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Abstract: Although, soil bulk density (D,) plays a significant role in modern agriculture, its obtaimung 1s still a
pressing question because of high cost and heavy work. The development of mathematical modeling
techniques makes indirect D, acquisition possible. This paper developed D,-predicted Pedotransfer functions
(PTFs) involving penetration resistance (PR) and soil volumetric water content (6,), using BP neural network.
Totally 6 models (M1, M2, ..., M6) were established. All were based on laboratory data acquired by a dual-
sensor penetrometer. M1 and M2 predicted clay’s and silt-loam’s Dy from PR and 8,. They proved the feasibility
of using BP to build D,-predicted PTFs. Adding the measure depth (d) of dual-sensor penetrometer as another
input, M3 (clay) and M4 (silt-loam) demonstrated d’s irrelevance in D,-prediction. Then M5 used PR and 6, to
predict D, for two kinds of soils n the same way. And M6 added soil texture to M5 after quantifying soil texture.
M6 presented better result than M5’s. It also pomted a way for finding umversal methods to get different soils’
D,
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INTRODUCTION

Easy access to real-time soil environment information
15 at the request of modern agriculture. The measurement
technique of soil parameters, such as moisture content,
nutrient content, soil compaction and so on, has been
focused at the study of agricultural engineering
(Arrouays et al., 2001). Bulk density (D,) 1s an important
parameter characterizing soil compaction. Tt relates with
so1l quality and crop growth closely and is one of the
crucial variables in the study of soil characteristics models
(Zhang et al., 2012). However, the cylinder core sampling,
has shortcomings (e.g., heavy work, time-consuming)
(Talabert et al, 2010). Anocther tool, gamma-ray
tomography, has potential risk of radiation exposure
(Hernanz et al., 2000). Hence, more and more indirect
methods to get D, were studied over the past decade.

Pedotransfer functions (PTFs) have been used to
predict D, (Brahim et al., 2012; Hollis et af., 2011). PTFs
are models that use known/easily accessible variables to
predict unknown/uneasily accessible variables. Tt had
been applied to predict scil hydraulic parameters
(Vereecken et al, 1989), carbon content (Jones et al.,
2005), penetration resistance (Santos et af., 2012).

The most commonly-used variables to predict D,
included soil organic content (Adams, 1973,
Alexander, 1980), soil water content (Hernanz et al., 2000),

soil texture (Ghehi et al., 2012), penetration resistance
(Quraishi and Mouazen, 2013) and so on. The published
models of Dy-predict PTFs were established using multiple
regression analysis (Ghehi et al., 2012) or artificial neural
networks. Furthermore, the PTFs using artificial newral
network presented better prediction performance under
However, most established
D,-predict PTFs depended on too many input variables
and different variables were measured by different
instruments. All of these leaded to problems, such as
complex calculation, high cost of data-acquisition and
time-consuming.

With the intention to measure penetration resistance
(PR) (6,)
simultaneously, various soil water content sensors have
been combined with the conventional penetrometers
(Topp et al., 1996, Vaz and Hopmans, 2001). However, no
study has been reported to build PTFs by these advanced
techmques. Thus, the major objective of this paper was to
build PTFs based on BP neural network using dual-sensor
penetrometer data.

the same conditions.

and volumetric scil water content

MATERIALS AND METHODS

Model of BP neural network: With nonlinear
differentiable functions as activation functions, BP neural

network model 13 an error back propagation network. It
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Fig. 1: Dual-sensor penetrometer

revises connection weights through a gradient descent
algorithm. Because single hidden layer BP neural
networks are competent to map arbitrary nonlinear
continuous functions in closed intervals, it was selected
to explore D,’s nonlinear dependence on PR and 6.. In the
selected BP newral network, each node had no coupling
with others within the same layer and it was commected to
all nodes in the previous and next layers.

