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Abstract: To better solve high-dimensional function optimization problems, for the defects of some optimization
algorithms, such as premature convergence and low accuracy in Particle Swarm Optimization (PSO) and slow
convergence 1n Bacterial Foraging Algorithm (BFA), this study presents a self-adaptive hybrid intelligent
optimization algorithm based on BFA and PSO (ABSO for short). The ABSO algorithm first realizes dynaniic
no-linear self-adaptive improvement for learning factors and inertial weight of PSO and chemotaxis step length
of BFA, respectively. After chemotaxis operation of BFA being finished, the optimization updating mechanism
of PSO 1s introduced to continue to update bacterial location to help BFA escape from local optima which
combines orgamnically the optimization update mechanism of PSO and the chemotaxis update mechanism of BFA
and well balances the global search and local development capabilities. Simulation results on four benchmark
functions show that the ABSO algorithm is superior to BFA, PSO, self-adaptive PSO and other two kinds of
BFA hybrid algorithm in convergence speed, accuracy and robustness. This proves the validity of the ABSO
algorithm in high-dimensional function optimization problems.
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INTRODUCTION

In recent years, the hewristic optimization algorithm
based on biological mtelligence has become one of
the mainstreamn algorithm for those non-linear,
non-differential, multi-peak and complex problems.
Bacterial foraging optimization algorithm (BFA) is a kind
of new bio-mspired optimization algorithm which was
proposed by Passino, a professor at Ohio State University
(Passino, 2002). Due to its advantages such as swarm
mtelligence parallel search and easy to maintain
population diversity, BFA has become another hot spot
in the research field of bionic algorithm. But the study
found that the randomness characteristics of bacterial
chemotaxis may result in slower chemotaxis and the
accuracy of optimal solution 1s not high (Dasgupta et al.,
2009). In order to improve the performance of BFA,
researchers have proposed a variety of different methods,
including adjusting algorithm parameters and mixing other
mtelligent algorithms.

In terms of parameter adjustment (Majhi et @i, 2009)
applied the BFO model of automatic chemotactic step to
the neural network training; (Datta et al., 2008) designed
a BFO algorithm of a self-adaptive chemotaxis step length
according to a self~adaptive Delta modulation principle;
(Chen et al., 2008) proposed a self-adaptive collaborative
bacterial foraging algorithm based on biological
self-adaptive search strategy. What these algorithis have
in common 1s that from the perspective of chemotactic

step-length, according to the amount of harvesting
energy within the foraging life cycle, bacteria can self-
adaptively adjust chemotactic step-length and without
increasing the complexity of algorithm, the bacteral
optimization efficiency can be improved.

In terms of the design of algorithm fusion, usually
with the aid of differences between the internal operation
mechanism of distinet intelligent bionic algonthms, other
algonthms, especially Particle Swarm Optimization (PSO),
are blended into BFA. Biswaw et ol (2007) and
Yang et al. (201 2) used the method of moving particles in
PSO to completely replace bacterial chemotaxis operation
and proposed a hybrid optimization algorithm to apply to
multimodal function optimization (BSOA for short).
Korani (2008) and Zhao et al. (2010)used particles moving
speed in PSO to replace the bacterial chemotaxis tumble
direction (BF-PSO for short), (Bakwad et al, 2009,
Tang et al., 2007; Chu et al., 2008) introduced the basic
algorithm of PSO into BFO algorithm and put forward the
proposed bacterial swarming and fast bacterial swarming
algorithm, respectively. Biswas et al. (2007) mcorporated
crossover and mutation operation of differential evolution
algorithm to BFO algorithm and presented a hybrid global
optimization algorithm. Biswas et al. (2007) updated the
bacterial position with the iterative formula of PSO but
chemotaxis operator did not play a role, Dasgupta
introduced crossover and mutation operators in bacterial
evolution and increased the diversity of population but it
1s also easy to cause the lack of excellent individual.
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In view of the above situation, in order to further improve
the optimization performance of algorithm, this srudy
takes mto account both parameter adjustment and fusion
of algorithm and proposes a self-adaptive hybrid
optimization algorithm based on bacterial foraging
algorithm and particle swam optimization algorithm
(ABSO). The new algorithm introduces the dynamic
no-linear self-adaptive improvement for learmng factors
and inertial weight of PSO and chemotaxis step-length
of BFA, respectively. After the variable step-length
chemotaxis operation being finished, the self-adaptive
algorithm still uses the optimization update mechanism of
PSO to continue to change bacterial position, so as to
help BFA jump out of local optimum, thus balancing the
local search capability and global development capability.
Function tests show that compared with BFA, PSO,
self-adaptive P3O, BSOA (Biswaw et al, 2007,
Yang et al., 2012), BF-PSO (Koram, 2008, Zhao et al.,
2010}, the new algorithm improves the convergence speed
and accuracy and has better optimization performance.

