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Abstract: Many image reconstruction tasks, such as image denoising, deblwring, interpolation and
super- resolution, are ill-posed inverse problems which can be solved by adding a regularization term. One of
the well known regularization 1s the Total Vanation (TV) regularization whuch 1s employed m this study. In
addition, for the image reconstruction based on regularization, the tuning of regularization parameter is very
difficult and nontrivial. In this study, a method for choosing the regularization parameter 1s proposed which
combined the Stein’s Unbiased Risk Estimate (SURE) and Monte-Carlo techniques. It only depends on the
given data and the SURE can be used to replace the true Mean Squared Error (MSE) to obtain the optimal
regularization parameter. The main contribution of the study is to extend the Monte-Carlo SURE methed to
determine the optimum TV regularization parameters in image deblurring, interpolation and super-resolution
besides image denoising. Experimental results demonstrate the effectiveness and power of the proposed

method.
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INTRODUCTION

In many image reconstruction applications, there 1s a
need for solving an inverse problem, such as image
denoising, 1umage deblurring, image interpolation and
umage super-resolution etc. It 13 well known that these
inverse problems are all ill-posed and must be
regularized to get the meaningful and reasonable solution
(Hansen and O'Leary, 1993, Molina et al., 1999). One of
the popular regularization is the Total Variation (TV)
regularization which uses the smooth prior knowledge
measured by L1 norm of the image gradient (Goldstein and
Osher, 2009; Aubert and Kornprobst, 2001). On the
other hand, for the image reconstruction based on
regularization, the tuning of regulanzation parameter 1s
a very difficult and open problem (Hansen and
O'Leary, 1993; Ramim et al., 2008; Gilboa et al., 2006).

In this study, the TV regularization 1s employed to
solve the ill-posed image reconstruction problems and the
Monte-Carlo and Steir’s unbiased risk estimate (SURE)
methods (Stein, 1981; Ramim et af., 2008, Elder, 2009,
Giryes et al., 2011) are used to determine the optimum
regularization parameter.

The study 1s organized as follows. In Section 2, we
put forward the image degradation and the TV
regularization models and discuss the iterative algorithm
for image reconstruction. In Section 3, after a briefly
imtroduction of the MSE and SURE theories, a

Monte-Carlo SURE method is developed to find the
optimal regularization parameter for the 1mage
reconstruction based on TV regularization. Experimental
results are presented in Section 4 and conclusions are
drawn in Section 5.

IMAGE DEGRADATION AND TV
REGULARIZATION

Image degradation model: Suppose there is an observed
degraded imageY which is generated from the original
high quality image via following formula:

Y = HX+N (1)

where, X represents the samples of the ideal unknown
deterministic noise free image, N denotes the zero-mean
white Gaussian noise with variance C = ¢’. H is the
deterministic part of the degraded model which represents
any kinds of distortion, blurring and down sampling in the
process of image acquisiton. Our goal 15 to find the
estimation of ideal image X from the observation Y as
correct as possible. Obviously, when H 1s an identity
matrix I, it denotes image denoising, when H is a
space-invariant blur matrix B, it denotes image deblurring;
when H stands for a decimation operation D, it denotes
image interpolation and when H = DB, it denotes
super-resolution reconstruction.
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Total variation (TV) regularization: According to the
degraded model, estimating X from Y is obviously an
ill-posed problem, there exist an infinite number of
solutions for the under-determined case or the solution
for square and over-determined cases is not stable
(Aubert and Kornprobst, 2001). Therefore, considering
regularization in image reconstruction algorithm as a
means for picking a stable solution 1s very useful. Also,
regularization can help the algorithm to remove artifacts
from the final solution and improve the rate of
convergence. The general regularization model can be
given by:

X =argmin{]Y —HX[} + \R(X)} (2)

where, |y - quz is the data fidelity term that measures the
consistency of X to the given data, R(X) 1s a suitable
regularization function that often penalizes a lack of
smoothness in 3. A denotes regularization parameter
which plays an important role in balancing the
regularization item and the data item.