Dual-sensor penetrometer: The dual-sensor penetrometer
(Fig.1) could measure PR, 0, and measure depth (d)
simultaneously. The maximum PR it could measure was
1000 N, 6, was 0.6 V and d was 700 mm. Specially, 8, was
counted in voltage. When 0, changed, the measured
voltage would change along with it. The penetration
speed of the tool was fixed at 30 mm sec™ according to
the ASABE Standards (ASAE, 2009).

Soil sample and experimental method: Two groups of soil
samples (clay and silt-loam) were prepared. The clay is
made of 14% sand, 13% silt and 73% clay; while the
silt-loam 1s made of 11% sand, 71% silt and 18% clay.
After 24 h over-drying at 105 and passing through a 2 mm

sieve, these soil samples were remoistened with different
levels of 0, , in an interval of 5% ranging from dry to
satration. After remoistened and fully stiured, the
samples were sealed in a container for 48 h to make sure
the internal moisture migration could reach equilibrium.
Then the samples were made into soil column with the
assistance of a special contamer, 700 mm length and
150 mm in diameter. For each level of 0, three kinds of
samples with different theoretical D, were packed. The
actual d (penetrating depth) ranged from 0 and 650 mm.
Each sample was measured five times to guarantee the
data reliability. Using the dual-sensor penetrometer,
soil columns™ PR and 0, at different d were gotten.
Following this step, the soil columns were sampled
with cuting ring, too. It was done along

container’s sidewall vertically, with an mterval of 100 mm
in depth.

RESULTS AND DISCUSSION

Data preprocessing: The PR, 6, and d acted as inputs of
BP neural networks and D, as output. Hach parameter had
different rang of value. The value of PR could change
from O to 1000 N, 0, from 0 to 0.6 V, d from O to 700 cm and
D, from 0 to 1.8 g cm™. The values of different parameters
differed greatly from each other. Before establishing
models, the nputs and output were normalized to
dimensionless values n (0, 1). This processing was to
balance effects of different variables’ fluctuation on
output and to simplify calculation. The normalization Eq.
was defined as:

%, =X Kon M

where, x, is the normalized value and x is the original
value; x,,,, and x,,.., is the upper and lower limit of variables.
In order to assess the performance of D,-predicted BP
neural networks, a part of experimental data must be
picked out to test the established models. For clay, 15
data out of 75 formed the test set, while 7 out of 39 for
silt-loam.

Establishment and evaluation

Establishment of BP neural networks: BP neural
networks with single hidden layer were adopted n the
study. Still, the node number of the hidden layer should
be determined. Since there's no umversal algorithm for
determining node numbers, the node number for each
network was gotten through a comparison method. The
specific means 1s: (1) Established BP neural networks with
different nodes separately for clay and silt-loam; (2)
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Trained the networks and got their Root Mean Square
Error (RMSE) and determination coefficient (R?); (3) with
the criteria of mimmum simulation RMSE and maximum
simulation R?, chose the best node numbers for further
study.

Evaluation of BP neural networks: Before generalization,
the established BP neural networks should be evaluated
whether their performance met the need. Tt consisted of
assessments of both network simulation and network
prediction. The former was based on traming sets and the
later on test sets. Siumulation assessment meant the
comparison between the network output values and
actual values of D, corresponding to the training set.
Similarly, prediction assessment meant the comparison
between the network output values and actual values of
D, corresponding to the test set. The RMSE and R* were
calculated to evaluate networks” performance. And paired
sample t-test on prediction was also conducted.

Prediction of D, based on clay: Tn each data, PR and 6,
acted as inputs and D, acted as output. On MATLAB
2008a, the clay BP neural networks with 5, 10, 15, 20, 25,
30, 35 nodes separately mn single hidden layer were
established. For each network’s simulation, RMSE and R*
were calculated.

At the begitming, the RMSE of network simulation
decreased and the R’ increased gradually with the
increase of node number. But when it was more than 25,
the simulation RMSE and R’ changed in an opposite
direction, getting worse. It's likely because the
computational complexity and the munber of iterations to
the same error increased as well when the node number
mcreased. Seen from the index value, the clay BP neural
network with 25 nodes in the hidden layer (M1) had
the best simulation result (RMSE = 0.1196 gcm ™,
R?=0.72). The prediction result (RMSE = 0.1164 g cm™)
of M1 were presented in Fig. 2.