RELATED BASIS

Bacterial foraging optimization algorithm: Bacterial
foraging algorithm is a kind of bionics random search
algorithm based on bacterial foraging behavior, including
three procedures: chemotaxis, reproduction and
elimmation-dispersal.

Chemotaxis is the core operation of BFA algorithm
and it corresponds to the direction selection strategy
taken m the process of bacterial foraging which has
extremely important influence on convergence of the
algorithm. Usually in the chemotaxis process, bacterial
motor pattern mvolves tumble and swim. Tumble is the
operation that bacterial move unit step length in arbitrary
directions, its updated equation 1s as follows:

0+ Lk =6 (kD + c(i)al)/ya La) (1)

where, 0'( ).k1) represents the position in which bacterium
11s in the ith generation chemotaxis, the kth reproduction
and the 1th elimination-dispersal operation, ¢(i) refers to
step-length and A(1) indicates tumble direction. Whenever
bacteria complete tumbling, the algorithm will judge
whether the fitness value has been improved, if improved,
bacteria will continue to move several steps along the
same direction. Follow the circle until the fitness is no
longer improved, or wuntil the swim step reaches a
designated threshold. This process is defined as swim.
Thus the essence of bacterial foraging chemotaxis is that
bacteria constantly search in the feasible solution
neighborhood and determines to continue to swim along

the direction, or re-adjust the direction. Chemotaxis
operator ensures bacterial ndividual can find the optimal
value within the neighborhood.

After a Chemotaxis cycle, bacteria enter the
reproductive process of survival of the fittest BFA
adopts health degree as the criterion of evaluating the
advantages and disadvantages of various bacteria, the
computation formula 1s defined as follows:

H.+

T = 2 FGKD) 2
=

In the above Eq. 2, I . represents health degree of
the ith bacterium, the greater I, is, the worse bacterial
health is. N, refers to maximum times of chemotaxis
procedure. The algorithm sorts all the S bacteria in
ascending order according to their health degree and
reproduces the better first half S, (8,=5/2) bacteria to
replace the worse latter half ones, so as to speed up the
search. Reproduction process has certain effect on the
improvement of optimization accuracy.

The bacterial colony begins to migrate after the
production of N, times. Elimination-dispersal operation
randomly initializes bacteria according to the given
probability Py which would be more conductive to jump
out of local optimal for chemotaxis. But the event may
disperse those bacteria whose position are close to the
global optimum and delay the optimization process.

Particle swarm optimization algorithm: PSO algorithm is
a global optimization algorithm based on swarm and
fitness which originates from the movement behavior of
bird swarm . The solution of each problem may be seen as
a massless and no volume particle in the search pace and
each particle has two features, position and velocity. The
objective function value corresponding to particle
coordinates can be used as the particle fithess by which
the algorithm evaluates the fit and unfit quality of the
individual. PSO algorithm first initializes a group of
random particles and then find out the optimal solution by
iteration. In each iteration, particle updates itself by
tracking two extreme values: one is the best position
which particle 1 itself has passed through, namely
individual optimal solution %, . the other one is the best
position which the whole particle swarm has passed
through, namely global optimal solution Xg.. After
finding the aforementioned two extreme value, particles
update their velocity and position according to the
following two equations:

Vi) = v (L =D+ (0K, —% D)+ c,n 0K, — % () 3

X=X (t-1+v,() 4
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Among them, x;(t) and v(t) represent the position and
speed of the ith particle 1 the tth generation, w represents
non-negative inertia weight, ¢, ¢, is non-negative learning
factors and r;, r; 1s the random numbers in [0,1].