Essentially, regularization aims at finding a solution
that not only fully fits the observed data but makes some
kind of singularity minimal. There are three problems to be
addressed. The first 1s designing the regularization model
R(X); the second 15 finding the solution by an iterative
algorithms; the last is selecting the regularization
parameter A. For the regularization model, unless noted
otherwise, we adopt the well known robust regularizer:

R(X) = [vX]| = [[[vX]dxdy

which 1s called Total Variation (TV) and € is the image
demain. So, we have:

X =arg min{|¥ - HX[; + 2 [VX],} 3

Certainly, other regularization methods are also
available to find the solution. For the iterative algorithm
for TV regularization, we applied the split Bregman
method m this study which 13 an efficient algorithm
proposed by Goldstein and Osher (2009) to solve the 1.1
regularization optimization problems. The split Bregman
algonthm mainly contains two steps in each iteration such

that:

U = X® 4+ 9HT (Y - HX™) 4)

as o)1
s agin{ v O

where n is the iteration time. v is a parameter which should
be greater than the maximum eigenvalue of H'H to ensure
convergence. For the problem 5, it can be solved by using
an efficient TV denoising method. In this study, we mainly
talk about how to choose an optimal regularization
parameter 4.

MONTE-CARLO SURE FOR CHOOSING THE
REGULARIZATION PARAMETER

As stated in introduction, the optimization of
regularization parameter is very important and nontrivial.
Generally, the MSE of the signal estimate is the preferred
measure of quality to optimize A. Unfortunately, the MSE
depends on the noise-free signal which s usually
unavailable or unknown a priori. A practical approach,
therefore, 1s needed to replace the ttue MSE by some
estimate in the scheme of things. A theoretical result due
to Stein makes this possible in the Gaussian scenario, that
is the Stein's Unbiased Risk Estimate (SURE) which is a
well-established technique in the statistical literature but
not so widely known in signal processing (Stein, 1981,
Blu and Luisier, 2007). SURE, as it is called, provides a
means for unbiased estimation of the true MSE without
ever requiring knowledge of the noise-free signal, solely
depends on the given data. Moreover, the closeness of
SURE to the true MSE 15 aided by the law of large
numbers for large data size.

Stein’s unbiased risk estimate: Here, we first intreduce
the MSE theory and then discuss the SURE techmique.
Suppose the pixels of the observed image and the original
image are L and M, thus, the probability density of the
observed image Y can be expressed as an exponential
distribution:

£0Y[30) = b(Y)exp (X" () — (0} ©)
Where:

b(Y)= —lYTClY}

71 C){p{
,{(2n)L det(Ch 2
e(Yy=H'C™'Y
2 :%XTHTC*HX

Obviously, u = @(Y) 15 a sufficient statistics for
estimating X. Any reasonable estimate of X will be a
fimetion only of u. On the other hand, we can see from
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Eq. 4 and 5that the split Bregman iterative algorithm for
the regularization model Eq. 3 only depends on the
observed data ¥ via H'Y, that means it is a function only
of sufficient statistics u. Let X, —h,(u) be a split Bregman
iterative solution with the regularization parameter A, the
MSE between X, and X is defined as:

1

B, (w3 (7)

ﬁE{HXfX j}:

The criteria of the regularization parameter selection
1s to make this MSE minimal. From the defimtion of MSE,
we get:

j}: [} + vib, %) (&)
where:

v(h, X) = E{ X,

j}f E(XIX)

The regularization parameter can be chosen by
minimizing v(h;), X. The challenge i3 to compute
EhT(nX}=E{'X} because X iz unknown We try to
construct an unbiased estimation g(h,(u)) to replace
E{hiwX}, that is E{gh,u)}=E{h] ()X} then we have
v(hr”X)=E{||hq(u)”j}_2E{g(h?(u))}. So, the unbiased risk
estimation of MSE 1s qui *Hh?(”)”j ~2g(h,(u)y the optimal
parameter is chosen to minimize h, (“)”2 —2g(h, ) -

