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Abstract: How to match two large graphs by maximizing the mumber of matched edges, which 1s known as
maximum common subgraph matching and is NP-hard. The Anchor-Selection and Expansion (ASE) approach

to compute an initial matching is presented in the study. We give hewristics to select a small number of
important anchors using a new similarity score, which measwres how two nodes in two different graphs are
similar to be matched by taking both global and local information of nodes mto consideration. And then by
expanding from the anchors selected we work out a good initial matching. The expansion is based on structural
similarity among the neighbors of nodes in two graphs. The approach that can efficiently match two large
graphs over thousands of nodes with high matching quality is proved in theorized.

Key words: Large graph match, maximum common subgraph, global node similarity, anchor selection and

expansion

INTRODUCTION

Graph proliferates in a wide variety of applications,
including social networks in psycho-sociology, attributed
graphs 1n image processing, food chains in ecology,
electrical circuits i electricity, road networks in transport,
protein interaction networks in biology, topological
networks on the Web. Graph processing has attracted
great attention from both research and industrial
communities. Graph matching i1s an important type of
graph processing, which aims at finding correspondences
between the nodes/edges of two graphs to ensure that
some substructures in one graph are mapped to similar
substtuctures 1n the other. Graph matchmg plays an
essential role in a large number of concrete applications.

The graph matching literature is extensive and many
different types of approaches have been proposed, which
mainly focus on approximations and heuristics for the
quadratic assignment problem. An incomplete list
includes spectral methods, relaxation labeling and
probabilistic  approaches, relaxations,
replicator equations, tree search, graduated assignment
and RKHS methods (Plantenga, 2013). A number of
algorithms have been proposed for graph matching
mcluding exact matching (Egozi et al, 2013) and
approximate matching (Plantenga, 2013). The exact
approaches are able to find the optimal matching at the
cost of exponential minning time, while the approximate

semi-definite

approaches are much more efficient but can get poor
matching results. More importantly, most of them can

only handle small graphs with tens to lundreds of nodes.
As an mndication, exactly matching two undirected graphs
with 30 nodes may take time about 100,000s. Tt is
important to note that real-world networks nowadays can
be very large. The existing approaches cannot efficiently
match graphs even with thousands of nodes with high
quality.

In this study, we study the problem of matching two
large graphs, which 1s formulated as follows. Given two
graphs G1 and G2, we find a one-to-one matching between
the nodes in G1 and G2 such that the number of the
matched edges 1s maximized. The optimal solution to the
problem corresponds to the Maximum Common Subgraph
(MCS) between G1 and G2, which 1s an NP-hard problem
and has been studied in decades. Tt is known to be very
difficult to find a high-quality approximate matching
efficiently even for small graphs. In order to meet the
needs of handling large graphs for graph matching and
analysis, we propose a novel approximate solution with
polynomial time complexity while still attaining high
matching quality. The rest of the study 1s organized as
follows. Section 2 gives the problem statement. Section 3
gives the anchor-selection/expansion approach and its
application examples. Section 4 concludes this study.

PROBLEM STATEMENT

We first focus on undirected and unlabeled graphs,
since the most difficult part for graph matching 1s the
structural matching without any assistance of labels. We
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Fig. 1(a-b). (a) MCSv and (b) MCSe

will discuss how to handle labeled graphs later in this
study. For a graph G(V, E), we use V(3) to denote the set
of nodes and E(G) to denote the set of edges.

Definition 1: Graph/Subgraph Isomorphism: Graph G1 is
isomorphic to graph G2, if and only if there exists a
bijective function £ V(G1)-V(G2) such that for any two
nodes ulV(G1) and u2ZCV(G1), (ul, u2)JE(G1) if and
only if (f (ul), f (u2))ODE(G2). G1 is subgraph isomorphic to
(G2, 1if and only if there exists a subgraph G* of G2 such
that G1 is isomorphic to G’

Definition 2: Maximum common subgraph: A graph G is
the maximum Common Subgraph (MCS) of two graphs G1
andG2, denoted as moes (G1, G2), if G 1s a common
subgraph of G1 and G2 and there i1s no other common
subgraph G’, such that G’ is larger than G-.