SELF-ADAPTIVE HYBRID OPTIMIZATION
ALGORITHM BASED ONPSO AND BFA

Self-adaptive adjustment of learning factors in PSO: In
PSO algorithm, the learming factor ¢, and ¢, respectively
control the particle velocity affected by cognitive and
social part. Generally speaking, in the population-based
optimization method, we always hope that individuals can
search in the whole optimization space in the nitial stage
and they are not too early to prematurely fall into local
extremum while m the end stage can enhance
convergence rate and accuracy and effectively find the
global optimal solution. This srudy presents a kind of
adjustment method that acceleration coefficient
dynamically changes with the iterative process and
changes based on S type function. The adjustment
formula is as follows:

2

1+ exp[a*(itgrer )—10.5] &)

¢ =

c,=2-¢

In the above Eq. 5, a 1s a positive coefficient which
controls the decreased steepness of ¢, and it is
recommended to set in the interval [5,15]. Tter, . 1s the
maximum iterations, iter is the current iterations. The
function curve of improved ¢, ¢, 1s shown n Fig. 1.

As shown in Fig. 1, this method can make particle
have large cognitive capability to the greatest extent in
the imitial iterative stage while large social capability in the
latter iteration stage. Thus the algorithm 1s more
conducive to converge to global optimal solution and
enhance the convergence speed and accuracy.

Self-adaptive adjustment of inertial weight in PSO: The
value of inertia weight w has important influence on the
PSO optimization search. Generally, mn order to obtain
better algorithm performance, usually in the search early
stage w should has a greater value to ensure the particle
swarm’s strong global search ability within a larger search
space and avold premature. And as iterations mcrease,
should has a smaller value to ensure the particle swarm’s
local search ability within a smaller search space and
enhance the convergence precision. Therefore, the
appropriate control of inertia weight in the iterative
process can balance the global search and local search of
algorithm, thereby getting good enough solution on
average with less iteration.

2 —

=
a1
\
\
¢
N

cl and c2

0 0.5

iter/iter
max

Fig. 1: Self-adaptive learming factors

Traditional self-adaptive method makes w lmnearly
decrease with the increase of iterations, the equation is as
follows (Shi, 2001 ):

W=wW__—(w__ W ter &
e = (W ~ W)X () ©)

The PSO algorithm whose w parameter linearly
decreases effectively improves the performance of
algorithm but there are still some shortcomings. On the
one hand, this kind of PSO algornthm can’t effectively
reflect the complicated non-linear behavior in the particle
swarm’s actual search process, so the convergence speed
and convergence precision is still not ideal. On the other
hand, the slope of which « linearly decreases 1s still
problem-dependency, there is no universal optimal
change slope for all optimization problem.

By the previous analysis, the change process of w 1s
dynamic and non-linear, therefore, so this srudy adopts
the non-linear function to describe the dynamic change
rule of @ 1n the iteration process. The w value of each
iterative step is determined by the following exponential
function equation:

) (7

. iter
wiiter) = w__ x exp(-(-—2=
(iter) = w,,, < exp (-,

max

In the above Eq. 7, n 1s a control power exponent of
non-linear change rule, particularly when n = 2 Eq. 7 is
often referred to as probability curve function. Figure 2
shows the w iteration change curve with different n value.

A shown m Fig. 2., for the given imtial value v,
and the control power exponent n, the non-linear change
rule of w with iterations can be umcquely determined.
And the greater the n value 1s, the longer the global
search duration of particle swarm 15 while the smaller
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the n value is, the longer the local search duration of
particle swarm 1s. By using d-dumension spherical
function:

f(x)= zx (&)

(d = 6, x€[-5.12, 5.12]) to validate parameter values, the
result shows that when w,, value is set in [0.2,0.5] and n
value 1s set m [0.5,2], the algorithm has excellent
performance.

Self-adaption adjustment of chemotaxis step-length in
BFA: As a very umportant parameter in BFA chemotactic
link, the appropriate selection of chemotaxis step-length
can determine the population diversity, accelerate
convergence and enhance the convergence precision.
Original BFA adopts fixed step-length to solve problem
which is not good for the convergence of algorithm. A
large number of experiments show that in the early phase
the algorithm maintains a larger initial step-length for a
wide range of coarse search and in the later stage
maintains a smaller step-length for a small range of
precision search which can not only speed up the
convergence but also improve the convergence precision
to a certain extent. Hence, this srudy employs the
following dynamically adjusted step-length equation:

Clk, 1) = Cp/m™* )

where, C(k,]) is the chemotaxis step-length of the kth
copy and the Ith elimination-dispersal, C,, 1s the imtial
chemotaxis step-length and m is the parameter of
controlling step-length’s reduction gradient. C(k,1) 1s
the function which declines with the increase of

elimination-dispersal events. So when k+l is smaller, Clk,1)
1s larger, thereby avoiding consummng too much time in
the local search range and when k+1 gradually increases,
Cik,l) decreases, accordingly the bacterial local search
ability near the global optimal point increases and this
guarantees that the algorithm eventually approaches the
global optimal point.

