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Abstract: Due to their flexibility in partitioning subbands, nonuniform filter banks (NUFBs) are widely used in
signal processing applications and various methods have been proposed to achieve their Perfect-
Reconstruction (PR) property. However, it should be noticed if the sampling factors cannot guarantee the NUFB
to satisfy PR theoretically, the obtained NUFB still cannot achieve PR m spite of being designed by employing
PR NUFB design methods. And thus in this study, we analyze and clarify the inter-relationships among those
necessary conditions on sampling factors for NUFBs to achieve PR property. And then through the equivalent
structure, the resulting conclusions can also be extended from integer sampling factors to rational cases. Based
on these analyses, we can efficiently reject certain sets of sampling factors from being considered to build PR
NUFBs. The work studied here can provide useful and practical hints for further exploring the necessary and

sufficient conditions on sampling factors for PR NUFBs.
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INTRODUCTION

Multirate filter banks find success in a variety of
signal processing applications and the theory of Perfect
Reconstruction (PR)  filter banks with uniform
frequency partitioning has been well established
(Vaidyanathan, 1993). However, in some applications such
as audio coding, nonuniform frequency spacing that
matches the critical bands 1s much more preferred.

On the theory and design of nonuniform
filter banks (NUFBs), many works have been done.
Tree-structure is an easy way to construct PR NUFBs by
cascading umform ones. But the choice of sampling
factors is very limited and the system delay is rather long.
In the indirect structure (Xie et al., 2005; L1 et al., 2009),
certain subbands of a PR uniform bank are recombined by
sets of transmultiplexers, producing a PR NUFB. The
NUFB so obtained also has long system delay due to the
two-stage architecture. In contrast, the direct structure
with only one stage is much more attractive. The NUFBs
are analyzed directly m time domain by Nayebi et al.
(1993) to obtain their PR conditions. For the NUFBs with
rational sampling factors, more detailed discussion on
aliasing cancellation can be found in (Kovacevic and
Vetterl, 1993). Also the PR condition and design
procedures based on modulation technique were derived
(Wada, 1995; Niamut and Heusdens, 2003) by merging the

relevant filters of PR uniform modulated banks, inheriting
good properties of uniform modulated banks.

For NUFBs with PR property, the above methods with
either indirect or direct structures have to be employed
according to the requirements of practical applications.
However, if the sampling factors cannot make the NUFB
satisfy PR theoretically, the resulting NUFB cannot be
perfectly reconstructed n spite of being designed by PR
NUFB design methods. Therefore before designing, the
estimation for the sampling factors whether they can make
the obtained NUFB achieve PR or not, is highly desired.
This study focuses on the necessary conditions on
sampling factors for the NUFBs satisfying PR property.
On one hand, we summarize the known necessary
conditions on sampling factors for the existence of PR
NUFBs. Further on the other hand, based on the
summarization, the interrelations among these necessary
conditions are analyzed and extended, which helps to
strengthen the clarity of known conditions. Based on
these analyses, we can quickly exclude certain sampling
factors from being considered to construct PR NUFBs.
Although whether all conditions collectively can be
necessary and sufficient ones on the sampling factors for
PR NUFBs 1s still unknown, studies given here can
provide and practical hints for further
investigations.

useful
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NECESSARY CONDITIONS ON INTEGER
SAMPLING FACTORS AND THEIR
INTERRELATIONS

Figure 1 shows the direct structure of M-channel
NUFBs, where H, (z) and F, (z), O<k<M-1, are
respectively the analysis and synthesis filters. In this
section, we assume all sampling factors n, are integers
and satisfy the critical sampling condition:

Tl =1
The above system has PR property, if:
f((z) =,z " X(z)

(¢, and ¢, are constants), that is, the output 15 a scaled
and delayed version of the input. For the NUFBs, unlike
the case in the uniform bank where the existence of
realizable filters satisfying PR property is trivially assured,
1t 1s not always possible to achieve PR with realizable
filters. Next we will summarize the known necessary
conditions on integer sampling factors and further analyze
the interrelations among them.

Condition 1: Compatible set: The necessary condition of
maximally decimated PR NUFBs was firstly studied by
Hoang and Vaidyanathan (1989), which shows for the
complete aliasing cancellation, the set of integer sampling
factors must be a compatible set.

