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Absract: Groundwater levels prediction is very important to groundwater resources evaluation and
management. A combined model of chaos theory, wavelet and support vector machine was develop to
overcome the limitations mcluding challenges in determination of orders of nonlinear models and low prediction
accuracy which the simulated accuracy 1s high in groundwater levels foresting. Firstly, groundwater level series
were decomposed into different frequency components in application of wavelet analysis. Secondly, phase
space was reconstructed using chaotic analysis. Thirdly, support vector machine (SVM) was used to predict
each component. Fmally, all components were merged mto a model to predict groundwater levels. A case study,
anmual groundwater levels located in the Spallumcheen B aquifer situated in the Fortune Creek watershed
surrounded by mountaing in semi-arid areas within west interior British Columbia, Canada was employed to
examine the combined model. The integrated model was evaluated by qualitative graphical method and three
quantitative approaches comprising of NSE, PIBAS and RSR techniques. These evaluation values indicated
the combined model high accuracy in groundwater level prediction and the model was valuable and useful for
groundwater level forecasting.
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INTRODUCTION

Water 1s the basic natural resources and strategic
economical resources. Groundwater 1s the important part
of water resources. Groundwater is an important part of
water resources. Groundwater 1s the mmportant water
supply source of many cities m north China and it plays
an important role to the development of economy and
society (Currell ef al., 2012). In the recent 30 years, with
the rapid development of economy and society, the
exploitation of groundwater are increasing greatly, which
induces a series of environmental problems and forms
serious intimidate to the sustainable development of
social economy in local area (Zhang et al, 2008).
Groundwater levels regime research is one of the major
scientific studies in groundwater discipline and research.
Groundwater levels fluctuation indicates that groundwater
resource is changing. The immediate reflection of
groundwater exploitation 1s groundwater level decreasing.
Groundwater level regime 1s a complicated nonlinear
process. Various methods and models are employed to
predict groundwater level. Groundwater level forecasting

research is grouped into deterministic and stochastic
models in mathematic models. The solving approaches to
determimstic models include analytic method, physical
simulation and numercial simulation. The stochastics
models comprises of regression analysis models, gray
models, frequency analysis models, time series models
and ect (Maheswaran and Khosa, 2013). Since the 1990°s,
artificial Neural Network (ANN) (Yoon et al, 2011),
support Vector Machine (SVM) (Yoon et al., 2011),
chaotic phase space reconstruction (Trefry et al., 2012)
and wavelet anaylsis (Adamowski and Chan, 2011) have
been used in groundwater level prediction research.
Groundwater level forecasting is very complicated only
becasue groundwater system is complex, nonlinear,
multi-scales and stochastic charcateristics. No smgle
forecating method 1s applicabe for all kinds groundwater
system beeasue the climate and underlying surface varies
in differect hydrogeclogic units. Chaos theory, wavelet
analysis and support vector machine were combined
into a forecasting model to predict ammual groundwaer
levels in this study. First, the complicated nonlinear
ground water series decomposed into

levels was
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supperposition of some layers of simple sequence.
Second, Phase space was reconstructed based on
aturated embedding dimension and built-in dealy time of
the series obtained in chaotic analysis. Third, support
vector machine with better generalization ability than
other nonlinear theory was used to predicted each
compoenent. Finally, all components were combined into
the predict results.

METHODOLOGY

Phase space reconstruction: Phase space reconstruction
1s the basis of analysis and prediction in application of
Chaotic  theory because chaotic verification of
groundwater levels series and  chaotic analysis
should be conducted in phase space reoconstruction of
ground water level series (Sekar and Randhir, 2007).
T (Built-in delay time) and m (embedding dimension) are
two unportant paramenters of phase space reconstruction.
Given groundwater levels series, x = {x/1 = 1,2,... N},
where, y; denotes the phase points in m-dimensional
phase space, M is the number of phase points,
M = N-(m-1) J, So the reconstructed phase space,
1=1,2,... .M.

Autorelativity
information function method are two approaches to
determine the embedding delay tine T. Autorelativity
function method 1s simple, but it 1s not applicable to all
cases mainly because it only describes the degree of
linear correction between variables. Mutual information
function method utilized m non-linear relationship
analysis, but it 1s unable to avoid numerious calculation
and complex space division due to its complex algorithm.
False Neighbor method, saturated correlative dimension
methoda and C-C method were often used to determine
embedding dimension (m) in recent studies.

