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Abstract: Tt is well known that increasing redundancy in a system generally improves the availability and
dependability of the system. In this study, we present a Virtualization-based Recovery for Intrusion Tolerance
(VRIT) architecture that strengthens cluster’s availability and dependability through periodic and event-driven
recovery. By periodically reverting each virtual server to a pristine state, the VRIT cluster can limit the online
exposure time of all servers, ensuring that even undetected attacks will be thwarted or at least be limited.
Anomaly detection engines are installed in every virtual server to enable event-driven recovery within a fixed
recovery cycle. Accumulated intrusion reports will prompt the compromised servers to be reverted earlier. A
control algorithm is designed to manage both security and service availability. Experimental results demonstrate

good performance of the algorithm.
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INTRODUCTION

In spite of all efforts to increase system security in
the past decade, security intrusions are still commonplace
events. Traditional intrusion prevention or detection
methods require prior knowledge of all potential attack
modalities and software vulnerabilities. These methods
are good at fighting yesterday’s wars, but are totally
ineffective against cwrent and future threats. The
increasing sophistication and incessant morphing of
cyber attacks lend importance to intrusion tolerance, a
critical system must thwart or at least limit the damage
caused by unknown and undetected attacks.

Intrusion tolerance systems (Cachin and Poritz, 2002)
are able to tolerate a limited amount of faulty nodes. A
system with n replicas usually can tolerate up to f<n/3
replicas that fail in arbitrary, malicious ways. However,
over a long lifetime, it is most likely that compromised
replicas exceed this limit. Regardless of whether an
intrusion is detected or not, if replicas are periodically
recovered from potential penetrations to a known clean
state and the recovery is performed sufficiently often,
then an attacker has not enough time to compromise
replicas. In this study, we propose a event-driven
recovery approach to accelerate the recovery when

intrusions are detected, so system security is
strengthened to a higher degree.
RELATED WORK

Intrusion tolerance is an important factor in building
applications that withstands security attacks. There are

several such architectures for securing Web servers.
Most of them are distributed architectures based on
replication. SITAR (Wang et al, 2001) is a classic
intrusion tolerance architecture. It focuses on distributed
services built from COTS components as the protection
target. MAFTTA (Nguyen and Sood, 2011) is a solution
that helps swvivability. Tt builds layers of trusted
components and middleware subsystems from untrusted
components such as hosts and networks.

A problem with classic intrusion-tolerant solutions
based on Byzantine fault-tolerant replication algorithms is
the assumption that the system operates correctly only if
at most f out of n of its replicas are compromised. The
problem here is that given a sufficient amount of time, a
malicious and mtelligent attacker can find ways to
compromise more than f replicas and collapse the whole
system. Some works show that a technique called
proactive recovery (Castro and Liskov, 2002) can solve
this problem. The idea is simple: a replica is periodically
recovered to a known clean state to remove the effects of
malicious attacks. Proactive recovery is a promising
approach for building intrusion tolerance systems that
tolerate an arbitrary number of faults during system
lifetime (Fig. 1).

Virtualization is a technology that can simultaneously
execute multiple operating system instances in isolated
environments on a physical machine. Reiser and Kapitza,
(2007) proposed that the hypervisor is used to initialize a
new replica in parallel to normal system execution and
thus minimize the time in which a proactive reboot
interferes with system operation. As a result, the system
maintains an equivalent degree of system availability
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Fig. 1: Virtualization-based mtrusion
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without requiring more replicas than a traditional
replication system. Resilient Web Service (RWS)
(Huang et al, 2010) uses virtualization with feedback
control to achieve fault tolerance, intrusion analysis and
automatic recovery. It 1s transparent to the applications it
supports and accesses to application source code are not
needed to integrate into a RWS-based system. SCIT
(Huang et al., 2006) is a self-cleansing intrusion tolerance
architecture. Its aim is to provide high degree of security
for Web servers by reducing server’s exposwre time.
Therefore, an attacker will not get much time to explore the
vulnerabilities of a target server to corrupt it. SCIT does
not include intrusion detection mechamsm. A pure
SCIT-based system 13 not hardened 1n the face of attacks
that can impact data confidentiality. For shorter windows
of exposure, the SCIT system will experience higher
overhead and potential user disruption from frequent
recycling.

