure-free performance due to synchronous logging.

In optimistic logging (Park et al., 2002), the process
does not block and determinants are transferred to stable
storage asynchronously. Thus, optimistic logging does
not require the application to block waiting for the
determinants to be actually written to stable storage and
only record the nondeterministic event and therefore
mncws little overhead dwring failure-free execution.
However, this advantage comes at the expense of more
complicated recovery, garbage collection and propagated
rollback. In case of some loss of volatile logs, it may lead
to unrecoverable rollback without well consideration of
the input/output commit problem, as the input/output
devices that cannot roll back.

Causal logging m (Zhang et al., 2008) satisfies
always-no-orphans property by ensurmng that the

2691

Inform. Technol. J., 12 (14): 2690-2696, 2013

determinant of each nondeterministic event that causally
precedes the state of a process 1s either stable or it 1s
available locally to that process (Alvisi and Marzullo,
1998). Therefore, it gets a balance between optimistic and
pessimistic logging to mamtam the dependency relations
through each common computing message. However,
many records of the dependency relations require to be
exchanged among the process. In practice, carrying the
dependency relation graph information on
application message may lead to an unacceptable
overhead, each MH corresponds
antecedence graph.

each

since to one

CAUSAL LOGGING ROLLBACK-RECOVERY

The proposed central causal logging scheme 1s based
on message logging, independent checkpointing and
PWD assumption. Focusing on the logging rollback
recovery fault tolerant scheme for mobile computing, the
handoff management is ignored in this paper. In ow
model, the nondeterministic event of a process includes
the message and input receipt from the other processes or
outside world, while the message sending, output and
internal events are assumed as the deterministic event of
a process.

Determinant and related denotations: To implement the
proposal, for each message m experienced by the process,
the tuple (type, source, dest, ssn, dsn, data), is the
determinant of message m. Specifically, m.source, m.dest
and m.ssn denote the 1dentifiers of the sendmmg, receiving
process and the umque identifier assigned to m by the
sender respectively. The latter, m.ssn may be just a
sequence munber. m.data i1s the content carried by
message m. m.type records the type of m and
m.typee {Normal, Checkpoint, Input, Output, Connecting,
Recovery}l. “‘Normal® indicates that m is common
commumecating message; ‘Input’ mdicates that an input
from outside world 1s packed in m; ‘Output’ indicates that
an output commit to outside world packed in m;
‘Connecting” indicates that m 18 a comnecting or
disconnecting request; ‘Recovery’ indicates that m 1s a
recovery request, and ‘Checkpomt’ indicates that a
checkpoint of a process is recorded in m. The deliver
sequence number, m.dsn encodes the order in which m is
delivered by the receiving process. Thus, if process P, has
delivered m and m.dsn =0, then m is the Bth event that P,
has delivered. For simplicity, we refer to #m the
determinant of m. This tuple #m determines message m
and related mformation, which 1s useful for the rollback

recovery phase.

Antecedence graph: To record the process state and
happened-before relation exactly, the antecedence graph
15 introduced based on the state transition advanced by
the nondeterministic message. Each MSS maintamns only
one antecedence graph for all the MHs m the local cell to
support the rollback recovery. The antecedence graph
contains a summary of the local cell’s execution. The
antecedence graph <E, V>, contains the node set V
including the logged determinant of key messages
experienced by each process and the edge set E
representing happened-before relations among the nodes
nv.

Specifically, m the antecedence graph, each node o
corresponds to one or more logged determinants (geV).
Let 04 indicates the Oth node of P, in the antecedence
graph. The property of a graph node depends on the type
of the cormresponding recorded determinant of the
message (Gupta et al., 2008).

Different graph 1n
Zhang et al. (2008), only one entire antecedence graph of
all the local MHs is managed and maintained by MSS.
Furthermore, the checkpoint and message logs are also
recorded in the graph node set V, in addition to the
happened-before relations recorded in the edge set E.
That means no dependency relations require to be

from the antecedence

exchanged among the process during failure-free

execution.