Let S = {ng, n,Y ny,} be an ordered set of integer
sampling factors, ny<n,<7Y ny,. Then S is a compatible set
if it satisfies the following conditions:

M-1
* T =1

¢ Foreveryn, |, (<n-1), there exist n, 1 (l<<n-1) with
n, ... 1, such that:

L _ ok
W =Wy

This compatible set condition is necessary for a PR
system to cancel the alasmg distortion, since it
guarantees the “pairing up” of all aliasing terms in the
Alias-Component (AC) matrix. Tt has been peinted out
that (Akkarakaran and Vaidyanathan, 2003), an equivalent
and simpler restatement of the compatibility test 1s, each
sampling factor must be a factor of some other sampling
factors. In addition, it is important to note that the
sampling factors generated by a tree-structure form a
compatible set, but the converse is not necessarily true.

x(n) - %(n)

analysis filter bank synthesis filter bank

Fig. 1: M-channel NUFB with integer sampling factors

Condition 2: Pairwise noncoprimeness: Starting from the
point that for a maximally decimated NUFB, the PR
property is equivalent to biorthonormality, Djokovic and
Vaidyanathan (1993) proposed another necessary
condition “pairwise noncoprimeness’”. The
biorthonormality of a PR NUFB can be expressed as:

(H@)F (2)) L g = 36 - j) (1)

where g; is the greatest common divisor {ged) of
sampling factors n, and n;. If any n, and n, are relatively
prime, theng, = 1 and biorthenormality implies H; (z)F,
(z) = 0 which can only be achieved with ideal filters. Thus
in order to achieve PR with realizable transfer functions,
the sampling factors should be pairwise noncoprime.

This pairwise noncoprimeness condition has no
comnection with Condition 1. That 1s, the fact that one
holds does not imply anything about whether the other
holds or not. This can be proved by the sets {2, 6, 3} and
{4, 6,6 6,6, 12}. The former has two coprime sampling
factors (2 and 3) but can be verified not satisfying
Condition 1. On the other hand, the latter does not have
coprime sampling factors but still violates Condition 1
because the largest sampling factor 12 occurs only once.

Condition 3: Strong compatible set: Later, a strong
compatibility condition (Djokovic and
Vaidyanathan, 1994) is further developed by looking
deeper into the details of aliasing cancellation, which
includes the compatible set described in Condition 1 as a
special case.

Notice that the sampling factors of an M-channel
NUFB, n,, n,,Y 1., may not be all distinet. Let us relabel
them in terms of distinct integers v,, with each v; occurring
N, times, where 0<j<K-1, Nj+ N, +Y+N, ; = M. Define the
positive integers Ik = LA, with L = 1 om {v;}. Then in
order to make the PR of corresponding NUFB possible,
the sampling factors should satisfy the following strong
compatible set condition:

m —1<N,0<j<K-1
where Mg femik k) (2)

1 kj
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The detailed proof can be found m (Djokovic and
Vaidyanathan, 1994).

This strong compatibility condition is a generalization
of Condition 1 which only said that any nonzero row of
the AC matrix should have at least two nonzero aliasing
terms. Tts test is strictly stronger than the test for
compatibility. For demonstration, let us take the NUFB
with sampling factor set {3, 5, 6,6, 15, 15} as an example.
For this set, there are K = 4 distinct integers, L = lcm
{v;} =30 and:

EEn
-

Wb G b2 e
—
ta

=
—
cb.‘«
- Y e

Since, m; Bl = 2=N,, the PR of corresponding NUFB
is not possible, although this set satisfies Condition 1.

Further we give a derivation for convenient test.
Among the distinct v; (0<j<k-1), if some v ,is a factor of
some other v, (i...J), that is v, = «;.v,, then there 1s no need

to make the strong compatibility test for v;. The following

derivation shows that v, can satisfy the strong
compatibility automatically:

Vi =av;

= kj = :1J-ki
v]kj =vk =L
- _minylem@ajk, k) (3)
= ak; = m;-1<N,
N, 21

Tt is evident for the NUFB with {3, 5, 6, 6, 15, 15},
there 1s no need to test sampling factors 3 and 5 for the
strong compatibility, since they are all factors of 15. It
should be noticed that the strong compatibility is not
preserved by tree-structure as mentioned in (Li et al.,

1997).

In 2003, Akkarakaran and Vaidyanathan (2003)
presented another two necessary conditions that the
sampling factors of PR NUFBs should satisfy. They are
the pairwise ged test and AC matrix test.