The MCS of two graphs can be disconnected and
there are two kinds of MCSs, namely maximum common
node mnduced subgraph (MCSv) and maximum common
edge induced subgraph (MCSe). The former requires the
MCS to be the node induced subgraph of both G1 and G2
and G 13 larger than G 1iff [V(G”)[=|V(G)|. The latter requires
the MCS to be the edge induced subgraph of both G1 and
G2 and G’is larger than G iff [BE(G™)[>[E(G)|. Figure 1 shows
the difference between MCSv and MCSe. Figure 1a shows
the MCSv of G1 and G2, whereas Fig. 1b shows the MCSe
of Gl and G2.

As can be seen from this example, MCSe can
possibly get more common substructure for the given two
graphs. In this study, we adopt MCSe since it can
possibly get more common substructure for the given two
graphs and we use MCS (mes) to denote MCSe. Finding
the MCS of two graphs 15 NP-hard.

Definition 3: Graph matching: Given two graphs G1 and
(32, a matching M between G1 and G2 1s a set of vertex
pairs M ={(uv)udV(G1), vOV(G2)}, such that for any
two pairs (ul,vl) O M and (u2,v2)OM, ul #u2 and
vl#v2. The optimal matching M of two graphs is the
one with the largest number of matched edges.
Finding the optimal matching M is the same as finding the
MCS.

Problem statement: We aim to compute the optimal
matching M for two given graphs G1 and G2. For a given
matching M, we evaluate its quality by computing score
(M) as follows:

Z(ul,vl)eME(ul,VZ)eM Cu1n2 7 i v (1)
2

Score (M)

where e, =1 if there is an edge between uand v and
e,, = 0, otherwise. Obviously, finding the optimal
matching M 1s actually to find a matching with the
maximum score (M) and the maximum score (M) is
|E(mcs(G1, G2))|.

Tt is known that the MCS problem is NP-hard and it
is also known that it is very difficult to obtain a tight, or
even useful, approximation bound, because finding a
maximum common subgraph of two graphs is equivalent
to finding a maximum clique in their association graph,
which cannot be approximated with ratio nfor any
constant €> 0 unless P = NP. For the quality of the MCS
result, (Tang et al., 2012) give a bound of O(n2) based on
the number of mismatched edges, where n is the size of
the larger graph. This means that it may mismatch all the
edges. Zhi-Yong et al. (2012) provide an upper bound for
the size of the MCS, which 1s computed by sorting the
degree sequences of two graphs separately followed by
summarizing the corresponding smaller degrees. The
bound 1s almost the smaller graph, without considering
any structural mformation of the two graphs, which does
not provide much information. For the time complexity, in
{Kpodjedo et al., 2012), it is O(n° 1), where n is the size of
the graph and L 1s the size of an LP model formulated for
graph matching (at least n). It cammot handle graphs with
more than 100 nodes.
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ASE MATCHING APPROACH

In this study, we propose a novel approach to solve
the graph matching problem. We construct the initial
matching M by identifying anchors of two graphs G1 and
G2 followed by expanding from the anchors. We do so
based on a new similarity between nodes in the two
different graphs, which combines both global and local
information of nodes. The framework of the algorithm is
shown in Algorithm 1.

Algorithm 1: Match (G1, G2)

Require: two graphs, G1 and G2;

Ensure: a graph matching between G1 and G2;

1: A-anchor-selection (G1, G2); {refer to Algorithm 2}

2: M~anchor-expansion (G1, G2, A); {refer to Algorithm 3}
3: M-refine(G1, G2, M);

4: refurn M;

In this section, we discuss how to select anchors and
how to expand from the selected anchors to obtain the
initial matching M for two graphs G1 and G2, using a new
node similarity matrix S. The node similarity between
uJG1 and v[OG2 is very important because it indicates
how likely the two nodes will be matched when computing
the matching M.