Checkpointing and input/output: For checkpointing, the
local checkpomtable interface 1s inhabited at each MH. P,
takes a checkpoint with a fixed interval. Let C(1,a) denotes
the aeth checkpoint of P, at MH,.

The process takes periodic checkpoint to lunit the

amount of work that has to be repeated in execution
replay upon recovery. The checkpoint period between
two consecutive checkpointing of P, is determined by
itself. That means the process takes local checkpoints
asynchronously.
Time to take checkpomt, the replicated process state of P,
1s created by MH, using the checkpointing operation of
the local checkpointable interface. The new checkpomt 1s
encapsulated into a message and transferred to the local
connected MS5, for logging.

Upon a user input from outside world, a copy of the
input is firstly encapsulated and forwarded to the local
MSS, for logging. On receipt of the acknowledgment from
MSS,, MH, starts to process the input. Similarly, before
interacting with the outside world to show the outcome
of, a copy of the outcome is also forwarded to MSS, for
logging firstly. The pseudo-code of the procedure
Checkpomting() 1s shown in Fig. 2.

2692

Inform. Technol. J., 12 (14): 2690-2696, 2013

/* when the checkpoint peropd pf MH, expires */
Procdure checkp ointing ()

/* saves the state of P, as a checkpoint. */

task a new checkpoint C(i, x);

send C(j,) to the local connected MMS,;

Fig. 2: The checkpointing

Central causal logging: Since MSS 15 on the border
between wireless and wired network 1n mobile computing.
All the messages to and from the local MHs are traversed
through its connected MSS locally. Thus, the storage
available at MSSs is employed to save the entire
antecedence graph on behalf of the local mobile hosts.

Each MSS, manages and maintains a volatile version
antecedence graph AG T, to record the logs and
happened-before relations m the local cell on behalf of the
local mobile hosts. The message determinants and
checkpoints of each local MH are positioned logically in
the antecedence graph AG T,, according to the
happened-before relations.

Considering the reliability of the volatile logs stored
in the volatile memory or cache at MSS, the volatile
version antecedence graph, AG T, requires to be
updated mto the persistent version, AG_F, upon the
specific events, to ensure the consistent recoverability
and free the volatile memory space of MSS,. The
persistent version AG_P,, is recorded on stable storage
for surviving failures. The specific special events include
the receipt of the checkpoint, input, output, connecting
message from any local MH. Tt is also assumed that
updating the volatile version is much faster than updating
the persistent one. Thus, the volatile space of a MSS 1s
the preferred storage for recording the antecedence graph
and performance considerations prohibit updating the
persistent version without the occurrence of the specific
event.

The proposed central causal logging scheme in
pseudo-code is described in Fig. 3. During the normal
failure-free execution, each message m, received or relayed
by the local MSS,, 1s passed to the logging mechamsm of
MSS,, packed inte the determinant #m, through
Message logging (m).

If m is a nondeterministic message (m.desteCL,), a
new graph node 15 created and added mto the local
antecedence graph AG_T, at local MSS, through
Create_node AG_T (AG_T,, #m).

If m is a deterministic message (m.sourceeCL, and
and m.dest¢CL,), no new graph node is created, but #m is
appended to the latest node 0 of P .. in the local
antecedence graph AG T, through procedure
Update AG_P (AG_T,, #m).