C-C method (Kim et al., 1999) is an effective method
for calculating the time delay and the time window of
phase space reconstruction. First, it build the statistic via
Cross-Correlation Integral of embedded time series.
Second, it determines the optimal delay time and
embedding window. Third, it determines the embedding
dimension with embedding window. Cross-Correlation
method was employed to determine T (Built-in delay time)
and m (embedding dimension). The steps of C-C method
1s described as following:

function method and mutual

* Calculating stand deviation (a) of the given time
series, selecting the appropriate sequence length N

*  Calculating the following statistics: S(t), AS(t), S,.(t)

¢ Determining the emberdding delay time t and delay
time window T,, based on the following plots

¢ The first zero t of S(t) corresponds to an embedding
delay time

* The first mimimum t of 6S(t)corresponds to an
embedding delay time T

¢ The minimum t of S_(t) corresponds to an delay time
bandwidth T,

»  Calculating embedding dimension

m = it~ + 1) (1)
T

Chaotic identification: Chaotic identification methods
consist of qualitative appoaches including Phase Diagram
method and power spectrum method and quantitative
approaches comprising saturated correlation dimension
method and Lyapunov expeonent method which 1s
commonly used. Wolf method and small data sets are two
main approaches in Lyapunov determination. Wolf
method requires time series wihtout noise, the data
requiremenined, which takes a long evolutionts are
relatively high,and the characteristic parameters of the
system is obta time to track .Small data sets is applicable
for small sample because its calculation 1s small and easy
to implement based on improvement of Wolf algorithm.
Small data sets was employed to figure out the maximum
Lyapunov exponent (Liu and Liew, 2003; Ubeyli, 2010).
The procuders 1s presented as following.

Select all of M = N-(m-1) phase point as a reference
point,reference phaes point and the nearest phase points
in the phase space as a starting point of adjacent track to
study the exponential separation of adjacent track.

Orbital distance 1s the initial distance at the moment
of the subscript i:

& =

1 [=
Yi Y| = _JE (X1—(k—l)r ~ X ke )2 (2)
m ¥ 5

The orbital separation of chaotic systems with
exponential separation characteristics, therefore:

5.=5e" (3)

[ 0

Meaximum Lyapunov index 1s adjusted according to
the following formula:

In(,/8,) 1nd, In (4)
S 8 S

A

Taking the overall average from Separation distance
which M phase point and near point of its evolutings
steps:
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Drawing in 8,~s graph, selecting the linear part of
curve to fit a straight line, the slope 1s the global maximum
Lyapunov index.

Support vector machine: Given training data {(x.y,),
(Xp¥2)s - s (Xu¥)} ER %R, where, x, denotes input vector,
v; is the output vector of corresponding x; and 1 is the
mumber of samples.the basic idea of support vector
regression is that the data x is mapped to high
dimensional feature space F by a nonlinear mapping @
and carrying out linear regression in this space, that 1s:

f(x = 0 O)+b) (6)
where, w denotes the weigt vector of hyperplane,b 1s the
bias. Solving optimization problems support vector

regression in condition Eq. 7:

v, —[0"O(x)+b] <+ &

[@"D(x)+b]-y, e+ (7
gi.e =0, i=12..1

H l T ! * (8)
Jnin 0o CY (& +E)

where, £, E( is the slack varibale,denotes the upper and
lower limits of the training error in the error € condition
(|yi-[0™®(x)+b]|), respectively; € is the error which is
defined by Vapnik-€ not sensitive cost function (David
and Sanchez, 2003). Constant C>0, it control the degree of
punishment of the sample beyond error.

Wavelet analysis method: Wavelet analysis can be
utilizted to decompose complex time series into a couple
of detail signal sequence describing the high frequency
component and background sigal presenting low
frequency components. Annual groundwater levels series
are decomposed and reconstructed in application of
wavelet should be utilized in discrete wavelet transform
because it 13 discrete series (Sang, 2013).