A more robust solution should borrow from the
above discussed approaches. Our aims are to find
compatible combinations of off-the-shelf, mature
technologies to create resilient systems. An event-driven
recovery approach based on virtualization will be
discussed in this paper. Anomaly detection engines are
mstalled m every virtual machine to enable event-driven
reversion within a fixed reversion cycle. This allows, to
bring an online virtual machine, offline at the time of
intrusions to be detected.

VIRTUALIZATION-BASED RECOVERY
ARCHITECTURE

Since Web servers are open to public access, they
can be subjected to attack attempts by hackers. Flaws in
network services are inevitable. When such flaws are
triggered or exploited, corresponding
compromised or even disrupted entirely. To address the
1ssue, we present a Virtualization-based Recovery for

services are
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Intrusion Tolerance (VRIT) cluster, shown in Fig 1. In the
VRIT cluster server reversion is scheduled on a periodic
and event-driven basis to restore servers to a pristine
state.

VRIT uses Xen Cloud Platform (XCP) as the
virtualization foundation. A XCP environment consists of
several items: Xen hypervisor, domain 0 and guest domain
U. Virtual machines in XCP are called domains. The Xen
hypervisor is the abstraction layer of software that sits
directly on the hardware below any operating systems. It
15 responsible for memory partitomng and CPU
scheduling of the various virtual machines. Domain O has
special rights to access physical I/O resources and
manage the other domains. XCP supports virtual machine
snapshot. The feature 13 used to revert virtual machines
to a pristine state.

A VRIT cluster is a pool of virtualized server (VS)
replicas that cooperatively provide a set of predefined
services. Bach server in the cluster 18 dynamically brought
online or taken offline. At any time, some virtual servers
are online serving requests and others are taken offline for
reversion to clean state. Each client request is directed to
active role servers by the Proxy in VRIT.

The domain 0 controls the creation and execution of
the guest domains. VRIT uses the hypervisor to provide
replication logic, while actual service replicas are executed
in 1solated guest domains. A Control Center (CC) is
installed n the privileged domain for ugh security. the CC
is used to manage server recovery and role assignments,
including both periodic rotation and event-triggered
recovery. Periodic rotation 1s to bring online servers
offline for reversion to a pristine state. Such a state
includes system configuration files, system binaries,
critical utilities, service binaries and so on. Unlike system
reboots which remove only memory corruption, VS
recovery removes both memory and file system
corruptions, including malwares, backdoors and Trojan
horses. In normal conditions, VRIT executes periodic
rotation recovery through an exposure tiumer set by the
CC. Once a compromised server is detected, the CC will
bring it offline and switch to an accelerating rotation mode
for cleansing. At the same time, a spare clean server is
brought online to accept requests from clients. The offline
server 1s remnstalled operating system image and critical
services. After reversion to clean state, the offline server
is added to a ready server queue for online.

By periodically restoring each VS to a pristine state,
VRIT can limit the online exposwure of all servers, ensuring
that even undetected, successful attacks will be thwarted.
VRIT imposes an upper limit on VS’s exposure time. When
the exposure time reaches the limit, the V3 is reverted
even without mtrusion reports which will prompt the V3
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to be reverted sooner. Intrusion and anomaly sensors in
each VS report observable events to the CC, such as
system calls and attack alarms. The CC uses a two-level
control mechanism for triggering different actions. First,
the CC tries to take local actions with negligible
system-wide impacts in a VS to resolve corruptions with
minimal overhead. These local actions include restarting
unavailable services and killing suspicious processes.
Second, it is taken a weighted reversion schedule, where
accumulated anomaly or intrusion reports from a given VS
will prompt the CC to revert the VS earlier, while good
reports will weight it back to its fixed reversion mode.

The VRIT ALGORITHM

Description of algorithm parameters: Tn this study, the
VRIT cluster is assumed to support M service roles,
denoted by R, to Ry Suppose that each server is
assigned one role, thus VRIT needs to use M+1 and more
servers to provide M services. Our case is a 2DNS-2Web
cluster. This cluster supports four roles: a master DNS
server(P), a master Web server (W), a secondary Web
server(W) and a secondary DNS server (3).