Procedure message_loffing (m)

/* when MMSp receives a message m*/
identify the related values of #m;

pack the determinant #m;

if (m.sourcec CL,&& m.desteCLy)
{update AG p (AG_Tj, #m;}

if (m.desteCLy)

{invoke create node AG T (AG_T,, #m);
rely m to the destination m dest;

it (m.typee { checkpoint, input, cutput, connecting})
{incoke presistent_AG_P (AG_T,, AG_P,);
it m.types {checkpoint }

invoke Grabaege_collection (AG_T});

}

Fig. 3: The pseudo-code of the causal logging

t Lt t,

S -
AV AR
TEATE

@

) @ ()
(=) (e
@) (=) (<)

® ©
Fig. 4: An example of the antecedence graph

()
Omn®
@)

If m 15 the specific event with m.typee {checkpomt,
mput, output, comnecting}, the volatile version
antecedence graph, AG_T,, is updated into the persistent
version, AG P, through Persistent AG P (AG_ T,
AG_F,). Furthermore, if the content of m i1s a new
checkpoint of a local process, the procedure
Garbage Collection (AG_T,) is invoked to delete the
nodes in AG_T,, happened-before the new checkpoint to
free the volatile memory space.

Figure 4a presents a simple scene of mobile
computing i1 which all the messages to and from the local
MHs are traversed through its connected MSS locally.

The simple system contains three mobile hosts, MH,,
MH, and MH,. All the MHs reside in the geographical cell
of MSS,, CL,. In practice, a typical system may contain
many such components of MH and MSS.

According to the proposed central causal logging
scheme, the copy of P,’s input I, in m,, the checkpoint of
P, in m, and the copy of output O, inm,, are received by

2693

Inform. Technol. J., 12 (14): 2690-2696, 2013

/* when MSS; recevives a recovery request from MH */
Procefire extract AG Fr (Mh;)

If (AG_TyuAG_P, is complete)

extract AG_F, from AG_T,uAG Pj;

else

extract AG_F, from AG_P, and other MS8s;
broadcast AG_F, to all the MH in the local cell;

/* when MHi receives AG Fr from the local MSS,. */
Procedure Rollback_recovery (AG_F,)

reload the checkpont in AG F;

replay the logs in partial order in AG_F,

Fig. 5. The recovery algorithm

the local MSS, for logging at time t, t; and t,
respectively, as shown in Fig. 4a.

According to the proposal, Fig. 4b and ¢ show the
recorded volatile and persistent antecedence graph of a
cell at time t,, at MSS,. Specifically, in persistent AG_P,,
node o0, records #m ., while node ¢ ‘tecords #m . In
volatile AG_T,, node o, records #m,, while node o,
records #m,, #m,, #m, and #m.,

Recovery: During the recovery, the logged messages in
the antecedence graph require to be replayed in the
original irreflexive partial order.

For process P, a complete log consists of the latest
checkpoint and logged determinants of all the experienced
nondeterministic events after the checkpoint. The
proposed central logging supports
independent rollback-recovery with the complete log and

causal scheme
propagated rollback-recovery without the complete log.

Consider loss of the volatile AG_T,, the rollback may
require to be propagated to all the MHs in the local cell for
consistent recoverability. Without the complete log, the
lost nondeterministic messages in AG_T,, the across-cell
messages, can be retrieved from the antecedence graphs
at other MSSs, since the proposal the antecedence graphs
also records the local deterministic sending events, which
1s the nondetermimstic events for the failure destination
MH in other cell. Under PWD assumption, the lost
computation within the cell can be deterministically
recreated during the recovery.

The recovery algorithm in pseudo-code 13 described
in Fig. 5.

Upon a process fault, MH; sends a recovery request,
to its local MSS,. Upon the receipt of the recovery
request, Bxtract AG_F, (MH) 1s invoked at MSS,, in
which the sub-antecedence graph AG _F, is extracted from
volatile AG T, and persistent AG P, if AG T, is
unavailable, AG F, is required retrieving from the
antecedence graphs at other MSSs combimng with
AG_T, and the rollback has to be propagated to all the
MHs in the local cell for consistent recoverability. At last,

AG _F, is sent or broadcasted to the rollback MH. AG F,
contains the latest checkpoint, nondeterministic message
logs and related happened-before relations, which are
useful to recover the failure process.

