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Abstract: In distributed optical fiber pipeline pre-warning system, the sampling rate is very high for threatening
event location, so vast data will be generated. Huge amount of data 1s inconvement for transfer or storage.
Because compressive sensing 1s a widely used methods for sampling and compressing data in the same time
in recent years, this study adopts the compressive sensing approach to reduce the data quantity. In
compressive sensing, the sparsity of each segment is important for signal recovery and it controls the
measurement munber needed for certain recovery accuracy of the recovered signal. The sparsity should be
known in advance to determine the measurement number, but it 1s difficult to achieve. This is specially
exemplified in optical fiber pipeline compressive sensing as the optical fiber pipeline data is longtime running
data and the sparsity of every segment varies with time. Tn this study, the sequential approach joint with linear
prediction is used to fix the measurement number of each segment. This approach further reduces the amount
of data on the basis of compressive sensing. Simulation 1s carried out on the actual optical fiber pipeline
pre-warning data and the experimental results show that the reconstruction SNR could exceed 26 dB.
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INTRODUCTION

The distributed optical fiber pipeline pre-warning
system 1s presented by Yan et al (2005) and has been
studied and used thereafter. It is stated in his PhD
thesis that the sampling rate of the optical fiber pipeline
pre-warning system should be very high to guarantee the
location accuracy of the dangerous event (Yan, 2006). The
system is a real time and long time running system, but
the high Nyquist sampling frequency results huge amount
of data to be transfer and storage which 13 inconvement
for the system. For the system of thus type, there have
been many research focused on the compression of the
data achieved. However, all these researches are based on
the Nyquist sampling theorem and few researches has
been developed for the compression of the optical fiber
pipeline pre-warning data.

The compressive sensing is a recently develop-ped
technique and has been widely used in many areas
including image compression, pattern recognition, medical
imaging, wireless commum-cation, astronomy, bio sensing
information theory and other related areas. In compressive
sensing, the sampling process and the compression

process is carried out in the same time. Therefore,
compared with the compression methods based on the
Nyquist sampling theory, it is not necessary to sample
and store the vast amount of data firstly and then
compress in this framework. However, it should be noted
that the compressive sensing approach 1s based on the
characteristic of the Nyquist sampled data. Above all, for
the advantage of the compressive sensing, it 1s adopted
to compress the optical fiber pipeline pre-warning data in
this study. As mentioned early in this study, the optical
fiber pipeline pre-warning system 1s a long time rumming
system and the sparsity of every segment varies with
time. The sparsity determines the measurement number
need for every segment as the recovery accuracy is
controlled by the measurement number under many cases.
However, to know the sparsity of each segment in
advance is very difficult. For this reason, a sequential
approach is taken in this study to avoid this problem. This
approach receives the measurement samples sequential
and stops receiving when a certain criteria 1s met. With
this approach, the sparsity should not be given in
advance thus the recovery accuracy can be guaranteed.
In detail, Orthogonal Matching Pursuit (OMP)
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(Tropp and Gilbert, 2007) based sequential method is
firstly used to estimate the sparsity of the signal, then the
measurement number for each segment of the long time
signal 1s slightly changed. The linear prediction method 1s
utilized to predict the measurement number. Tn this way,
it i3 not necessary to start from one observed value for
each segment, thus reducing the computational
complexity.

The study 1s organmized as follows. In the second
section, the principle of compressive sensing 1s briefly
introduced. Then, the sequential receiving approach is
introduced and the segment compressive sensing using
sequential methods for optical fiber pre-warning data is
presented. Simulation is carried out on the real sampled
signal and results are given to support the method
presented. At last, the study is concluded in the fifth
section.