Self-adaptive hybrid optimization algorithm based on
PSO and BFA: The general idea of self-adaptive hybrid
optimization algorithm based on PSO and BFA(ABSQ) is
under the self-adaptive adjustment strategy for leaming
factors and inertial weight in PSO and BFA chemokines
step-length, after finishing BFA chemotaxis with variable
step-size, the new algorithm continues to adjust the
bacterial position with the self-adaptive PSO iteration
update formula. This method can make up for the
blindness of BFA random tumble, thereby helping BFA
jump out of local optimal and balance the local search and
global development optimization ability.

The ABSO algorithm procedwre in this srudy is as
follows:

»  Imtialize parameters D?S, Nc, Nre, Ned, Ped, Ns, C,.,
m, a, Wy, h, R, R,

+  Randomly imtialize the bacterial position 6%(1,1,1),
i=1,2..8

s Calculate the mtial fitness of each bacterium:
T(1,1,1) = Fun{6'(1,1,1)) and initialize the individual
optimal value and the global optimal value of each
bacterium

s  For(l =
generation

s For (k= 1:k=N,,;k++)7/k is reproduction generation

*  For (j=1y<N_++)/] 13 chemotaxis generation

s For(i= 1.1<8;i++) /Traverse bacterial individual, 11s
the number of bacterial individual

+  Compute the bacterial fitness, I'(j k1) = Fun(6'(,k,1))

LN ++)/1 18 elimination-dispersal

» Save the cuwrent optimal individual to T,
Jo = TGED
¢+ Randomly tumble with self-adaptive step-size

according to the ABSO Eq. 1 and 8 and update
bacterial position 6°(j+1 k,1)

+  Compute the bacterial fitness I'(j+1 k. [) with 6'G+1 k. D)

¢+ While (m,<N,)/m, is the bacterial swim step number

o IFPGHL DT, let Ty, = TG+1KD) and continue to
swim forward with variable step-size in this same
direction and then calculate the fitness-updating
value

»  Else terminate the swim and save the local optimal
value of bacterium i to T,

*+  Endif

¢+  End while
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¢  End for//End for the traverse to bacterial individual

*  Assess the individual optimal position and the global
optimal position in all chemotaxis operations for each
bacterium

* Calculate the new velocity and position of each
bacterium according to the self-adaptive PSO
Eg. 3-5and 7

*  Calculate the updated fitness value of each bacterium

¢  End for//End for chemotaxis

¢+ Calculate the health degree of each bacterium
according to Eq. 2 and sort bacteria in order of
ascending health degrees

¢ Split and elimination: Eliminate the latter half bacteria
with poorer health degree and split the same amount
of bacterial colony from the first half bacteria with
better health degree

*  End for//End for reproduction

¢+  Elimination and dispersal: For the given dispersal
probability P, if a bacterium individual meets the
dispersal condition, re-generate a new individual
according to the random algorithm

¢  End for//End for elimination-dispersal

The flowchart of the ABSO algorithm is illustrated in
Fig. 3.

Initialize each parameter,
location and vecolty of each bacterium

L2
Calculate the initial fitness and record the local optimal
location ... the global optimal location 6
|

Lk 4
| Compute the fitness of each bacterium |

best

No Tumble
with variable |—»|
Yes step-length

Tumble with adaptive variable
step-length, until swim length reaches N|

Update the velocity and location
of bacteria with adaptive PSO
v

| Update 0, 0, |

No ‘
_

Yes
Reproduction: Select the first half bacteria
of smaller J,,,, and eliminate the latter half ones

R No
Reproduction: k>N,

Yes
| Eliminate-disperse with probability P |

No
Dispersal:I>N_,

Yes
| End: Output g, and its fitness |

Fig. 3: Flowchart of the ABSO algorithm

SIMULATION EXPERIMENTS AND RESULTS

Test functions: Tn order to validate the performance of the
ABSO algorithm, four commonly used Benchmark
functions, shown in Table 1, are selected for numerical
experiments. These fimetions having a large number of
local optima values and with multi-peak have been widely
applied to evaluate the performance of optimization
algorithms and their theoretical optimal values are all 0.
The number of local extreme pomnt can surge with the
increase of the test function dimension when using
traditional optimization methods. Especially Rosenbrock
function is recognized as morbid quadratic function
difficult to mimimization, whose valleys are numerous and
optimization easily falls into local minimum point.
Rastrigrin and Girewank functions are all typical linear
multimodal functions, whose search space are all wider
and have a number of local mimma and tall obstructions.