Upon the receipt of the extracted AG F,
Rollback recovery(AG F,)is invoked at the rollback MH.
According to AG_F,, the process starts to recover the lost
computation, through loading the checkpomt and
replaying nondeterministic message logs in the original
ireflexive partial order. During the rollback recovery, new
message sent to the rollback MH 1s also recorded in the
antecedence graph at its local MSS, and will be forwarded
to the rollback MH, in order, after the recovery.

Garbage collection: The central causal loggmg rollback
recovery scheme establishes a recovery line beyond
which no rollback is necessary. Therefore, recovery
information describing events that occuwrred before the
latest checkpoint 1s discarded, since it 1s not needed by
the recovery scheme. This information includes the nodes
of the antecedence graph belonging to events that
occurred before the checkpoint, message sent and
recewved before the checkpoimnt and older checkpoints.
Therefore, i the procedure of Garbage Collection
{AG_T)), the recovery information happened-before the
new checkpoint is discarded automatically.

PERFORMANCE

For performance analysis, the metrics specified in
(Alvisi and Marzullo, 1998) are summarized. The proposed
central causal logging rollback recovery satisfies the
optimal definition according to the metrics specified, since
the entire antecedence graph is centralized managed and
maintained in the local MSS, rather than each MH
corresponding to one antecedence graph. Furthermore,
the proposal ensures consistent recoverability of the
failure process, since it maintains stable information about
the external interactions with the outside world
specifically, different from the internal interactions among
processes.

Park et al. (2002) also satisfies the optimal definition
according to the metrics specified (Alvisi and Marzullo,
1998), since it does not block the application totally and
all the logged determinants are transferred to stable
storage asynchronously in a fixed period. However,
optimistic logging may lead to an inconsistent global state
when the logged determinant of the mput or output in the
volatile log-space has been lost. Therefore, optimistic
loggmg 1s ignored in following performance analysis.

A simple mobile computing system with 10 circular
cells was simulated through the improved GloMoSim 2.02.

2694

Inform. Technol. J., 12 (14): 2690-2696, 2013

5001 —a— Pressimistic loffing [14]

4504~ Original causal loffing [16]
—0— Cenral causal logging

Failure-free overhead (s)

T T T L) T 1
005 0.06 007 008 009 010
Messagr arrival rate

Fig. 6 Average logging overhead incurred

The sequence of the discrete event is generated based on
the system parameter model (Pradhan et al., 1996). The
fixed checkpoint interval of MH 1s T,. Log arrival rate of
MH, follows a Poisson process with rate A; per time unit.
Let ¢ denote the ratio of the mumber of mput/output to
the total experienced messages. Let B denote the ratio of
the number of connecting message to the total messages.
Let 6 denote the ratio of the size of a checkpoint to a
normal messages.

The average logging overhead during the failure-free
incurred by various logging schemes with the varying
message rate, is shown in Fig. 6, where o« = 3%, B = 2.5%
and 8 = 30. The y-axis indicates the average logging
overhead mmcwrred by access to volatile and stable storage
for logging and corresponding operations, while the x-axis
denotes the message arrival rate of a process.

As shown in Fig. 6, the proposed central causal
logging scheme incurs a lower average logging overhead
than pessimistic logging and original causal logging. The
reason is that proposed central causal logging does not
require the application to block but in case of the specific
event, which reduced the number of stable storage
accessing. However, pessimistic logging requires the
determinant of each message to be logged synchronously
into the stable storage and leads to a high overhead of
frequent connection to the stable storage and relay
blocking. In the original causal logging, much overhead 1s
mecurred by updating dependency relations among the
antecedence graphs of mobile hosts, since each mobile
host holds one antecedence graph.