Condition 4: Pairwise GCD test: Among the sampling
factor set S of a realizable NUFB, if there exists a subset
S= containing g +1 (g =1, 2, .Y, M-1) sampling factors
such that the ged of any two elements from the subset is
a factor of g, then the realizable NUFB cannot achieve PR
property. In particular for the case of g = 1, tlus pairwise
ged test condition is simplified into Condition 2.

Condition 5: AC matrix test: In a given set of sampling
factors, let v, v..Y, v,,, be the distinct values with v,
occurring N, times. Let L be any common multiple of v,
{0<j<k-1) and define k, = L/v;. Then the algorithm for AC
matrix test is as follows:

+  Initialization. Create a matrix U with rows 1 numbered
from 0to I.-1 and columns j from 0 to K-1, where the
lj-th entry u, 1s 1 if 1 is a multiple of k; and zero
otherwise. Thus U is imtialized to describe the
positions of the zero and nonzero entries in the AC
matrix. In particular, u; = 1 for all j

»  Set U’ =U. Forall l, j such thatu, is the only entry in
the l-th row having value unity, set. u; = 2 This
identifies sets of filters having the same sampling
factor value v, and satisfying an equation of the form:

¥ H (2w E(z)=0

»  Foreach d = bk; where integer b obeying 1<bk;<[L/2],
choose for s =0,k;, 2k, Y., d-k. Ifu, =2 for Vel )
(mod L) for consecutive integers 1, set u; = 2 for 1/
¢(n) (mod L) for all integers n. Do this for each j = 0,
1,Y.K-1

» If u, = 2 for any j, the given set of sampling factors
fails the AC matrix test. If U= = 1J, the set passes the
test. If neither of these happens, go to step 2

As discussed by Aldearakaran and
Vaidyanathan (2003), passing the above test 15 a
necessary condition on the sampling factors of any
realizable PR NUFB. It has also shown that the above AC
matrix test implies Condition 3.

The five necessary conditions summarized above,
Conditions 1-5, are all imposed on the sampling factor set,
regardless of arrangement order of the elements in it. The
last condition named as “feasible partitiomng” concerns
the arrangement order of sampling factors in a given set.
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a set if integer sampling factors [n,, n...... ny,]

Condition 1

Condition 2

Condition 6 (6)

Fig. 2: Interrelation demonstration among Conditions 1-6

It has been mentioned (L1 et al, 1997, Absar and

George, 2001) in different forms.
Condition 6: Feasible partitioning: Consider an
M-channel NUFB with integer sampling factors oy, n,..,
My, In order to avoid large aliasing caused by the overlap
of positive and negative frequency components, the
sampling factors need to satisfy the feasible partitioming
condition as:

S0 =1 xn 1 <i<M -1 (4)

For some mteger 1 with 1<l<n-1. It has been shown that
(L1 et al., 1997), for a feasible partitioned NUFB, 1t 1s
possible to achieve PR if the analysis and synthesis filters
are properly designed; while for a nonfeasible one, no
matter how well the analysis/synthesis filters are
designed, the large aliasing cannot be cancelled and thus
PR cannoct be obtamed. Further it should be noticed that,
for a sampling factor set which can form a compatible set,
there does not always exist a combination of feasible
partitioning, such as the sampling factor set {2, 3, 7, 84,
84},

For clear description, we demonstrate the
mnterrelations among Conditions 1-6 in the form of sets as
shown in Fig. 2. It can be seen from Fig. 2 for a set of
integer sampling factors [ng, n,,.., Ny, ], the different cases
which satisfy some one or several necessary conditions
are respectively denoted by notations [-23. The
explanations of all cases are also illustrated m Table 1,
together with the proof of examples. Tt should be noticed
that, case 23 marked with gray shadow in Fig. 2 means
that this set of mteger sampling factors satisfies all above
Conditions 1-6.

With the above analysis, we can quickly reject certain
sampling factors from being considered to build PR
NUFBs and further remain the decimators which have the

[ ta R0 L p
(@)

Y e FNTES T o ) TN e o DI
B ) B Pe—Trabhic)

Ci (244

Fig. 3(a-b):(a) k-th branch of M-channel NUFB with
rational sampling factors and (b) The
equivalent structure of (a)

possibility to construct NUFBs with PR property. It
should be noticed that not all those remained decimators
canrealize PR of NUFBs, because the conditions collected
here are all necessary for PR NUFBs, while the necessary
and sufficient conditions on decimator set is still an open
problem.