Parameter settings: This paper compares the ABSO
algorithm with the original BFA, P3O, self-adaptive
APSO, BSOA (Biswaw et al., 2007, Yang et af,, 2012),
BF-PSO (Korani, 2008, Zhao et al., 2010). In order to
guarantee the comparability of algorithms, these
algorithms take the same parameters, where the
population size 5 = 30,the vanable dimension D = 30 and
D = 50 respectively, the maximum dispersal generation N,
= 2, the maximum chemotaxis generation N, = 200, the
maximum reproduction generation N,, = 5, the biggest
swim steps N, = 4, the dispersal probability P, = 0.25. We
set the fixed step-length of the original BFA C'=0.002, the
ABSO imtial step-length C,,, = 0.15, the control parameter
of variable step-length m = 2, the control parameter of self-
adaptive leaming factor a= 7, the initial inertia weight w;;
= 0.5, the control parameter of self-adaptive inertia weight
n = 1.25, the standard PSO parameters C, = C, = 2, w =
0.7298, the maximum iterations iter,,, = 2000. And each
experiment repeatedly runs 50 times.

Experimental results and analysis: Evaluation criteria
include optimal fitness mean, standard deviation and
average run time. Table 2 shows the comparison of
average optima, standard deviation for six kinds of
algorithms. The average optimal fitness and its standard
deviation are in the first line and the second line of each
table cell, respectively. We can see that the performance
of BFA is the worst, the ABSO algorithm in this srudy is
the best, BSOA is better than BF-PSO in the traditional
mixed algorithms and APSO by using the self-adaptive
thinking in this srudy is better than standard PSO in the
single algorithms which also reflects the effectiveness of
the self-adaptive thinking in this srudy. Whether for
30-dimensional problem or for 50-dunensional ABSO
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Function Mathematical expression Scope

n-1
Rosenbrock £ (x) =Z[100(’(m -V +(x, —1F] [-30,30]

1=
Rastrigin £,(x)= 3 [x? ~10cos(27nx, )+ 10] [-5.12,5.12]

=1
Griewank =1 Sy TTeos(s -600,600

f.(x) 1900 ; X, gcos(Ji_) +1 [ ]

Ackley [-32,32] parameter settings

_ - N
f,(x)=—20exp(-0.2, ’(néx1 N exp(n§c052:rtx‘)+20+e)

Table 2: Average Optimal Fitness and Standard Deviation of 6 kinds of Algorithms (Mean(Standard Deviation))

Fun-ction Dimen-sion BFA

PSO

APSO

BSOA

BF-PSO

ABSO

f, 30 8283067(2.82E6-2) 5.131533(7.96E-2) 5.3165(136E-01)  4.811333(3.48E-01) 5.230533(1.40E-01) 2.433E-1(3.10E-02)
50 8.632667(4.51E-2) 5.869367(2.78E-2) 5.752233(3.57E-02) 5.462833(241E-01) 5.718667(1.42E-01) 1.49624(1.14E-01)
f, 30 227 8367(82E-2) 2.1183(2.5E-02)  1.9SMEHG.0TE-03) 211274.73E-02)  2.5604(2.04E-02)  1.3988%(6.35E-02)
50 2. 647433(2.92E-2) 2. 5051(2.58E-02)  2.475033(6.82E-03) 2.315767(1.13E-01) 2.232633(2.23E-02) 1.60092.79E-02)
f; 30 2.808633(3.37E-2) 1.026867(1.25E-01) 1.003583(9.73E-02) 0.608233(1.74E-01) 1.040667(1.06E-01) 1.23E-02(2.66E-01)
50 3.02016(5.2E-2)  1.74684(G.04E-02) 1.71828(0.97E-02)  1.32922(1.27E-01)  1.45012(9.29E-02)  1.25E-4(2.56E-01)
£ 30 1.2792(L.69E-3)  0.987267(3.92E-02) 1.0198(2.21E-02)  0.934067(2.14E-02) 1.311567(2.76E-03) 0.7014(1.96E-03)
50 1.295467(1.48E-3) 1.0489(2.04E-02 1.022233(2.19E-02) 1.028433(5.32E-03) 1.3146(1.50E-03) 1.0002(2.94E-03)
10 v J
> ,52.
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o ©
> >
2 2
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= £
= S,
= =1L
o o}
3 ke!
O ) 1 r 2 r
0 500 1000 1500 2000 0 500 1000 1500 200C
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Fig. 4: Average  fitness convergence curve of  Fig 6 Average fitness  convergence cwve  of