Multi-resolution analysis (MRA) 1s commonly used
discrete wavelet transform algorithm, which decomposes
groundwater levels series mto high frequency component
and low frequency part and it can be repeated to
decompose any resolution of high frequency and low
frequency components (Labat, 2008).

In the non-stationary groundwater levels series,the
trend component can be seen as long-cycle component

which cycle length much longer than the actual series;
Random component 1s caused by the irregular oscillations
and random factors.they are small scale high frequency;
periodic component is caused by the certainty ,on the
spectrum of the groundwater levels ,the frequency range
between the trend compenent and the random component
(Karthikeyan and Nagesh , 2013).

Therefore, the analysis of low frequency components
and high frequency components were able to identify
variations of time series and decompose groundwater
levels series mto trend term, periodicity term and
randomness term.

COMBINATION MODEL

Basic theory: Firstly, the groundwater levels series
{x, X, Xy are judged if they have chaotic characteristic
and then the delay time (embedding residence time) t and
the best embedding dimension m are determined using
chaotic analysis method. Secondly, the ruoff series are
decomposed into background signal and detail signal
CDt(t=1,2, ..., 7], T 1s decomposed scales number) which
have dimensionality reduction characteristics. Thirdly, At
and Dt are
backgroundwater singal CA and detail signal CDt, in

obtained from reconstruction of
which the first n data are employed to train predictor to
conduct parameter estimation and topological structure
determination of predictor and the rest m of data is used
to validate the model. Finally, At and Dt are predicted by
SVM predictor separately.

Step (1): Normalization of groundwater levels series
X, %, Xyt viaEq. 9:

X_Xt—i (9)

where, X 1s groundwater levels’ mean value, 0 1s
groundwater levels’ mean square error.

Step (2): C-C method 15 employed to determine the bulit-
in delay time (1) and embedding dimension (m)

Step (3): Groundwater levels series is identified chaotic
characteristics

Step (1): The wavelet decomposition series {cAt, cD1,
¢D2,...eDt} which are decomposed by the db3
function are separately reconstructed into the
series {At, D1, D2,... Dt} based on the Mallat
decomposition method If the groundwater levels
series {X,, X, Xy are chaotic series. Tramning
sequence and verification sequence are formed
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based on the relationship of input X and ocutput Y using
built-in delay time Tand embedding dimension m for each
series At, D1, D2, ... Dt

X Xin T Xy X 2Hm-t
x x X x
= 2 Zfﬂ L P RS (] 0)
Xptim-13t Xttt Xp1 Xy

Step (5): First, regression support vector machine
prediction model 13 established separately based
on series At, D1, D2,... Dt and then the mapping
relationship of input and output 1s obtained via
training learming sample and determirng model
parameters. Second, The predictive value of
each sequence is obtained via putting
verification sequence into each prediction
model. Finally, the combination of predictive
value are forecast results

Step (6): Inversing normalization is conducted for the
predicted results

Step (7): Model calibration and validation

Various approaches including qualitative graphic
methods and quantitative statistical methods can be
employed to calibrate and  validate the model
(Moriasi et al., 2007).

The quantitative methods comprise of standard
regression methods, nondimensional
methods and exponential methods. The
graphical method provide a visual comparison of
computed and observed data and
view of model performance. Coefficient of determination
included in standard regression statistics methods
describing the proportion of the variance in observed
data  explained by the model, Nash-Sutcliffe
efficiency (NSE) (Gupta et al, 1999) which is a
normalized statistic  that
magnitude of the residual variance compared to the
observed data variance and suggests how well the
plot of observed versus computed data fits the
1:1 line included in  dimensionless techmiques,
Percent bias (PBIAS) (Legates and McCabe, 1999)
included in error index techniques measwring the
average tendency of the modeled data to be larger or
than their measured counterparts, RMSE-
observations  standard deviation ratioc  (RSR)
(Singh et al., 2005)incorporating the benefits of
index  statistics and including a scaling/

statistics
eITer

a first overall

determines the relative

smaller

error
normalization factor were employed to evaluate the
combination model.

