http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 12 (14): 2943-2949, 2013
ISSN 1812-5638 / DOL 10.3923/1t).2013.2943.2949
© 2013 Asian Network for Scientific Information

A Novel Automatic Testing System Close-loop Model Based on Event Feedback

L2Shuai Wang, *Yindong Ji, *Wei Dong, *Xinya Sun and *Yafang Liu
"Department of Computer Science and Technology, Tsinghua University
*T'singhua Naticnal Laboratory for Information Science and Technelogy, Tsinghua University
*China Academy of Space Technology

Abstract: Tsting 1s essential for system verification and quality assurance. Most of the obtamed results on
testing focus on how to generate test cases and how to achieve a given goal optimally with a testing strategy.
However, how to carry out testing automatically may be another very important and useful problem. In this
field, how to model the automatic testing system and how to design the automatic test controller based on the
model are the two key problems which are similar with the core problems of automatic control theory. Now the
research reports on this direction are very few. In this study, we proposed a novel automatic testing system
model based on controlled automata. The test controller, system under test and test observer compose a
close-loop testing system based on event feedback. Meanwhile the construction methods of the automatic test
controllers were given. We also captured the control mechamsm in the algebraic framework of parallel
composition of automata for the close-loop testing system.

Key words: Automatic testing system model, automatic test controller, close-loop testing system, cotrolled

automata

INTRODUCTION

Testing 1s an important work to provide mformation
about the quality and performance of system under test,
with respect to certain context. Testing, for different test
objective may be mplemented at different time in the
system development process with different method. A lot
approaches have been proposed for system testing. But,
testing is still the least understood part of the system
development process (Whttaker, 2000). Until now, testing
quality is highly depends on experience of tester.

Most of the obtained results focus only on the
following questions: given a testing technique or test data
adequacy criterion, how to generate test case and/or what
properties (defect detection ability, test data complexity
and cost) the approach may have (Poore, 2000; Gutahr,
1999; Chen and Yu, 1996). At the same time, another
unportant question also has gamed some attentions
(Tal et al., 2002; Sahinoglu, 2003; Chen and Yu, 2002,
Cai, 2002): Given a test goal, how to achieve this goal
optimally with a testing strategy. A test strategy
determines how to select test cases to be applied to the
system under test and decide the stopping time of testing
process to achieve test goal.

Because system under test is more and more complex,
automatic testing become a very important approach for
system verification. The automatic testing method can

increase test efficiency and decrease test cost. With this
point of view, several automatic testing systems for
different systems under test are designed and
implemented (Gao et al, 2010, Meyer et al, 2007,
L and Nakajima, 2011). These studies have shown the
fact that automatic testing can provide important benefits
for system testing practice. But most of existing methods
only consider the implementation of automatic testing for
certain system. There is no report on the basic theory
framework of automatic testing, such as the mathematical
model of automatic test system and the design method of
automatic test controller.

In this study, we focus on the basic theory
framework of automatic testing for the man-made system
which can be modeled as an automaton. Considering the
lack of automatic testing system model, we proposed a
novel automatic testing system model based on controlled
automata. In this model, the test controller, system under
test and test observer compose a close-loop system
based on event feedback. Meanwhile, we gave the
mathematical description of the close-loop system. Based
on the model, we also gave a construction method of
automatic test controller.

The rest of this study is organized as follows. The
traditional automata-based test method is introduced in
section 2. In section 3 the theory framework of automatic
testing based on event feedback 1s introduced. The

Corresponding Author: Shuai Wang, Department of Computer Science and Technology, Tsinghua University
2943

Inform. Technol. J., 12 (14): 2943-2949, 2013

example of owr automatic testing framework on Automatic
Train Protection system 1s given in section 4. Fially, the
conclusion 1s presented in section 5.

TESTING WITH AUTOMATA

Man-made system usually cannot be described by
differential or difference equations but can be modeled as
Discrete Event System (DES) and then the behavior of
system can be modeled as an automaton. The testing of
this type system can be taken as checking the outputs
when certain input sequence is applied. After the outputs
observing at certain output ports, they will be compared
with the expected outputs corresponding with the inputs.
In the testing process of system, different test cases are
selected to be applied to the system under test in
accordance with a given testing strategy to fulfill a test
criterion.