EXTENSIONS TO RATIONAL SAMPLING
FACTORS

In this section, we further extend the necessary
conditions on integer sampling factors to the rational case
by employmg the equivalent structure (Kovacevic and
Vetterli, 1993).

For easy discussion, here we take the k-branch of M-
channel NUFB with rational sampling factors p/q, as an
example shown m Fig. 3. The samplers p, and g, are
coprime and satisfy the critical sampling condition . From
Fig. 3 we can see that, the k-th branch with sampler p,/q,
can be equivalent to p, channels with integer sampler q,.
And thus the necessary conditions analyzed in the case
of integer samplers can be futher extended into the
rational case. As a result: Those rational sampling factors
which camot make the corresponding NUFB achieve PR
can also be excluded effectively.

CONCLUSION

This study explores the necessary conditions on
sampling factors for the NUFBs satisfying PR property.
We first analyze the known necessary conditions on
integer samplers for the existence of PR NUFBs and then
clarify the interrelations among them, which helps to
strengthen the clanty of known conditions. Further by
employing the equivalent structure, the resulting
conclusions can also be applied to the rational case.
Although, whether all conditions collectively can be
necessary and sufficient ones on the sampling factors for
PR NUFBs 1s still unknown, studies given here can
provide useful and practical hints for further
investigations.
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Table 1: Case explanations and proof of examples on interrelation demonstration among Conditions 1-6

Case Explanations Proof of Examples

Case Explanations Proof of Examples

1 Conditions 1Y 2N 3N 4N 5N 6N
3 Conditions 17 2N 37 4N 5N 6N
5 Conditions 1Y 2N 3Y 4N 5Y 6N
7 Conditions 1Y 2Y 3N 4N 5N 6N
8 Conditions 1N 2Y 3N 4N 5N 6Y
10 Conditions 1Y 2Y 3N 4Y 5N 6N

[2, 3,7, 84, 84]

[2. 5 10, 10, 10]

[3, 4,612, 12,12]

[2, 4, 6, 24, 24]

[4,4, 4,8 24, 12]

[6 6, 6. 6,9, 9, 27, 27, 45,
270, 270, 270, 270]

[2, 10, 5, 10, 10]

[4, 250, 10, 20, 20, 6, 6, 6]

? Conditions 1Y 2N 3Y 4N 5N 6Y
? Conditions 1Y 2Y 3Y 4N SN 6Y
? Conditions 1Y 2N 3Y 4N 5Y 6Y [2.15,5,15, ,15]
5

[2, 4, 24, 48, 48, 6]
[6,6,6,6,99 24[6,6,66,9,9,
24,72, 72, 72,72, 72] 72, 72, 72, 72,
72]
[6,30,10,30,15,30,30,---,30]

A P

12

? Conditions 1Y 2Y 3Y 4N 5Y 6Y
11Cenditions 1Y 2Y 3Y 4Y 5N 6N

11Conditions 1Y 2Y 3Y 4Y 5Y 6Y

2 Conditions IN 2Y 3N 4N 5N 6N [2, 4,6 12]
4 Conditions 1N 2Y 3N 4Y 5N 6N [2.4,8 12, 24]
& Conditions IN 2N 3N 4N 5N 6Y [2,6,3]

8 Conditions 1Y 2N 3N 4N 5N 6Y
9 Conditions 1Y 2Y 3Y 4N SN 6N
?Conditions 1Y 2Y 3N 4N 5N 6Y

[3,6,6,15,15, 5]
[4,6, 6,6, 10,20, 20, 20,]
[2,4, 48, 48, 48, 6]

9 Conditions 1N 2Y 3N 4Y SN 6Y [4,12, 6,6, 6, 6]

2 Conditions 1Y 2Y 3N 4Y 5N 6Y [6.6, 6, 6,9,9, 27, 27, 270, 270]
270, 270, 45]

2 Conditions 1Y 2Y 3Y 4Y SN 6Y [, 6, 66,09, 72 72, 24, 72,
72, 72]

2 Conditions 1Y 2Y 3Y 4N 5Y 6N [2,4, 6 24, 48, 48]

11Conditions 1Y 2Y 3Y 4Y 5Y 6N [4,2, 4]

Y: Satisfying the comresponding condition, N: Not satisfy ing the corresponding condition
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