Global and local node similarity: L.et G1 and G2 be two
graphs. The new node sunilarity matrix S we propose takes
both global and local node similarities into consideration
when matching nodes in two graphs:

S(uv) = Sg(uv)<Sl (uv) (@

Here, S 18 a [V(G1)|x|V(G2)| matrix, in which the
element S[u,v][0, 1] represents the similarity of two
nodes, uin Gl and v m G2. S 18 based on Sg and Sl,
where Sg measures global similarity between u and
v in the entire graphs G1 and G2 and 51 measures
local similarity between u and v  in their
neighborhoods.

We will introduce an existing global similarity below
followed by the discussion on our new local similarity in
this section.

Global node similarity: In the literatwe, the global
similarity for nodes m two graphs can be the spectral-
based similarity. The representative study is Umeyama’s
work (Bhattacharjee and Jamil, 2012) which is improved by
(Cheng et al, 2011). Suppose Gl and G2 are two
undirected graphs with the same number of nodes n. The
Laplacian matrix L, of graph G with n nodes is defined
as:

where, A is the adjacency matrix and D is the diagonal
degree matrix. Aful, u2] = 1 1if (ul, u2) O E(G) and 0
otherwise. D[ul, ul |= ¥, oA [ul, u2]. We denote the
Laplacian matrices of G1 and G2 as L1 and L2,
respectively. Suppose the eigenvalues of L1 and L2 are
al>e2> . > gnand Bl =B2=eee>Pn, respectively. Since 1.1
and L.2 are symmetric and positive-semidefinite, we have
L1 =U1A1U1"and L2 = U2A2U27, where Ul and U2 are
orthogonal matrices and Al = diag (oi ) and A2 = diag (pi).
If G1 and G2 are isomorphic, there exists a permutation
matrix P such that PUTATULI™PT=U2A2U2" . Let P = U2D’
Ul"where I’ = diag (dl,..., dnyand di O] {+1;-1} accounts
for the sign ambiguity in the eigende-composition. When
(G1 and G2 are isomorphic, the optimum permutation matrix
15 P, which maximizes tr-

(PU,U)

where, U, and U, are matrices that have the absolute

value of each element of Ul and U2, respectively. When
the numbers of nodes i G1 and G2 are not the same, we
only choose the largest ¢ eigenvalues (Kpodjedo et al.,
2010). Let c =min{[V(G1)|, [V(G2)[} and 1, and v, bethe
first ¢ columns of U, and U, , respectively, the global
similarity matrix can be computed with Eq. 3:

sg=U,U, ®

Here, Sg[u,v]O[0, 1] 1s the global node similarity
between the node u in V(G1) and the node v in V(G2).
Example 1 shows an example of matching two graphs
using the global node similarity.

Example 1: Consider the two graphs in Fig. 2. We first
compute their global node similarity matrix Sg. We
construct a bipartite graph Gb with |[V(G1)[HV(G2)| nodes
and for any w0 V(G1) and v V(32), we add an edge (u,v)
O E(Gb) with weight Sg[u.v].

We compute the maximum weighted bipartite
matching of Gb and get the matching as M ={(ul v1),
(2, v2), (u3, v7), (ud, v4), (us, v3), (ub, v12), (u7, vi3),
(ug, v8), (u9, v17), (ul0, v10), (ull, v3), (ul2, ve),
(ul3, v14), (uld, v15), (ul5, v16), (ul6, vO)}. In this way,
the mumber of matched edges 15 10, which 1s far away from
the optimal solution mes (G1, G2), 21 (bold edges in
Fig. 2). Comparing to the optimal solution, u3 1s
mismatched to v7 because they have a high global
similarity, but obviously, the local structure near u3 and
the local structure near v7 differ much.