For the sake of convemence, we will recall the basic
idea of automata-based system testing approach in the
follows. Let us first see the definition of automaton that is
used to model the system under test as below.

Definition 1: A mealy automaton is a seven-tuple
G ={(Q, qn Qu Z, A, 8, 1) (Hopscroft et al, 2000,
Lee and Yannakakis, 1996):

* Q: Is the set of states

o Z: Is the finite set of input alphabet and one input
alphabet describes one input event

+ A: Contains all output events and one output event
is described by one output alphabet;

« 8: QxZ-Q: Is the state transition funecticn

* gy Is the mitial state

¢ Q,cQ: Ts the set of finite marked states and the
marked state is usually used to describe the state
when one task finishing or one special event
executing

o A QxZ-A: Is the cutput function

The verification of system 1s implemented through
checking the output and the tail sate of every transition.
The process for testing a specified transition from state

q;” to state “q” with input/output * i,/o,” takes place in
the following three steps:

¢ Implementation according to system specification is
leaded into state “q;”

[A3E T}

¢« TInput “i.” is applied and the output is observed and
checked, to see whether it i1s the expected output

.

0", or not.

¢ New state of implementation is checked to verify that
if the tail state of the specified transition is “q;” as
expected, or not

We assume that there exists a reset action which is
applied to make the system return to its initial state. This
assumption ensures that each test case 1s applied in the
same state of the system implementation. The reset action
might be some input sequences, or a single action such as
reset action. We define the Unique Tnput/Output (UJTO)
sequence (Sabnani and Dahbura, 1988) which denotes the
state umquely as a status message. The tail state 1s
verified by checking this message after one test case is
applied.

In tlis study, the test case for transition
{q. q 1/0), 1s constructed based on the U-method
(Sabnam and Dahbura, 1988) as follows:

» Constructing the reset action r for implementation I,
so that [can return to its initial state when each test
case is applied

s (enerating the shortest transition sequence that can
lead the mmplementation from the imtal state to the
state “q,”, namely preamble sequence “ts,,.”

* Applying the input *i,” which can enable the
transition to be tested

* Uenerating the status message for tail state “q”,
namely postamble sequence “ts,,.”

For the implementation of system with the status
message feature, the test case for each transition 1s of the
form:

T3 18,00 1 (800 Y]

where, 1 13 the reset action, ts,,, is the preamble sequence
for the transition t, t: g = & (q;, a,) is the transition to be
tested, ts ., is the postamble sequence to check the tail
state of transition t.

FRAMEWORK OF AUTOMATIC TESTING

System modelling with controlled automata: Classical
automata G can describe the man-made system behaviors
by the trace of event but when testing, we usually want to
control the system performing at some intend manner to
implement some test purpose. Especially some pre-defined
event sequences will be checked for system testing. Then
we adjoin a means of test control to the automata G,
formally, defined as G.. Then, G, will play the similar role
of controlled object when testing, which 18 another
automaton, constructed from G by test specification

2944

Inform. Technol. J., 12 (14): 2943-2949, 2013

Particularly, we construct the controlled Mealy
automata based on the controlled automata proposed by
Wonham (Ramadge and Wonham, 1987).

Definition 2: The controlled automaton for testing
defined by an eight-tuple:

G = (Q: qﬂ: Qm: FXE: A: Bcs)L‘c)

Where:

* Q,q, A have the same definitions with G

* X can be partioned into two disjoint subsets, the
controllable event set %, and the uncontrollable
event set L, X = ZuX and EnX = o. The
controlled events are the events that can be enabled,
or disabled by test controller. The uncontrolled
events are the ones that cannot be prevented or
disabled. We define T' = {0, 1}™ as the binary
assignment set for .. Each assignment 1s a control
pattern. For yel.

v: 5.-{0,1} (2)

1 denotes inputting test stimuli and 0 1s opposite.
Thus 1s different from the definition of Wonham:

e O I'*ZxQ-Q 1s the state transition function. For
voel, qeQ, vel, the state transition function
defined on the control patterns is:

5,(1.0,0)= {S(G,q) if 8(a, q)!and ylay=1 (3)
undefined otherwise

& (o, q) stands for the function & (g, q) having a
definition

o A:ZxQ-A is the output function. The output event is
uncontrollable, such that we can say the output
event will be certain to happen after the mput 1s
mnposed. If the output 1s expected, the
implementation is right

Note:

* v (0)=1 means that event 0 13 enabled and y (0) = 0
means disabled

+ In some conditions, an event would be modeled as
uncontrollable, such as a change of sensor readings,
hardware limitations and so on

Automatic testing model baded on event feedback: The
formulation of the automatic testing considered in this
study proceeds as follows. Consider the system under
test modeled by a controlled Mealy automaton:

TC(s) Output
Input events
event
Test controller » C(osm:ro fled aultou:;gn »
Test observer

Fig. 1: Close-loop testing system based on event feedback
G: = (Q: QU, Qm: FXE, A) 6:7)“c)

A test case usually defines a test logical which is
composed of the sequence of inputs. The occasions when
inputs are applied and the sequence of expected outputs
are defined on the states of system or the events
observed. This means that the implementation of
automatic testing should require the feedback either the
states or the events from the system under test. We
adjoin a test controller, denoted by TC, to interact with G
in an event feedback manner as depicted in Fig. 1. We
assume that all the events in A are observed by test
controller TC. Thus in Fig. 1 s is the string of all events
outputted so far by G, and is entirely seen by TC. Testing
under partial event observation will not be discussed in
thus study.

The control paradigm is as follows. The behaviors of
(3, can be controlled by TC by means of the controllable
events in XK. TC can enable or disable these events by
defiming different control patterns <v. Thus, a test
controller TC can be seen as a machine that can map s to
the power set of Z..

TC: 5-2% {4)

where s 18 an event string outputted by G..
If sel. (G,) is the event string outputted so far by G,
(under certain test case), then

TC ()NH (qp, 3) (5)

Is the active event set of G,. H (g,) 13 a function to
compute the active event set after execution of string s.
TC (3) will prevent the event v () = 0 executing, even if it
is in current active set.

In order to build up the close-loop testing system, we
need to identify three components: the controlled object,
a set of control policies and the switching rule of these
policies. In this study, system under test is modeled as a
controlled Mealy automaton. The test controller contains
several test cases which are defined as separated control
policies of the system and the defined execution strategy
of these test cases.

2945

Inform. Technol. J., 12 (14): 2943-2949, 2013

Test controller design: The build of the test controller to
perform a test task is based on the logical behavior of
system and test purpose. As discussed in last section, the
behavior of G, can be controlled by TC 1n the sense that
the controllable events. TC then can be abstractly defined
as:

Definition 3: The test controller TC for the system G, 1s a
mapping from event sequence €1, (G,) to the active input
event set after string s, TC: s-2™. Let us assume that
formal language K<L (G,) is controllable, if the expected
behavior of system resulted by certain test case set 13 L
(TC/G,) =K, then TC is defined by:

TC (s) = {oek; (socK\(ocH (q,,)}

Moreover we eliminate two situationsK = L. (G,) and
K= 0. WhenK =L (G,), TC plays no effect and the second
one is prohibitive.

For test controller implementation, we can list TC (s)
for all sel, (TC/G,) based on definition 3. Usually, this
approach 1s 1impractical. So, we need a convement
implementation approach. Considering that we use an
automaton to model the system under test, then using an
automaton to describe the test controller TC may be a
good manner. Specially, i this way the test controller will
be finite and implementable. This automaton
unplementation of the test controller TC 1s called a
realization of TC.