COMPRESSED SENSING

In compressive sensing framework, the signal is
sampled and compressed in the same time. In contrast, for
the compression method based on the Nyquist sampling
theorem, the data should be sampled first and then
compressed. Tt seems that there is no relevance between
the compressive sensing and Nyquist sampling theorem.
In fact, the compressive sensing framework 1s in some
sense related with the Nyquist sampling theorem.
Supposing there is a segment of signal with length N and
it 18 denoted as x. Then, as i1s known to all that, under a
certain set of orthogonal basis {y}" , the signal x can be
expanded as:

H
x=3 6y =76 (M

i=l

where, W =[y,,y,,---yy,] 15 a transform matrix contains the
set of orthogonal basis and 0 is the transform coefficient.
In signal processing, the coefficient is usually sparse.
That means most of the element in 8 is zero or approaches
zero, only a small portion of the element is important. The
number K of the large elements in 6 is called the sparsity
of the segment under the transform matrix ¥. In most
cases, K 1s far less than N.

Under the descriptions given above, the signal is
projected by a random matrix @ which is called as the
measurement matrix. The projection process can be
displayed as follows:

y=Fx=F?6=A6 (2)
The size of the matrix ® 18 M*N and M=< N. The

much smaller number M accomplishes the compression of
the original signal x. The commonly used random matrix ©

in compressive sensing is the random Gaussian matrix, as
the signal projected by this type of random matrix can be
recovered accurately under some condition (Eldar, 2012).
To satisfy this condition, the measurement number should
be the order of:

M = O(Klog(N/K)) (3)

Random matrixes including Bernoulli matrix and
sub-Gaussian matrix can also be used for compressive
sampling.

The compressive sampled signal should recover the
onigin signal accurately. There have been many algorithms
developed for recovery of the compressive sampled
signal. The recovery problem can be formulated as:

ézargmin”@ ,»subject to y= A6 {4
;]

Where:

N

ol =2

i=l

el

18 l-nomm. This type of formulation is referred to as the
l; mimmization approach (Tsaig and Donoho, 2006).
The other basic recovery algorithmis the greedy
iterative algorithm, including matching pursuit (MP)
(Mallat and Zhang, 1993), Orthogonal Matching Pursuit
{(OMP)( Tropp and Gilbert, 2007) , iterative hard threshold
(Blumensath and Davies, 2009), CoSamp (Needell and
Tropp, 2010) and other methods. After geting the
coefficient €, the original signal can be approximated by
the orthogonal transformation matrix, that is x="F¢ .

SEGMENT BASED SEQUENTIAL COMPRESSED
SENSING

Sequential compressed sensing: Now it is ¢lear that the
high recovery quality requires enough measurements at
sampling stage and with Gaussian random matrix, the
measuwrement number should exceeds M = O(Klog(N/K)).
Tt can be seen that this quantity is strongly related with
the sparsity K of the original signal. The stopping criteria
can avoid the sparsity problem and decide when to
stopping receiving measurement (Malioutov et al., 2010).
Assuming there have M measuwrements already been
received, then According to (2), it can be written as:

y,=a8.,i=1--M, (5)

where, « 18 a random vector whose elements are
independent and 1dentical Gaussian random variables with
zero mean and variance 1 and 0; 1s the true transform
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coefficient of the original signal under the transform
matrix. After receiving the M, measurements, the recovery
algorithm is performed on these measurements and a
value 8, is achieved. Then two classes of signal are
considered on when to stop receiving the measurement.
The first type is the simplest, that is the exact sparse
signal. Tn regard to this type, the stopping criteria is
Oy = Oy, . With this criteria met, the recovered coefficient
is the true one and M, measurements are enough.
Another type is the compressible signal which has many
elements close to zero but not zero. With regard to this
type, the stopping criteria is a bit complex. First, let
40=06, -0, be the difference between the true sclution
and the solution got by the M, measurements. Then take
another . measurements y, =a/6;,1<i<L . After this, the
following deviation can be given:

§,=y, a0, =a0l<i<L (6)

Tt can be deduced that % is independent and
identical Gaussian variable with zero mean and
| Ae|2 variance as the random characteristic of ;. Based on
the central limit theorem, the squared summation of the
deviations 1s ¢*(L) distributed. Let:

L
Y= ¥
i=1

then p({(/HAQHE > ¥, )= can give us a confidence level of
the deviation. With ¥/ I A9H2 >¥ . the deviation can be
”AQHE <¥/Y¥,. Because pg(¥)= L||~6 * the deviation is
”A8H2 —E(¥)/L - In practice, ¥/L is used to estimate the
deviation and when the deviation i1s small enough the
stopping criteria is met.