CONCLUSION

A central causal logging rollback recovery scheme is
proposed. In the local cell, the checkpoint of the

computing process and all the nondeterministic messages,
to be executed by each process, are encoded 1n the tuple
called determinants, recorded in one entire antecedence
graph maintained by the serving mobile support station.
Considering the overhead incurred by the logging during
failure-free execution, each determinant is first logged in
the volatile version synchronously. The volatile version
15 asynchronously transferred to the stable storage upon
the specific event. The proposed logging scheme enables
the recoverability of the failure process by the
independent rollback style with the complete log and by
the cell propagated rollback style without the complete
log. The performance of the proposal is evaluated by the
extensive simulation. By contrast, the results show that
the proposal incurs a lower failure-free overhead on the
premise of the consistent recoverability. It 1s therefore
particularly attractive for the fragile mobile computing
systermn.

ACKNOWLEDGMENT
Science

The study 1s supported by Natural
Foundation of Tiangsu (Project No. BK2012237).

REFERENCES

Alvisi, L. and K. Marzullo, 1998. Message logging:
Pessimistic, optimistic, causal and optimal. Trans.
Software Eng., 2: 149-159.

Brzezinski, J., A. Kobusmska and M. Szychowiak, 2006.
Checkpointing and rollback-recovery protocol for
mobile systems with MW session guarantee.
Proceedings of the 20th International Parallel and
Distributed Processing Symposium, April 25-29, 2006,
Rhodes Island, Greece,-pp: 8.

Cao, G. and M. Singhal, 2001. Mutable checkpoints: A
new checkpointing approach for mobile computing
systems. Trans. Parallel Distrib. Syst., 12: 157-172.

Chen, LR., B. Gu, S.E. George and S.T. Cheng, 2005. On
failure recoverability of client-server applications in
mobile wireless environments. Trans. Reliab.,
54:115-122.

Elnozahy, EN., L. Alvisi, Y. M. Wang and D.B. Johnson,
2002. A swvey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv., 34:
375-408.

Gupta, 3.K., RK. Chauhan and P. Kumar, 2008. Backward
error recovery protocols in distributed mobile
systems: A swvey. J. Theor. Applied Inform.
Technol., 4: 337-347.

Li, G.H. and HY. Wang, 2005, A novel min-process
checkpointing scheme for mobile computing
systems. J. Syst. Archit., 51: 45-61.

2695

Inform. Technol. J., 12 (14): 2690-2696, 2013

Li, QH., TY. lang and H.J. Zhang, 2005. A transparent
low-cost recovery protocol for mobile- to-mobile
commurcation. J. Software, 16: 135-144.

Men, C., N. Wan and Y. Zhao, 2006. Using computing
checkpoints implement efficient coordinated check
pointing. Chin. I. Electron., 15: 193-196.

Ono, M., T. Hirakawa and H. Higala, 2004. Hybrid
checkpomnt protocol for cell-dependent
infrastructured networks. Proceedings of the 18th
International on Parallel and Distributed Processing
Symposium, Volume, 2, June 28- July 1, 2004, IEEE.,
pp: 1006-1011,

Park, T., N. Woo and H'Y. Yeom, 2002. An efficient
optimistic message logging scheme for recoverable
mobile computing systems. IEEE Trans. Mobile
Comput., 1: 265-277.

Pradhan, D.XK., P. Krishna and N.H. Vaiday, 1996.
Recoverable mobile environment: Design and trade-
off analysis. Proceedings of Annual Symposium on
Fault Tolerant Computing, Jun 25-27, 1996, Sendai,
pp: 16-25.

Taesoon, P., N. Woo and H.Y. Yeom, 2003. An efficient

recovery scheme for mobile computing
environments. Future Gener. Comput. Syst,
19: 37-53.

Wang, D.S. and M.IL. Shao, 2003. A cooperative
checkpointing algorithm with message complexity
O(n). I. Software, 14: 43-48.

Yang, I M., D.F. Zhang and W.W. L1, 2006. A robust and
efficient rollback recovery implementation scheme.
Acta Electron. Sin., 34: 237-240.

Zhang, 7., D. Zuo, Y. Ciand X. Yang, 2008. A rollback
recovery algorithm based on causal message logging
in mobile environment. J. Comput. Res. Dev.,
45: 348-357.

2696

	ITJ.pdf
	Page 1

