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Abstract: The problem of exponential stability non-fragile control for a class of discrete large-scale systems with
delays 1s considered in this paper. Based on Lyapunov stability theorem and linear matrix inequality approach,
a new approach is given to design the state feedback non-fragile controller. By introducing a new Lyapunov
functional, a exponential stability condition is obtained in terms of linear matrix inequalities. The simulation is
easier with non-fragile controller. The solutions of linear matrix inequality can be easily obtained by using linear
matrix inequality Control Toolbox in MATLAB. Finally, a numerical example is given to demonstrate the validity

of the results.
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INTRODUCTION

Time delay is frequently encountered in various
engineering, communication and biological systems
(Kau et al., 2005). The characteristics of dynamic systems
are significantly affected by the presence of time delays,
even to the extent of mstability in extreme situations.
Therefore, the study of delay systems has received much
attention and various analysis and synthesis methods
have been developed over the past years (Shyu et al.,
2003).

Recently, the problems of decentralized stabilization
for large-scale systems with delays have been studied
(Krishnamwthy and Khorrami, 2003; Wu, 2002).
Keel and Bhattacharyya (1997) considered the problems
of the design non-fragile controller. But on the non-fragile
control for discrete large-scale with delays, a few results
have been present (Park, 2004).

This study presents the problem of exponential
stability non-fragile control for discrete large-scale
systems with delays. Based on Lyapunov stability
theorem, a sufficient condition is given in terms of linear
matrix inequality.

PROBLEM FORMULATION

Consider the following discrete large-scale systems
with delays composed of N interconnected subsystems

described by:

nl

5 x](k+1):A]x‘(k)+B‘uj(k)+ZN:Ax(k-hq) (1)

XK =y.(k)  -h#k£0,i=12L N
where, x(k)eR" are state vectors. u(k)eR™ are control
vectors. h; are positive integers representing the delays
of systems. 1,(k) are the given initial states on [-h, 0]. A,
B; and A; are real constant matrices with appropriate
dimensions:

x() = [x] (0, X100, x0T h = max (b,

'y, Il = max {|l w, ky 11}

—-h<ks0

For the systems Eg. 1, we will design the
decentralized non-fragile controller such as (Xu et af.,
2004):;

uk) = (K+AK)x (k) 1=1, 2, . N (2)
where, K,eR®™ are constant matrices, AK,eR™™ are
unknown matrices representing time-varying parameter
uncertainties satisfying:

Ak1 = D1(P1(k)G1K|

where, D, G, are known constant matrices, @k) are
unknown matrices satisfying:
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¢ pk)<T

Substituting controller Eq. 2 into systems 1 yields the
closed-loop systems:

%k +1)=[A; +B,{I+D,qk)G)K; |x, k)

+2Aux1(k7hu) (3)

1

N
=Ax(k+3Y Ax k-hy)
=

Where:
A=A +B(I+ D k)G)K,
MAIN RESULTS
Defintion 1: Hsien and Lee (1995) Large-scale systems
Eq. 1 is exponentially stable, if there exist constants
0ze<1 and ¢z1 such that;
[Ix(k)<ci]h ck k=0

where, ¢ 1s called exponential stable degree.

Lemma 1: Kwon and Park (2004). The LMI:

Yy W,
W(x) R{x)

1s equivalent to:
RE=0, Y(x)-WEORG'WT (x)=0
where, Y'(x) = Y'(x), R(x) = R"(x) depend on x.

Lemma 2: Yang et al. (2000) for known constant €>0 and
matrices D, E, F which satisfying F'F <I, then the following
matrix inequality is hold:

DEF+E'F D™« eDD™+eG'E'E

Theorem 1: For any given constant ¢ (0<c<1), 1if there
exist matrices KER™", nHn, positive-definite matrices P,
R,eR™™ such that the following linear matrix inequality
holds:

—T —T —T
T AiPA, APA, - APA,
Alepi K, I il AE R sz B KiTlPi Am
— — 4
A;r2P1Ai AiTzRAu Ji2 B AxTEPiAN <0
: : : M
ATNP' A A;FanA;l A};{RA12 J.N

Where:

o= APA-a'P +5R,
I.=AIPA -38(A R o

Py (n=12--N)

With non-fragile controller Eq. 2, the discrete time
large-scale systems Eq. 1 with delays 15 exponentially
stable, where, 8(.) 1s a real function satisfying:

3(0)=0, VE=0,8(E)=1; & = i 3(A,)

il

Proof: Selecting a Lyapunov functional such as:

Vi =[x (0P, ()
o S
+ 373 %] (k- mR S(A e’ Vx, (k—m)]

=1 m=l

where, a(0<a<1) 1s a constant, P, R, are positive-definite
matrices of theorem1.