Local node similarity: For any node v ingraph G and
k = 0, we define the k-neighborhood of v, K, , as the set
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Fig. 2(a-b). Two graphs, (a) Graph G1 and (b) Graph G2

of nodes in V(G) such that v/ N, and for any u CONy,.
the shortest distance from v to u 1s no more than k. The
shortest distance is defined as the number of edges in the
shortest path from v to u. The k-neighborhood subgraph
of v in G, dencted as G, is defined as the induced
subgraph over N,,,, 1 {v} in G. For two nodes u 1 V (G1)
and v [0 V(G2), we measure their local node similarity by
comparing the k-neighborhood subgraphs of them.
Suppose d(u) and d(v) are the degrees of node u and v in
(1 and G2, respectively and suppose d1,1, d1,2,... 1s the
degree sequence of node set Ny, in G, sorted in
non-increasing order and d2,1, d2.2... is the degree
sequence of node set Ny, in G, sorted in non-increasing
order. Let nmin = mm{N,,|, [Ny} We define a

|V(G1)|*|V(G2)| local node similarity matrix S1 as follows:

(n,,, +1+D(uv) (4

S, [u,v]=
= G = @ D V(GE) [+ [EGE )

| min(d.dw)}+ 2T mingd dy} (5)
2

D[u,v]

Here, D(u,v) consists of two parts. The first part
minid(u), d(v)} is the ideal contribution of edges when
matching u with v and the second part:

> = min{d, .d,,}

1s the 1deal contribution of edges when matching nodes in
Nywith nodes in N, ;. We show that S| has the following
properties:

s <Sl[uv]=1

_ (I V(mes(G}, G| +|E(mes(GL. Gy ) Y

* Sl[u"’r]* k k k 3
(VGO +IEGO NI VIS [+ EG ]

»  If G* and G* are isomorphic and u matches v in the
optimal matching of G*, and G*,, then Sl [uv]=1

» If G, is subgraph iscmorphic to G¥, and u matches
v in the optimal matching of G*, and G*,, we have:

k k
$1[u, v] =|V(G§)\+ ‘E(Gﬁ)l
[ VG +[E(G )]

For Eg. 1, it is obvious that S1 [uv]=0
holds, because both  (n,,+H1+D(uv)2>0 and
(V(GE |+ EGD D V(G [+ |EGH N> 0. 8l [uv] = 1 can be
showed as follows. Since min{d(w), d(v)i= d(u) and
min{d;;,d,;} =d;

DMﬂégEL%QEH#E@D\

Similarly, D(u,v) =/E{(G%)|. By combining such two
inequations with the fact that n,+1 = |V(G")| and
N1 = [V(GE)|, we have 81 [u,v]= 1. For (2), since the
node number of either G%, or G¥ appearing inmcs can
never exceed the minimum node number of G*, or G
[V(mes(GE, GN) =nmintl. Also, D(1,v) is known to be an
upper bound of |E(mes(CGY, G9)|, which is proved in
(Egozi et al., 2013). Thus, this inequation holds. Here, Sl
[w¥] is an upper bound of such similarity, if we treat the
right side of the equation in the property (2) as an
accurate similarity of two nodes based on thewr MCS. For
(3), this can be obtained based on the illustration of the
first property, since when they are isomorphism, we have
B+ 1 =[V(G)]| - V(G| and:

D,
mmwzgﬁi%ﬁfizmm%n
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While leads to:

_ V(G |+ |E(G))]

Y= G+ EGh|

Note that owr local similarity 13 different from the
vector-based node signature which deals with edge
weights. For an undirected and unweighted graph, the
edge weights for all its incident edges are 1. This means
that the node signature in (Zhi-Yong et al., 2012) is merely
its node degree and measwring the similanty of two
nodes by their degrees is not sufficient, because there
might be many pairs of nodes, which share the same
degree but are with different structures. In our local
similarity measure, we do not only consider the degrees
of two nodes but also consider their k-neighborhoods.