N is the total number of servers in the cluster, the
cluster can do rotation operation when N = M+1, a
rotation cycle includes to rotate an online server offline,
reboot and cleanse the offline server to restore to its
pristine state and bring a clean server online. Obviously,
the number of clean servers is a key factor to affect the
efficiency of server rotation. Suppose that when there is
one clean server, the rotation time is T, When another
clean server is added to the cluster, the rotation time will
be decreased to T /2. If there are n clean servers, the time
is T./m. As is well-known, the shorter the online time of
the servers, the more difficult successful attacks. So it 1s
good to protect the system from some novel and
unknown attacks.

Rotation pattern Pa: A role R swap, 1 =1 =M, rotates the
present server running as role R, offline for cleansing and
takes a spare server online as R;. In the case of 2DNS-
2Web cluster, There are four swaps, including P swap, W’
swap, W' swap and S swap. Assume that at a given time,
there are 5 servers in state <P, W, W', S, C=>, the identifiers
of servers from 1 to 4 denote role P, W, W', 5, the fifth
server is in a spare state, denoted by C. If the first rotation
mode is P swap, then the cluster will enter state
<CW, W', 8, P> If the next rotation iz W' swap,
subsequently the cluster is in state <W', W, C, 5, P>

The rotation pattern is used to decide the rotation
sequence. For the 2DNS-2Web cluster, the pattern is
P->W->W'->5, it means that the system rotates with this
sequence. In the pattern P->W->P->W'->5, compared with
the other roles, role P swaps for two times. In practical
applications, the system can adopt different rotation
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Table 1: Tndex value and rotation behavior

No. of servers Active roles Mi(t) Rotation
1 Undefined 10 No
2 Pand W 20 No
3 Pand W 20 Yes
4 P, Wand W' 25 Yes
=5 P, W, W and 8 30 Yes

patterns to adjust the rotation frequency according to
relevant security level for different roles.

The role index value configuration: Tn many applications,
some service roles are more important than others.
Assume that the relative importance is denoted by w and
eachrole R 1s associated with an integer index value w(R).
The greater the w value, the more important the role in the
cluster. Table 1 gives the case of 2DNS-2Web cluster.
Assume that due to the server failures, the cluster 1s only
left with two normal servers which must serve as master
DNS server and master Web server. In order to reflect the
importance of the two master servers, we assign the index
value w for 4 roles: wW(P) = w(W)=10, (W) =w(S)= 5.
Define M(t) as the VRIT cluster index value, M(t) 1s the
sum of index value w of all active roles at time t. Tt is
required that M(t) must be equal to or greater than a
predefined minimum cluster index value M,;,. Tf sets M,
= 20 in the 2DNS-2Web cluster, the cluster must always
satisty with the minimum service requirement by keeping
P and W role servers online.

Suppose that the value w 13 decreased sequentially
from R, to R,, and there are k<M enabled servers, then the
task of meeting M, 1s to assign the former k-1 servers as
R, to R, Whether the last role R, 1s active depend on
whether the former k-1 roles satisfy the M, requirement.
If the requirement is satisfied, role R, will not be activated
and an alternate server will be reserved for triggering
rotation. Otherwise, the last server will be activated as
role R, to meet M_;, and provide the minimum service
guarantee as far as possible.