NSE is estimated as shown in Eq. 11:

= Xlnhsixfnm 2
oo | EO ) an

2 (Xlnbs _ ymem )2

i=l

where, X means the ith cbservation for the constituent
being evaluated, X 15 the ith computed value for the
constituent bemng evaluated, X™ 1s the mean of measured
data for the constituent being evaluated and n represents
the total number of measurements. NSE covers a range
from -8 to 1, with NSE =1 being the optimal value. The
values are less than zero suggests unacceptable model
performance.
PBIAS is obtained with Eq. 12:

com

3 (2 - x™ <100
PBIAS=|=2 (12)

> (x5

i=1

The lower magnitude values of PBIAS mdicates the
more accurate model modeling. Zero 1s the optimal value.
Negative values indicate model overestimation bias and
positive values indicate model underestimation bias. RSR
1s calculated by Eq. 13:

ohs _ scom 2
(3™ - x™)

n

1

‘ J (13)
(5t

_ RMSE 7{ p
STDEV,, {

1=

i=1

where, STDEV ,, means standard deviation of observation
data. RSR ranges from the optimal value of 0, which
suggests zero RMSE or residual variation and therefore
perfect model simulation, to a large positive magmtude.
The higher RSR, the higher RMSE and the worse the
model simulation performance.

CASE STUDY

Study area description: The Okanagan valley is situated
in the semi-arid southem interior of British Columbia (BC).
Due to population growth, increasing water demand and
the possible impacts of climate change, there are growing
concerns over shortages of water resources to meet the
needs of future economic and social development in the
valley. Concerns have been raised over the quantity and
quality of shallow and moderate groundwater resources
and how groundwater pumping may affect swface stream
flows and deep groundwater. Shallow and moderate
Groundwater pumping 1s the major resource for the water
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supply in Fortune Creek watershed located in the
Northern Okanagan. There is an artisan well drilled in the
regional deep aquifer Spallumcheen B represents the deep
groundwater level monitored by BC Miustty of
Environment since 1971. The groundwater levels
fluctuations of the artisan well is important to understand
the deep groundwater resources variation. Prediction of
groundwater level of the artesian well is valuable to the
water supply in Fortune Creek watershed and the
development of the society. The historical annual
groundwater level between 1971-2000 was
employed to develop and calibrate the combination moedel
and determine the model parameter, while the groundwater
level series data between 2001 to 2008 was utilized to
validate the model forecasting accuracy.

series

RESULTS AND DISCUSSION

Qualitative graphical modeling results during
calibration Fig. 1 and validation Fig. 2 indicated adequate

results in validation. The trends of groundwater level
variation of simulated and observed groundwater levels
in calibration and validation were similar. The results of
four quantitative statistic techniques for the combined
model evaluation in calibration and validation were
presented in Table 1.

NSE values bemng 0.88 and 0.77 which were nearly
1.0 in model calibration and validation respectively
indicated that the model was close to optimal and the
model performance in calibration was better than what in
validation. The model calibration and validation PBIAS
values being 0.19 and 0.26 suggested that the combined
model was near accurate and the underestimation bias.
RSR values being 0.15 and 0.29 which were near the
optimal value of 0 mdicated that the combined model
performance was closely perfect. The wvalues of
PBIAS and RSR in validation being larger than

Table 1: NES, PBIAS and RSR values of the combined model for the
case shudy

. . L. Item Calibration Validation
calibration and validation over the range of groundwater g 0.88 077
level wvariation, although the computed results in  PBIAS 0.19 0.26
calibration showed a better match than the simulated R 0.15 0.29
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Fig. 1: Comparison of observed and computed groundwater levels in calibration
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Fig. 2: Comparison of observed and computed groundwater levels in validation
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what in calibration indicated the model performance in
validation working less than what in calibration.

CONCLUSION

The combined model integrated chaotic theory and
wavelet analysis with support vector machine fully
applying phase space reconstruction of chaos theory,
multi-resolution ability of wavelet and ability of nonliner
approach of support vector machine, which was built
using annual groundwater levels located mn the deep
aquifer named Spallumcheen B in Fortune Creek
watershed situated i British Columbia, Canada,
overcoming the challenges of the nonlinear model
exponent number determination, prediction accuracy low
with high accuracy of model simulated in groundwater
level forecasting in this paper is applicable, useful and
applicable for other time series prediction.
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