According to the work of (Elde, 2009), when H 1s full
rank, the unbiased risk estimation of the MSE can be
represented by:

S, () = X[ + |, (W)} + 2Tt {%J 2k, O

where, X, —(H'C'H)Y'H'C"'Y denctes the maximum
likelihood estimate. So the optimal parameter A can be
chosen by mmimizing (9). When H 1s rank-deficient, the
sufficient statistics u = HTCG'Y lies in the range space
R(H of HY, so %, =h,(u) also belongs to this space.
Denote by P = H (HH").H the crthogonal projection on
the space R(H"), the regularization parameter can be
decided by mimimizing:

~ 2
E {HPX - PXlHE}

Similar to the derivation in (Elder, 2009), the SURE
estimate of:

n 2
E {HPX - PX1||2}

can be expressed by:

Sth, (=[P +[Ph, wf;

- (10)
+2Tr[P$J72hI(u)§(m

where, X, =@H'C'H'H'C'Y denotes the maximum
likelihood estimate and (-)" is the pseudo inverse of a
matrix. So the optimal parameter A can be chosen by
minimizing {10) when H is rank deficient.

Monte-Carlo estimation of SURE: According to Eq. 9 and
10, the trace of:

")

&u

or:
T
Tr [P &, (”)J
cu
must be calculated when evaluating the SURE

formulation. However, calculating these traces present a
bigger difficulty because hy(u)is not available explicitly for
most reconstruction algorithms. Here the Monte-Carlo
method 15 employed to overcome this difficulty
(Ramim et al., 2008) which can be expressed by:

[

where:
T
pof B o [ h(useb)—h,
du e—0 e
beRM  is a zero-mean i.id. random vector with umit

variance and bounded higher order moment. When P =1,
we have:

Tr[ahi(u)}:]mb {bT[ha(web)fh?(u)}}
du

=0 e

Therefore, the overall algorithm for image
reconstruction can be summarized as two steps: (1) Use

the Monte-Carlo SURE algorithm to find the optumal
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regularization parameter. (2) Apply the split Bregman

iterative algorithm to solve the TV-based image
reconstruction.
EXPERIMENTAL RESULTS

We now present some numerical results for
Monte-Carlo SURE-based optimization in image
denoising, deblwrring, interpolation and super-resolution
based on TV regularization. The standard test images of
size 256x256 (Cameraman, Lena, Baboon, Boats, Peppers
and Elaine) have been chosen for simulations. The
original images are blurred by [5=5] Gaussian kernel with
standard deviation 0.8, decimated using 2:1 decimation
ratio on each axis and added by zero mean Gaussian white
noise with standard deviation 0.05, where the original
images have been normalized to [0,1]. Tn all simulations,
we choose the periodic boundary condition and apply the
FFT to calculate the convolution and its transpose. The
performance of reconstruction results are quantified by
the Tmproved Signal-to-noise Ratio (ISNR) of )’%h
compared to the reference image X, Tt is noted that the
reference image X, 1s the degraded mmage Yin the case of
immage denoising and deblurring and 1s the bicubic
interpolation image of Ywhen we do the image
interpolation and super-resolution.

Regularization parameter and ISNR comparisons: Here
we compared the optimal regularization parameter chosen
based on MSE and MC-SURE and their corresponding
ISNR. The results are shown in Table 1-4. The second
column shows a comparison of the optimal regularization
parameters, the first value in each cell means the optimal
A chosen based on true MSE (cracle value) while the
second one means the optimal A chosen based on MC-
SURE. It demonstrates that in all cases the optimum
regularization parameter obtained by MC-SURE
optimization is almost perfect agreement with the oracle
solution (mimmum MSE). In the third column, we provide
the corresponding ISNR with the optimum regularization
parameters. It is noted that, in Table 3 and 4, the ISNR
values are compared between the bicubic interpolation
and the TV regulanization reconstruction results. We can
again observe that our method has greatly improvement
in terms of ISNR in all cases.