Segment based sequential compressed sensing: In the
procedure  of  sequential compressed  sensing,
determination of the number of signal measurements is
started from a very small value. The actual signal often
lasts for a very long time and need to process by segment,
the sparsity of the adjacent segment signal usually will
not change greatly. Therefore starting from a very small
number of measurements each segment to determine if the
number of measuwrements is sufficient is not necessary. In
this regard, we first determine a measurement number for
the first segment signal. Then, the linear prediction
method is used to predict the number of measurements for
the next segment. Thirdly, sequential search on the basis
of this number is processed by a small-scale. This can
reduce computation time and retain the reservation
accuracy of the compressed signal to the original signal.
In this study, orthogonal matching pursuit is used to the
first segment to judge the signal sparsity k. Then a

starting measuwement number 1 is calculated by Eq. 3.
From this, measurements are taken by sequential
compressed sensing discrimination method for the first
segment. In fact, the first segment starts with a larger
value 1. Then determine the sparsity by the convergence
situation in OMP algorithm. The OMP algorithm is as
follows:

s Step 1: Initialize: =y, A=, t=1

s+ Step 2: Calculate the inner product between all
columns o of A and the residual vector
I, <a 1, »1<i<N. Obtain the index of
corresponding to the maximum inner product:

1

I, =argmax<al,1_ >
1

*  Step3: A « A_ U{L} {update support by residual}
s Step4: &L|A1 ALY, Et‘/\f « 0 {update signal estimate}
»  Step 5: 1, « y- A¢, {update measurement residual}
»  Step 6: if |5]|<e. then stop: if not, repeat step 2 te 5

In the above algorithm, t 1s the iteration number
control variable, 1, 1is the residual of t-th iteration; A,
denoctes entries set in the t-th iteration, A, C{l. _N}; A7 is
complementary set of A, :€ 1s the a threshold for stopping
the 1teration; finally:

ar=(Ala, ) ALy

Optical fiber pre-warning signal is a long duration
signal in real life, it needs to be processed by time
segment. The change rate of the signal is generally not
fast, so that sparse degree of the adjacent segments does
not vary greatly. In this study, the method of linear
prediction 1s used to have a forecast of the measurements
mumber for the current segment. Let j represents the
segment munber of the signal, L(j) denotes the
measurements number of the j-th segment, then:

M= D aM(-i) )

In Eq. 7, p 1s the prediction order and a(1<i<p) 1s
prediction coefficient. Then run sequential compressed
sensing from T, measurements before this predicted
number until the stopping criteria is met.

EXPERIMENT RESULTS

To evaluate the method presented above, real data
acquired 1s used. The optical fiber 1s buried under the
ground 0.5 m in depth, then digging near the optical fiber
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Fig. 1: Shovel digging signal

was operated to simulate the stolen behavior. The
sampling rate 1s 2 MHz which 15 too high and there will be
vast amount of data. For this reason, we only use a
fragment of the signal to demonstrate the method and the
signal is down sampled to 11.025 KHz firstly. The signal
used 18 as shown in Fig. 1.

It 18 stated early in section II that the signal 15 sparse
under some transform matrix, here the haar transform is
taken to transform the original signal. For simplicity, only
the haar transform 1s studied in this study. Detail wavelet
transform orthogonal matrix design can be found in
(Ge and Wei, 2007). To assess the recovery quality, SNR
is used and it is as follows:

EN:XZ(H)
SNR =10logl0——t (8)
E[X(ﬂ)— x(my]*

where, x and X denote the original and recovered signal,
respectively.