Definition 4: A realization for the test controller TC is a
pair:

TC=(R, ¢) (6)

where, R = (X, Q, g, x,, X)) is a determinate fimte state
automaton and it can perform all behaviors defined by test
cases; ¢ is a set of test control policies. Hach element in
¢ is a test control policy that can perform certain test
case. ¢ 1s defined on the state of B, ¢: X-T". Thus vI'ed
maps the test controller state xcX into {0, 1},

Based on the defimtions of Prefix-closure
(Cassandras and Lafortune, 1999) and Controllability
(Ramadge and Wonham, 1987), we present the existence
condition for test controller:

Existence condition: Considering the system
G.=(Q, qi Q.. I'*Z, A, 8, A,), where Q = ZuA is the event
set containing both input event and output event; Q, =€
1s the set of uncontrollable events and Ac(,. Let the test
case set be a language KT, (G,), where K#2. Then there
exists test controller TC such that L (TC/G,) = ??? if and

only if:

(1) K eL(M}
(2) KQ, NLMycK
The proof process of the existence condition is
similar with proof in [15]. Tf the existence condition is
satisfied, the test controller that can execute all test cases
is:

TC (s) = {oeX; (socA(o=H (g, s)}

For constructing an automaton realization of test
controller TC, we need to build an automaten “R” which
marks the language K. Its definition is:

R: = (X: Q: g7 XD))(m) (7)
Let we assume that R is trim and:
L.(R)=L(R)=K (®)

The realization R can be seen as a device that can
execute state transitions In response to input string
weQ* G, affect R in an event feedback manner by
executing the state transitions of R according to the
output of G, Then the following behavior of G, is
constrained by the control patterns defined on current
state of R. The behavior of this closed-loop testing
system 1s described by the product automaton of G, and
R, dencted by R/G,,

R/GE: = (XXQa Qa gx6m (XD, qﬂ): XmXQm) (9)

where, H means cartesian product, (X, q,) is the initial
state of R#G_. The state transition function is formally
defined as: gxd,: QxXxQ-Xx(. Since R and G, have the
same event set €), then we get:

LRxG)=L(RINL(G,)=KNL(G,)=K=1L(TC/G,)
L, (RxG,)=L, (R)NL,(G,) =KL, (G,) (10)
=L{TC/G)NL_(G,)=L, (TC/G,)

R*3, 13 a compositon of two automata when
performing reference to a test control policy. This test
control paradigm can be interpreted as follow m the
algebraic framework of parallel composition of automata.
Let G, and R be in state q and state x, respectively after
the execution of string scL, (TC/G,). 0 is the enabled event
generated by G, currently. And it 1s also one of active
events when R is in state x. R can be seen as a passive
observer of G,. Following the event 0, q° and x” are new
states of two automata. Then the active event set of R at
x’ give enabled events set of G,

2946

Inform. Technol. J., 12 (14): 2943-2949, 2013

() G ®
-
, S |
@ ey
&

Fig. 3: Test controller for ATP
Table 2: Tnput events of ATP model Table 3: Cutput events of ATP model
Tnput event. Number Tnput event Number
Iy Power off Oy DMI shows power oft
I, Power on O, DMI shows standby mode
I Driver presses on button, ATP calls RBC successfully and (o2} DMI shows full supervision mode

position of frain is valid O DMI shows shunting mode
T; Driver presses on button, having on-sight route and the Oy DMI shows on-sight mode

route is valid 0O DMI shows staffresponsible mode
L Driver presses on button, no route and the driver presses Oy DMI shows isolation mode

on staft responsible button
L Driver presses on shunting button Table 4: UIO sequences for each state
T; Driver presses on stopping button State UL sequences
I, Driver presses on isolation button & [ty 1/04]
I Driver tumns isolation button to normal position < [t2: L/O; [ts: B/Os]; [te: T/04]
I Having route and driver presses on on-sight button Sl [tz'_zl /0’] * s L T
I Train receives a go-ahead signal : i ;,10 .
I Noroute and driver selects overtaking :3 Eﬁli /g I [t 1,/04]
I Driver selects overtaking 4 10 200 -2 L3 A2
1 Train receives a go-ahead signal and position is not 5 [tiz: Liy/O]
13

affirmed 5g [te: L/O]

By the checking the state transition structure of ATP
model, K fulfill the test controller existence condition
K, NL (M)cK and KL (M). One realization R of test
controller is shown in Fig. 3. Tt has the same event set
with the automaton model of ATP. Because of the length
of study, we will not show the test control policy
set here. For example, the test control policy for test case
. Gty ;180

e A)=1.T,x)) =1,T x)) =1,
T (x;5) (113) =1}

CONCLUSION

In this study, because of lack of automatic testing
system model, we proposed a novel automatic testing
system model based on controlled automata. Specially, we
set up the theory framework of automatic testing based on
event feedback. The test controller, system under test and
test observer compose a close-loop testing system based
on event feedback. The system under test modeled by
controlled automata serves as the controlled object.
Meanwhile we gave the

existence condition and

2948

Inform. Technol. J., 12 (14): 2943-2949, 2013

construction method of the test controller, which is
implemented as a pair: TC = (R, ¢).