30-dimension f, function

10 v v
Sr@-@-@-@-@-@-@-@-@-@-@-@-@-@-@-@-@-@-@
282 1
S %
S
> 6 .
[%)]
g
£4 |
2
o
82 |
O r r r
0 500 1000 = 1500 2000
calculation times
Fig. 5: Average fitness convergence curve  of

50-dimension f, function

30-dimension f, function

problem, the precision of solution is highest and standard
deviation is lowest in the six algorithms. Particularly for
the f; function, the optinal solution of ABSO 1s
fundamentally not an order of magnitude compared with
the other five algorithms. So we can see from Table 2 that
ABSO has distinct superiority in accuracy and robustness
which also indicates the feasibility and effectiveness of
ABSO in solving the high-dimensional fimetion problem.

Figuwre 4-11 show the 30-dimensional and
50-dimensional evolutionary optimization curves of four
fimctions, whose longitudinal axises take the logarithm of
the average optimal fitness of 50 times and horizontal
axises represent calculation times. As can be seen from
the figures, the search processes of PSO, APSO and
BF-PSO are similar for £, f; functions. Under the same
calculation times, the ABSO curves of four functions in
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the six algorithms decline most quickly and have the
fastest convergence speed which is the most apparent in
conwvergence curve of f, f; functions. By the comparisons
for two kinds of dimensions in 6 kinds of algorithms, we
find that the ability of approximating optimal solution of
. the 50-dimensional ABSO algorithm is greatest, especially
for the 50-dimensional f, function, its convergence
phenomenon is most prominent. This shows that the
higher the algorithm complexity is, the faster the ABSO
convergence speed is.
t ! Table 3 shows the average run time of six algorithms.
500 1000 1500 2000 As can be seen from the table, the ABSO algorithm 1s a
calculation times little slower than PSO and APSO due to the combination
of BFA characteristics but ABSO is much faster than BFA
Fig. 9. Average  fitness convergence cuwve of  and the other kinds hybrid algorithms including BSOA
50-dimension £, function and BF-PSO.

=) N

N

log10(fitness value)

A
o
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Table 3: Average mun time of 6 kinds of algorithms(/s)

Fun-ction Dimen-sion BFA PSO APSO BSOA BF-PSO ABSO
fi 30 10.5833 2.24466 2.219 5.920667 13.8857 5.078
50 11.146 2.43766 2.40633 6.23433 17.752 5.682
f 30 12.013¢ 3.1803 3.092 6.82533 8.15633 5.08867
50 14.4376 4.18733 3.91133 7.943 9.62467 6.873
3 30 14.2967 4.30731 4.138 7.4635 22.227 8.3625
50 17.38 5744 5.434 8.8034 26.403 16.288
s 30 12.6877 3.47933 3.33333 6.81233 8.343606 5.69267
50 14.7763 4.42166 4.19767 7.667 9.35933 7.10967

The above synthesis results indicate that ABSO has
higher search precision, faster convergence speed, greater
global convergence ability and robustness.

CONCLUSIONS

This study presented a self-adaptive hybrid
optimization algorithm based on PSO and BFA, namely
ABSO. The new algorithm combined BFA and PSO
effectively, not only maintained the capability of PSO’s
fast convergence and that of BFA’s obtaining global
optimal solution but also made up for the defects of
BFA’s easily trapped in local optimum with the PSO
update idea. While the self-adaption of parameters further
enhanced the local search ability of the ABSO algorithm.
Simulation results show that the new algorithm is superior
to exsiting algorithms in the optimal solution accuracy,
convergence speed and robustness which proves that the
validity of the improved algorithm and the algorithm is
more suitable for solving the optimization problems of
complex functions with high-dimension. The subsequent
research will further focus on the parameter settings and
search direction, apply the improved algorithm for discrete
and multi-objective optimization problem and ultimately
for engineering practice.
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