For comparison, firstly, signal compression sampling
15 carried out without using segment based sequential
compressed sensing. Hach segment of the original signal
is 1024 points, measwrement mumbers from 50 to 200 with
a step of 10 are taken for compressing the signal. Then
recovery of the signal using OMP algorithm 1s carried on
each measurement mumber. To give a typical comparison,
the recovered signal with 70 and 90 measurements is
plotted mn Fig. 2. The figure showed that when the
measurement number 15 70, because there 1s not enough
measwements for some segment, the recovered signal
was distorted compared to the original signal which is
explicit in the 64th segment 1 Fig. 2b. In Fig. 2c, the
measwrement munber 15 90 and the recovered signal 1s
more smooth and more close to the original signal in
Fig. 2a, though it is still not very perfect.

In fact, the SNR of each segment is not the same. All
the SNR data 13 shown by a histogram to display their

2000

N
(=]
o
(=]

Fig. 2(a-c): (a) The origmal used (b) the recovered signal
when measurement number of each segment
equals 70 and (¢) The recovered signal when
measwwrement number of each segment
equals 90

Table 1: Performance with different t
Evaluation type Evaluation result

T 5 10 15 20 25
SNR(dB) 24.96 24.37 22.8 23.99 21.76
L 92 90 82 86 74.9

differences as in Fig. 3. It can be seen that the SNR of
each segment is different so the measurement number
required for each segment will not be the same. And from
Fig. 2 one can draw this conclusion, further more, it 1s
difficult and important to judge the measurement number
for each segment. Meanwhile, just from Fig. 2, the fiber
optic warning data can be compressed sampled at a
compressing ratio about 11:1.

Next, the segment based CS algorithm had been run
on the test signal. Firstly, each segment is running from a
very small nmumber, the number 15 set to be L = 20. The
algorithm has been run with T vanes from 5 to 25 with the
step 5 and the mean SNR and mean measurement number
of all segments are displayed in Table 1. Finally the signal
15 compressed sampled with the best measurement
number and the SNR 1s got for further comparison.

To reduce searching cost of compressed sensing, the
linear prediction of the measurement number is taken.
However, get the linear prediction coefficients need
firther and more computation which 1s undesirable. So we
simply use just two measuwrement number before the
current segment to predict the current measurement
number. And the previous one 13 weighted by a constant
B(0<P=<1), another one 1s weighted by 1-p. Several values
of P are taken to predict the measurement number, the
final mean measuwrement mumber of the signal and the SNR
value are shown i Table 2. From Table 2, one can see that
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Table 2: Performance with ditferent prediction

Evaluation type Evaluation result

b 0.98 0.8 0.85 0.95 0.9

SNR(dB) 26.95 26.9 26.6 27 26.99
L 116.2 114 114.4 115.8 115

Fig. 3: Histogram composed by SNR of all segments
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Fig. 4: The figure on the top 1s recovered using the
sequential algorithm. The figure on the bottom 1s
recovered using the segment based sequential
algorithm

using more less searching and recovery computation,
the compressed sampled signal can be stably
recovered.

The recovery signal with the best measurement
number and the signal recovered by predicted
measurement munber 1s plotted in Fig. 3. The figure show
that the proposed algorithm is suitable for long time
signal.

CONCLUSIONS

This study presents a segment based sequential
compressed sensing algorithun  for optical fiber signal

compression and reconstruction. In the framework of
traditional signal processing, a high speed sampling 1s
required to meet the Nyquist sampling theorem. This will
generate vast data. This study use compressed sampling
methods which is based on signal sparsity under some
kind of transformation. For optical fiber pipeline data, we
use haar transformation. But the sparsity of the signal can
not know in advance, so sequential compressed sensing
1s used. The optical fiber signal 1s long time signal which
should be processed by segment. Tt is not necessary to
start from a very small measurement number for each
segment in sequential compressed sensing. From a
starting measurement number of the first segment, linear
prediction is used to predict the measurement number of
current segment. Experimental results of using the
proposed segment based sequential compressed sensing
algorithm showed that the algorithm need not know the
signal sparsity m advance and can have the same
reconstruction accuracy as sequential compression with
less searching.
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