Further, paired sample t-test between the predicted
and actual clay D, was conducted using SPSS. The t value
was 1.306 and the significance (p) was 0.213. This
convinced us of the fact that there’s no significant
difference between the predicted and actual values of clay
D,. On the other hand, the prediction R* reached 0.70. It
could be concluded that the predicted values of clay D,
based on M1 could well simulate the actual values of clay
D,.

Prediction of Db based on silt-loam: As for clay, the
silt-loam BP neural networks with 5, 10, 15, 20, 25, 30,
35 nodes separately were established. For each network,
the simulation RMSE and R’ was calculated.
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Fig. 2: Prediction results of M1
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Fig. 3: Prediction results of M2

Compared with clay, silt-loam models presented
smaller fluctuations of simulation indexes. The simulation
RMSE and R? of 15 nodes, 20 nedes and 25 nodes were
almost the same. To weaken soil texture’s effect on
network structure, the 25 nodes model (M2) was chosen
for silt-loam (RMSE = 0.1286 g cm ™, R* = 0.79). Its
prediction result (RMSE = 0.1446 g cm™) were presented
mFig 3.

The t is -1.436 and p is 0.201. The prediction R’
reached 0.69, which meant the predicted values of
silt-loam D, from M2 could well represent the actual ones.
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Fig. 4: Prediction results of M3
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Fig. 5: Prediction results of M4

Influence of measure depth (d): To confirm whether D,
prediction would be affected by d or not, d was added
into M1 and M2 as third input, to form M3 and M4,
Figure 4 and 5 are the prediction results of M3 and M4.
M3 showed a drop of prediction R’ to 0.36 after the
mtroduction of d. And the calculated RMSE rose up
to 0.2504 g cm™. Performance of M4 went worse,
too. (RMSE = 0.1622 g cm™, R = 0.60). This proved d
was an 1irelevant factor for Dy prediction using BP

meodel. It was consistent with the conclusion of Cai et al.
(2013).

Influence of soil texture: According to the results of M1
and M2, the prediction accuracies of different soil types
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Fig. 7: Prediction results of M6

differed slightly. For further investigation of soil texture’s
influence, two groups of data were processing together.
After mixed, 114 data was divided into 92 and 22
randomly. As with clay or silt-loam alone, M5 used PR
and 0, to predict D, for two soils in a universal way.
Figure 6 1s the result. Compared with M1 and M2, the
RMSE increased (to 0.1942 g cm™) and the R* dropped (to
0.32), an apparent deterioration of performance. Tt
confirmed soil texture’s crucial role.

Given that the difference of silt and clay percentages
between two soils was obvious, percentages of silt and
clay could be indicators that characterized soil texture. M6
introduced soil texture into M5 (Fig. 7). The RMSE
dropped to 0.1281 gem ™.
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The comparison of M1, M2, M5 and M6 supported
soil texture’s important role in D, prediction using BP
models. If soil’s composition percentages could be
gotten, the prediction accuracy could be improved
efficiently. Compared with M1 and M2, M6 weakened
prediction’s dependence on soil texture. Tt’s important for
finding wuversal methods to get D, of different soils.

CONCLUSION

Although studies have shown D, relates with PR, 0,
and soil texture, the relevant models have problems in
application. This thesis built D,-predicted models using
BP algorithm. Tt was concluded as following: (1) Tt’s
demonstrated BP newral network could effectively predict
D, from PR and 6, acquired by dual-sensor penetrometer.
(2) No improvement was made assuming d was an
independent factor in D, prediction. (3) When soil texture
was considered, the result supported soil texture’s
significance in D, prediction. However, 1t's difficult to
acquire soil texture quickly in field condition by existing
technique.
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