Anchor selection and expansion: In our approach, we
solve the two drawbacks as follows. Instead of matching
all the nodes, we first match some important nodes as
anchors. Every two anchors matched have high similarity
and large degrees and can contribute a large number of
matched edges. Then, we expand from the anchors to
match the other nodes using the local similarity SI as the
measwre. Thus, our solution consists of two steps, namely
anchor selection and anchor expansion.

The anchors selected play two important roles in
matching construction. (1) The matching anchors
contribute a large number of edges to the matching M. (2)
The anchors are the references to start with when
matching the other nodes. For two nodes u U V(G1) and
v O V(G2), we select (u,v) as matched anchors, if they
satisfy the following two conditions.

o Min{d(u), d(v)}=8, where 4 1s the larger average
degree of the two graphs, that is:

azm{zx\E(Gl)\,ME(Gz)\}
V(G| IVIG,)

*  S[uyv]=T, where T 1s a threshold and generally t>0.5
and 1s one sensitive threshold that has impacts on
graph matching

The algorithm for anchor selection is shown in
Algorithm 2. Given two graphs G1 and G2, it outputs a List
of anchor pairs, denoted asA. In the algorithm,S1 and S2
denote the sets of matched nodes in V(G1) and V(G2),
respectively.

Algorithm 2: Anchor-selection (G1, G2)

Require: two graphs G1 and G2;

Ensure: a list of matched anchor pairs A;

1: compute the similarity matrix S;

20A -0 81 -3 82 -

3: for all u O V(G1) and v O V(G?2) in decreasing order of their similarity
8[u,v] do

4: it S[u,v]et and min{d(u), d(v)}=5& and u / 81 and v/ O 82 then

5:A -A{@uw}; 81 - 81 Hu}; 82 - 820{v);

G retum A;

Line 1 computes the similarity matrix S Eq. 2. Line 3
tries to match the pairs (u,v) for all u O V(G1) and v O
V(G2) in the decreasing order of their similarity. Tn this
way, the most similar pairs will have a large chance to be
matched as the anchors. Line 4 selects the nodes that
satisfy the two conditions for anchor selection that are
not matched before. If the conditions in line 4 are all
satisfied, we add the pair (u,v) into the list A and add the
matched nodes uand v mto S1 and S2, respectively mn line
5. After checking all pairs, line 6 returns A as the anchor
pairs.

We illustrate the anchor expansion algorithm
{(Algorithm 3) to obtain a matching M. Let A be the anchor
pairs (4,v) selected already. Initially, M = A. Let N{u) and
N(v) denote the immediate neighbors of uand v in graphs
(31 and G2, respectively. For every matched pair (u,v) in
the initial M, we put all (N(u)>x N(v)) pairs in a queue Q,
where Q 1s the set of candidate matching pairs sorted in
decreasing order of their local similarity. In an iterative
manner, we remove the pair (u,v) with the largest local
similarity Sl [u,v] [Eq. (4)] from Q. If both u and v have not
been matched before, we add (u,v) to M and put their all
(N(u) x N(v)) immediate neighbor pairs into Q for further
consideration. We repeat 1t until Q = .

Algorithm 3: Anchor-expansion (Gl, G2, A)

Require: two graphs, G1 and G2 and the anchor pairs A;
Ensure: a graph matching M;

1:M-A; Q-0 81 - S2 -0

2: for all (u,v) - A do

3:81 - 81 00{u}; 82 = 82 O{v}; Q -~ QO NN,
4: while Q O=0 do

5: remove (u,v) from Q with the largest similarity S1[u,v];
[

7

8

cifu/ 81 and v/ 82 then
M - MO {(u,w)}; 81 ~ 81 O{u}; 82 - 82 v} Q ~Q O Nan=N(v));
:retum M;

CONCLUSION

The tine complexity of Algorithm 3 remains
unchanged, compared to Algorithm 2, because it only
repeats anchor-expansion constant times. It is worth
noting that anchor-selection 1s the dominant factor
and anchor-expansion can be done very quickly in
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practice compared to anchor-selection. Some results

are shown that the time of anchor-expansion
means the total expansion time including the T
selection.
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