Along the solution of systems Eq. 1, the forward
difference of V{k) is obtamedw:

AV(K) = Vik+ 1) - V(K)

= i {x] k +DPx, (k + 1) —x] (kK)P,x, (k)]

N by

+ EIZIXJT(IH—I—m)RJS(Aij)CLE(r“'Dx](k+1—m)
j=1 m=
u th T 21 1

=303 ] (k—m)R B(A ye" " P (k - m)}

= i {[x] (k + DPx,(k + D — %] (K)Px, (k)]
N hya

+ 303w (k- DR B(A o, (k- )

=L =0

h"]
ST (k - DR B(A, Ja?Vx, (k - 13}
1=1

1= T[4

{Ix{ (k + DPx; (k + 1) - x[ (K)Px, (k)]

N
+ 3 X ROR B(AX, (k)
j=1
~ X[k~ h)RB(A ™ x (k- h,)

by-1
+ 30 eIk - DRBA e Kk - D]}

= ZN: Xk + DBk + 1) — x] (KPxX (k)]

+ ZN:[XJ.T(k)RJ.S(Ai])x](k)

j=1

- %k —h R B(A )™ x (k—h,)
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by
+ 2_2 (A—a)x(k+1-m)R 3(A)
o @0k ki + - m)]

+ i (- a7 (KR (A%, (K)

- A a xR (A, ()

+ (1 —aHxk+DPx, (k+1)
—(l—ax] (k+DPx, (k+ 1)}
=-aDVk+1)+ i @k (k+ DPx,(k+ 1)

i=1

~ %" (KIP. X, (k) + i a xR S(A, )X, (K)

N
~ Y xT(k —hR B(A e Vx, (k—hy)}

j=1

=l-a)Vk+D+ oﬁi Q,

i=1

Where:

Q, =x] (k+DBx, (k+ D - o’x] (KPx, (k)

+ ZN; % (KIB(A IR x (k)

N
—zl:xf(k—hu)B(A‘J)RJcLEh‘JxJ(k -h)
-

I N _
=xTOATP, A, (k) + 23 xT (AT P A
=1

47

(k-h,)

H N

—T
+ 32k (k—h AP A (k—hy)
o

— X" KPx, (k) + i xT()3(A, R x, (k)

i=

N
—21 )k -h)8(A R o "x (k-h,)
=

Therefore:

H

AV =(1-a?)Vik+D+a” > O

i=1

a1+ oﬁi T (O[AP A

i=1

—o’F, + 3R, %, (k)

N
=3 %]k —h,)8(A DR« x (k—h,)
j=1

2%7(K) A PA X

nl

=

+ (k-h,)

+
=
[]=

x"(k —h JATPA x,(k ~h,)}

1

T

x; (k)
x,(k—h,)
=(-aHVk+1D)+ (1’22 x,k—h,)

i=1

ek —hy)
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l, APA, APA, L APA,
ATPA, I,  APA, L AiPA,
* ALRK‘ AgPiAil Jx2 L AERAIN
M M M 0 M
ALPiA ALPA, ALPA, L I,
x,(k)
x,(k-h)
x| %, 0k=h,,)
Xy (k= hy)
Where:
J,-APA - aP + R,
I.=ATPA -8A R o™ (=12 N)

With Eq. 4, we obtain:
AVK)<(1-aGHV(k+1)
Le:
Vit D<(aG* V)
Therefore:
V< Vik-1)< el Vik-2)<... < a®™V(0)
With Eq. 5, we know:

V(0) < [A N+ A=hN] | wlf.

V.k, 2 LN x(k)|F
Where:

A = i=l;1}:r:ﬂ',{N {lmax (R )} LAR = i=l;1}?§N {lmu (R,)} .
Ap = min {2, (P)}

With Eq. 6-8, we obtain:

Ap+ hgh
Ap

1% fl< pll, o

(6)

(7)

(8

@)

With definition] and the mequality Eq. 9, we know
that discrete large-scale systems Eq. 1 are exponentially
stable.
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Theorem 2: For any given constant a(O<a<1), if there
exist constant €>0, matrices Y,eR™™, positive-definite
matrices Q, T,cR®" such that the following linear matrix
mequality holds:

~Q+eBDD/B] AQ+BY,
(AQ+BY)  -a’Q+8T,
QA 0
QuAy 0
0 GY
Ail Ql AxNQN 0
0 - 0 GY)"
= 0 o Lo (10)
0
0 Ty 0
0 —&l
Where:
L. =-8(A )T a™™  (i,n=12--N)

With non-fragile controller:
U (k) =1+ Dip. ()G Y,Q M x; (k)
The large-scale systems Eq. 1 is exponentially stable.

Proof: The matrix inequality Eq. 4 can be rewritten:

—a’P, + 3R, 0 0
0 —B(A R e 0
0 0 B AR o
KT
Al -
+ P km[A Ay L Ay]<o
M
A

With lemma 1, the above inequality is equivalent
to:

-p! A
A -a’P+3R,
Al 0
AL 0
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Au AN
0 0

SB(A R @M 0 <0 (11)
0 o —BA Ry

Where:
A=A, +B,(I+Dg G K,
Pre-and Post-multiplying the inequality Eq. 11 by:
PR P L P
and giving some transformations:

Q=P Y, =KQ.T=PRE’

We obtamn;

-Q Fi

¥ —a’Q + 8T,

v 0

v 0
LPﬂ LP;N
0 0

~§(A )T’ - 0 <0
0 o —B{AL Tt
Where:

¥,=AQ +BY,+BDg(KIGY,
W, =A,Q,  (1=12--N)

With theorem?, for any €>0, we have:

11, AQ +BY, AQ L A,Q
(AQ +BY)" I, o L 0
(A,Q)" 0 m L 0 |<o (12)
M M M 0 M
(AnQy)’ 0 0 L I
Where:
I, = -Q +eB,D,D/B]
I, = -o’Q, + 8T + LYGIGY,
I, = —8(AT,a' "™ n=12--N)
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With lemmal, it is easy to know that the inequality
Eq. 12 is equivalent to Eq. 10.

CONCLUSION

A new approach of design non-fragile controller for
discrete large-scale 1s given m this study. By mtroducing
a new Lyapunov functional, a sufficient condition is
obtained in terms of linear matrix inequality.
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