Control algorithm description: The critical component of
the VRIT cluster 1s the CC, which 1s responsible for all
transection, including server rotation, server recovery,
role assignment and etc. The CC algorithm uses M(t) to
track the cluster index value, variable k records the
number of active server roles and variable C, 1s the
number of cleaned servers. Rotation time 1s T. Queue QID
is used to record cleaned server’s D and the spare server
queue DS. A Short Session Storage (SSS) that adopts the
high speed memory technology based on the NAM,
which 1s built and ruined in an intranet server, is used to
store each online server’s session data which has not
finished yet. The clean server to be taken online will read
the session data from the SSS and go on with the session.
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At initial phase, k = 0, M(t) = 0 are set. The algorithm
scans and reads the total number N of servers in the
cluster, C, =N, T = T /(N-M), then boot servers online to
be relevant roles. When C, = 0, the CC 15 always in the
state of seeking enabled servers. When C_>0 and there 1s
a clean server C, the CC queries the mdex values
predefined server roles w(R) to find out whether the roles
meet the minimum requirement and then boot C online as
role R, in sequence. At the same time, M(t) = M{tHw(R)),
k=k+1, C, =C.-1, save the ID of just online server to the
OTD and delete the relevant ID from DS. If the number of
servers just meets the minimum requirement, it means at
this moment C, = 0 and the system can provide services,
but without rotation. If C, = 1, the value of M(t) will be
checked. When M(t) = M_,, the next clean server is not
activated firstly, it will be used as a rotation server. If
C,-1-M=0, the CC can activate the clean servers as other
secondary role servers. When all role servers are online,
the rest of clean servers will enter the quene DS and wait
for rotating online.

At normal proactive rotation phase, the VRIT cluster
runs according to the predefined T and Pa. Before
rotation, at least one clean server in the cluster is waiting
to swap with online servers. When there is only one C in
the cluster, the rotation interval is T,. Before an online
server 1s offline, it needs to check whether the value of C,
1s greater than zero. When C =0, the server can be rotated
offline and enters clean state. At the same time, C, = C-1,
boots another C, online as role R, starts a timer, replaces
the ID of the former offline server with the latter online
server in the OID and deletes the ID of the latter online
server from the DS. In addition, after the offline server
finishes the clean work, the CC sets C, = C+1 and adds
the ID of this clean server to the DS. Before the next
rotation, if the timer is timeout, it indicates that this server
has failed and needs to be taken offline by force. In this
process, when an anomaly is detected, whatever it is the
required exception or responsive exception, if the number
of the anomalies detected equals the predefined value, the
detection module will directly send exceptional signal to
the CC, then the CC firstly queries what services the
present role server provides and adjusts the rotation
pattern. It 1s better to defense a hacker from attacking this
kind of service by prior speeding up the rotation of this
role server for more times. In our cluster, the general
rotation pattern is P->W->W’->5, when a hacker attacks
the DNS server, the rotation pattern becomes P->W->P-
>W'->5, even P->W->P->W'->P->5. After a long time, if
there are not any abnormal records about the former type
of attacks in the audit log and the CC will adjust the
rotation pattern back to the predefined mode agam.
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The servers themselves have some faults. We
consider the worst situation. When a role server has a
fault, 1t needs to be rotated offline and a clean server is
taken online, C, = C,-1. When the bad offline server 1s not
recovered n time and there 1s not any clean server in the
DS at the moment, the CC will rotate some secondary
servers offline to ensure the rotation continuously,
M(t) = M(t)-w(R,;). When M(t) = M,,,, and there is no clean
server in the cluster, the system provides the minimum
basic services without rotation. Actually the system has

gone back to the initial phase.

The SIMULATED EXPERIMENT AND
PERFORMANCE ANALYSIS

The simulated experiment mvestigated the situation
that the servers provide the services by worlang with the
algorithm based on the proactive and reactive rotation
under the known and unknown attacks and the exposure
time and service effection were analyzed. In order to
achieve the contrastive data, the rotation time and pattern
would be adjusted. The experimental circumstance is a
2CPU Xeon 2.4 GHz Dell Server, with 16 GB memaory. The
system platform is XCP based on XenServer 5.6. Hight
virtual Servers (VSs) are used to build the VRIT cluster. 2
V3s are assigned as DNS servers, 2 other VSs as Web
servers, the rest as the spare servers for swap and
rotation. We conducted the experiment according to the
performance test method proposed by Huang et al. (2006).
In the experiment we choose the standard clean time
T, = (xTu4mxT, )(m+n). Whenm = n = 2, obviously
T, =255 sec. In the redundancy respect, we compare
S =1 with S = 4 (it indicates that the count of spare
servers 18 twice as the role servers). In the rotation pattern
respect, three kinds of pattern are compared. The system
mixed the two factors together during the experiment.