In a word, we set up a novel automatic testing
framework for man-made system. The example of ATP
testing shows the feasibility of our method.

ACKNOWLEDGMENT

This study was supported by the NSFC under
Grants 61104019 and 61004070, the National Key
Technology R and D Program under Grant 2009
BAGI12A08 and Tsinghua University Initiative Scientific
Research Program.

REFERENCES

Chen, T.Y. and Y.T. Yu, 1996. On the expected number of
failures detected by subdomain testing and random
testing. IEEE Trans. Software Eng., 22: 109-119.

Chen, TY. and Y.T. Yu, 2002. A decision-theoretic
approach to the test allocation problem in partition
testing. TEEE Trans. Syst. Man Cybemetics-Part
A Syst. Humans, 32: 733-745.

Cai, K.Y., 2002. Optimal software testing and
adaptive software testing in the context
of software cybemetics. Inform. Software

Technol., 44: 841-855.

Cassandras, C.3. and S. Lafortune, 1999. Introduction to
Discrete Event Systems. Kluwer
Publishers, Dordrecht, Netherlands.

Gao, Z.H., X H. Chen, D.L. Peng, X K. L, X.Q. Wang and
FY. Zheng, 2010. Dynamic automatic testing and
calibration system of time grating sensor. Instrument
Tech. Sensor, 2: 95-97.

Gutahr, W.J., 1999. Partition testing vs. random testing:
The influence of uncertainty. TEEE Trans. Software
Eng., 25: 661-674.

Academic

Hopseroft, TE., R. Motwani and T.D. Ullman, 2000.
Introduction to Automata Theory, Languages and
Computation. 2nd Edn., Addison Wesley Co., TUSA.

Lee, D. and M. Yamnakakis, 1996. Principles and methods
of testing finite state machines-a swvey. Proc.
IEEE, 84: 1090-1123.

L1, 8.Y. and S. Nakajima, 2011. A framework for automatic
functional testing based on formal specifications.
Proceedings of the 6th International Workshop on
Automation of Software Test, May 21-28, 2011,
Honolulu, HI, USA., pp: 107-108.

Meyer, B., I. Ciupa, A. Leitner and L.I.. Liu, 2007.
Automatic testing of object-oriented software.
Proceedings of the 33rd Conference on Current
Trends in Theory and Practice of Computer
Science, January 20-26, 2007, Harrachov, Czech
Republic, pp: 114-129.

Poore, J.H., 2000. Introduction to the special i1ssue on
Model-based statistical testing of software intensive
systems. Inform. Software Technol., 42: 797-799.

Ramadge, P.J. and W.M. Wonham, 1987. Supervisory
control of a class of discrete event processes. STAM
I. Control Optimizat., 25: 206-230.

Railsafe, 2011. Automatic train protection. https://railsafe.
org.aw/automatic-train-protection

Sahioglu, M., 2003. An empirical Bayesian stopping rule
in testing and verification of behavioral models. THEE
Trans. Instrumentation Measurement, 52: 1428-1443.

Sabnani, K. and A. Dahbwra, 1988. A protocol test

generation procedure. Comput. Networks ISDN

Syst., 15: 285-297.

0., C. McCollin and A. Bendell, 2002. An
optimal statistical testing policy for

Tal,

software
reliability demonstration of safety-critical systems.
Bur. J. Operat. Res., 137: 544-557.

Whittaker, I.A., 2000. What is software testing? And why

is it so hard? IEEE Software, 17: 70-79.

2949

	ITJ.pdf
	Page 1