Visual comparisons: To further validate the effectiveness
of our method m different cases, we compare the results
visually. Figure 1-4 show the image reconstruction results
for different test images based on TV regularization
with the optimum regularization parameters chosen by
MC-SURE method. Figure 1 1s the image denoising for

Fig. 1(a-c): Image denoising for Elane, (a) Original image,
{(b) Degraded image and (¢) TV denocising
image

Fig. 2(a-c): Image deblurring for Cameraman. (a) Original
image, (b) Degraded image and (¢) TV
deblurring image

Table 1: Comparisons of image dencising in terms of regularization
parameter and ISNR

Trnage Regularization pararmeter ISNR(dB)

Cameraman (0.06, 0.06) (4.915,4.915)
Lena (0.08, 0.06) (5.702, 5.696)
Baboon (0.04, 0.04) (2.070, 2.070)
Boals (0.06, 0.06) (4.344, 4.344)
Peppers (0.08, 0.08) (6.418, 6.418)
Elaine (0.08, 0.08) (6.798, 6.798)
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Fig. 3(a-c): Image interpolation for Boats. (a) Original
image, (b) Degraded image and (¢) TV
mterpolation image.

Fig. 4(a-b): Image super-resolution for Lena. (a) Original
mage, (b) Degraded image, (¢) TV super-
resolution image

Elaine; Fig. 2 is the image debluring for Cameraman;
Fig. 3 1s the image interpolation for Boats and Fig. 4 1s the
image super-resolution for Lena. Fig. 1a, 2a, 3a and 4a are
the original images; Fig. 1b, 2b, 3b and 4b are the
degraded images and Fig. lc, 2¢, 3¢ and 4¢ are the
reconstructed images with the optimum TV regularization
parameters chosen by MC-SURE optimization. From
Fig. 1-4, we can observe that in all cases the proposed

Table 2: Comparisons of image deblurring in terms of regularization
parameter and TSNR.

Tmage Regularization parameter ISNR(dB)

Carneraman (0.025, 0.025) (3.266, 3.266)
Lena (0.04, 0.0350) (4.531,4.528)
Baboon (0.02, 0.0200) (1.139,1.139)
Boats (0.03, 0.0300) (3.063, 3.063)
Peppers (0.048, 0.048) (5.408, 5.408)
Elaine (0.05 0.0400) (6.248, 6.1349)

Table 3: Comparisons of image interpolation in terms of regularization
parameter and ISNR

Image Regularization parameter ISNR(dB)

Cameramar (0.04, 0.04) (1.531, 1.531)
Lena {0.04, 0.04) (2.283,2.283)
Baboon (0.02, 0.02) (1.423,1.423)
Boats {0.03, 0.04) (1442, 1.363)
Peppers (0.04, 0.05) (2.280, 2.144)
Elaine (0.04, 0.0:) (L.627, L.&27)

Table 4: Comparisons of image super-resolution in terms of regularization
parameter and ISNR

Image Regularization parameter ISNR(dB)

Cameraman (0.02, 0.0200) (2.236, 2.236)
Lena (0,025, 0.020) (2.847, 2.838)
Baboon (0.015, 0.015) {0.682, 0.682)
Boals (0.02, 0.0200) (1.780, 1.730)
Peppers (0.025, 0.025) (3.453, 3.453)
Elaine (0,025, 0.025) (3.653, 3.653)

algorithm plays a good effect. The reconstructed results
are closer to the original images rather than the degraded
ones 1n visual mspection.
CONCLUSION

Some 1image reconsttuction inverse problems,
mcluding  denoising, debluring, interpolation and
super-resolution, are involved in this study. The Total
Variation (TV) regularization is employed to solve these
ill-posed reconstruction problems. In addition, the
MC-SURE has been developed to determine the optimum
regularization parameter. Experimental results demonstrate
the applicability of the MC-SURE technique to these
ill-posed umage reconstruction problems.
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