First, consider a mmimum VRIT cluster which
includes one online server and one spare server, the
parameter C /M 1s used as the reference. Just like the
description of the algorithm, M+C, VSs firstly start their
system by themselves mn each experiment situation. After
the CC boots M role servers online, it will rotate the
servers according to a predefined rotation pattern. There
are three typical rotation patterns: P, = (P->W->W'->3),
P, = (P->W->P->W'->8), P, = (P->W->W'->W ->8). In the
normal situation, the cluster adopts P, When a
compromised DNS server is detected, the CC will adjust
the pattern to P,, When Web attacks are detected, the CC
adjust the pattern to P,. In this way, the experiment rotates
repeatedly for 1000 times. The server swap munber 1s 4000
times under P,. Under pattern P, or P, the swap number 1s
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Fig. 3: Server exposure times under pattern P,

5000 times. The average rotation interval or the exposure
time 1s different in different S. When S = 1, the rotation
mterval T =T, xS =T, When S=1/2, T =T,/2. The
experiment rotates repeatedly for 1000 times under P, in
the whole process, the results are steady, the system is
also steady. The results are presented in the Fig. 2.

Next we use an unpartial rotation pattern, it means
that security priority is assigned to role P or role W.
When the DNS server 1s attacked, if pattern P, 1s adopted
and there is only one spare server in the cluster, compared
with previous situation, the exposure time of role P 1s
evidently decreased from 4T, to 2.52T,. While the
exposure time of the other servers is just increased a little,
from 4T, to 4.21T,. This impact 1s very little. In fact, the
average exposwre time of all servers 13 3.75T, . The benefit
of this kind of rotation pattern is that before the rotation
cycle is timeout and anomalies reach the predefined limit,
the CC will rotate the possibly compromised server offline
in time and take a clean server online to substitute the
offline server. Therefore, the passive defense problem of
only periodically rotating the servers can be solved. Fig.
3 shows the relationship between exposure window and
spare server under P, without attacks.

Finally, we simulated some attacks and investigated
the VRIT s performance and the influence for the whole
services. When some anomalies are detected, the CC will
adjust the rotation pattern to another pattern that is
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advantageous to accelerate the rotation rate of the DNS
server or the Web server. The exposure time of role server
being attacked can be decreased evidently, it means that
a hacker has less time to attack the present role server
each time. Therefore, the probability of successful attack
becomes smaller and the novel and unknown attack will
be contamed greatly under this mmpartial pattern. At the
beginning, the system runs normally under P,. We
simulate some traditional attacks, the rotation pattern will
be changed from P, to P, or P,. Like the second situation
above, the average rotation time of role P 1s reduced from
4T, to 2.52T,.. At first, the system runs under P,. After
simulating some attacks, the CC will adjust the pattern to
P,. The system rotates for 50 times under this pattern, So
attackers have no patience to attack this role server
continuously. In the following time, the system needs to
adjust the pattern back to P, manually. Attacking again
will make the CC adjust the pattern to P,. After simulating
repeatedly for 1000 times, in this invasive circumstance,
the average exposure time of P is 2.68T,,, the other role
servers 1s 4.19T_ and all role servers 1s 3.78T,.. The results
in Fig. 4 indicate that the system runs steadily and its
service performance 1s good.

Obviowsly, some conclusions can be achieved: the
average exposed time of the prior patterns is smaller a lot
than the general patterns, especially for the prior role
servers and the time 18 decreased evidently. The exposed
time of the role servers has some new changes due to the
rotation pattern is adjusted in attacking. Compared with
the general attack less situation, results show that the
rotation and performance of the VRIT cluster with IDS 1s
not influenced and the system runs steadily.

CONCLUSION

In this study, we have presented a virtualization-
based recovery approach for intrusion tolerance. The
experiment proved that this approach 1s feasible. It can
not only accelerate the recovery when mtrusions are
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detected, but also provide good secwre asswrance for the
architecture. In addition, it is easy to construct the VRIT
cluster i practical application and it is convement for
administrators to maintain the system for the deeper
security.

The future work is to optimize the CC, improve
rotation efficiency, design a random rotation pattern to
enhance the security level and study the possible security
problem when transmit the data in the SSS to the new
online server. In the premise of providing the normal
services, it is more secure for the system to open few
mterfaces, so the rock-bottom service interfaces need to

be studied further.
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